aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacpsy.c
blob: 3880266784eb3414d21cb442ba5fbd375f926cd3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 * AAC encoder psychoacoustic model
 * Copyright (C) 2008 Konstantin Shishkov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file libavcodec/aacpsy.c
 * AAC encoder psychoacoustic model
 */

#include "avcodec.h"
#include "aactab.h"
#include "psymodel.h"

/***********************************
 *              TODOs:
 * thresholds linearization after their modifications for attaining given bitrate
 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
 * control quality for quality-based output
 **********************************/

/**
 * constants for 3GPP AAC psychoacoustic model
 * @{
 */
#define PSY_3GPP_SPREAD_LOW  1.5f // spreading factor for ascending threshold spreading  (15 dB/Bark)
#define PSY_3GPP_SPREAD_HI   3.0f // spreading factor for descending threshold spreading (30 dB/Bark)

#define PSY_3GPP_RPEMIN      0.01f
#define PSY_3GPP_RPELEV      2.0f
/**
 * @}
 */

/**
 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
 */
typedef struct Psy3gppBand{
    float energy;    ///< band energy
    float ffac;      ///< form factor
    float thr;       ///< energy threshold
    float min_snr;   ///< minimal SNR
    float thr_quiet; ///< threshold in quiet
}Psy3gppBand;

/**
 * single/pair channel context for psychoacoustic model
 */
typedef struct Psy3gppChannel{
    Psy3gppBand band[128];               ///< bands information
    Psy3gppBand prev_band[128];          ///< bands information from the previous frame

    float       win_energy;              ///< sliding average of channel energy
    float       iir_state[2];            ///< hi-pass IIR filter state
    uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
    enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
}Psy3gppChannel;

/**
 * psychoacoustic model frame type-dependent coefficients
 */
typedef struct Psy3gppCoeffs{
    float ath       [64]; ///< absolute threshold of hearing per bands
    float barks     [64]; ///< Bark value for each spectral band in long frame
    float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame
    float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame
}Psy3gppCoeffs;

/**
 * 3GPP TS26.403-inspired psychoacoustic model specific data
 */
typedef struct Psy3gppContext{
    Psy3gppCoeffs psy_coef[2];
    Psy3gppChannel *ch;
}Psy3gppContext;

/**
 * Calculate Bark value for given line.
 */
static av_cold float calc_bark(float f)
{
    return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
}

#define ATH_ADD 4
/**
 * Calculate ATH value for given frequency.
 * Borrowed from Lame.
 */
static av_cold float ath(float f, float add)
{
    f /= 1000.0f;
    return   3.64 * pow(f, -0.8)
            - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
            + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
            + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
}

static av_cold int psy_3gpp_init(FFPsyContext *ctx){
    Psy3gppContext *pctx;
    float barks[1024];
    int i, j, g, start;
    float prev, minscale, minath;

    ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
    pctx = (Psy3gppContext*) ctx->model_priv_data;

    for(i = 0; i < 1024; i++)
        barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
    minath = ath(3410, ATH_ADD);
    for(j = 0; j < 2; j++){
        Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
        i = 0;
        prev = 0.0;
        for(g = 0; g < ctx->num_bands[j]; g++){
            i += ctx->bands[j][g];
            coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
            prev = barks[i - 1];
        }
        for(g = 0; g < ctx->num_bands[j] - 1; g++){
            coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
            coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
        }
        start = 0;
        for(g = 0; g < ctx->num_bands[j]; g++){
            minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
            for(i = 1; i < ctx->bands[j][g]; i++){
                minscale = fminf(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
            }
            coeffs->ath[g] = minscale - minath;
            start += ctx->bands[j][g];
        }
    }

    pctx->ch = av_mallocz(sizeof(Psy3gppChannel) * ctx->avctx->channels);
    return 0;
}

/**
 * IIR filter used in block switching decision
 */
static float iir_filter(int in, float state[2])
{
    float ret;

    ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
    state[0] = in;
    state[1] = ret;
    return ret;
}

/**
 * window grouping information stored as bits (0 - new group, 1 - group continues)
 */
static const uint8_t window_grouping[9] = {
    0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
};

/**
 * Tell encoder which window types to use.
 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
 */
static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
                                       const int16_t *audio, const int16_t *la,
                                       int channel, int prev_type)
{
    int i, j;
    int br = ctx->avctx->bit_rate / ctx->avctx->channels;
    int attack_ratio = br <= 16000 ? 18 : 10;
    Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
    Psy3gppChannel *pch = &pctx->ch[channel];
    uint8_t grouping = 0;
    FFPsyWindowInfo wi;

    memset(&wi, 0, sizeof(wi));
    if(la){
        float s[8], v;
        int switch_to_eight = 0;
        float sum = 0.0, sum2 = 0.0;
        int attack_n = 0;
        for(i = 0; i < 8; i++){
            for(j = 0; j < 128; j++){
                v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
                sum += v*v;
            }
            s[i] = sum;
            sum2 += sum;
        }
        for(i = 0; i < 8; i++){
            if(s[i] > pch->win_energy * attack_ratio){
                attack_n = i + 1;
                switch_to_eight = 1;
                break;
            }
        }
        pch->win_energy = pch->win_energy*7/8 + sum2/64;

        wi.window_type[1] = prev_type;
        switch(prev_type){
        case ONLY_LONG_SEQUENCE:
            wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
            break;
        case LONG_START_SEQUENCE:
            wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
            grouping = pch->next_grouping;
            break;
        case LONG_STOP_SEQUENCE:
            wi.window_type[0] = ONLY_LONG_SEQUENCE;
            break;
        case EIGHT_SHORT_SEQUENCE:
            wi.window_type[0] = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
            grouping = switch_to_eight ? pch->next_grouping : 0;
            break;
        }
        pch->next_grouping = window_grouping[attack_n];
    }else{
        for(i = 0; i < 3; i++)
            wi.window_type[i] = prev_type;
        grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
    }

    wi.window_shape   = 1;
    if(wi.window_type[0] != EIGHT_SHORT_SEQUENCE){
        wi.num_windows = 1;
        wi.grouping[0] = 1;
    }else{
        int lastgrp = 0;
        wi.num_windows = 8;
        for(i = 0; i < 8; i++){
            if(!((grouping >> i) & 1))
                lastgrp = i;
            wi.grouping[lastgrp]++;
        }
    }

    return wi;
}

/**
 * Calculate band thresholds as suggested in 3GPP TS26.403
 */
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float *coefs,
                             FFPsyWindowInfo *wi)
{
    Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
    Psy3gppChannel *pch = &pctx->ch[channel];
    int start = 0;
    int i, w, g;
    const int num_bands = ctx->num_bands[wi->num_windows == 8];
    const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
    Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];

    //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
    for(w = 0; w < wi->num_windows*16; w += 16){
        for(g = 0; g < num_bands; g++){
            Psy3gppBand *band = &pch->band[w+g];
            band->energy = 0.0f;
            for(i = 0; i < band_sizes[g]; i++)
                band->energy += coefs[start+i] * coefs[start+i];
            band->energy *= 1.0f / (512*512);
            band->thr = band->energy * 0.001258925f;
            start += band_sizes[g];

            ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
        }
    }
    //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
    for(w = 0; w < wi->num_windows*16; w += 16){
        Psy3gppBand *band = &pch->band[w];
        for(g = 1; g < num_bands; g++){
            band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
        }
        for(g = num_bands - 2; g >= 0; g--){
            band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
        }
        for(g = 0; g < num_bands; g++){
            band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
            if(wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE){
                band[g].thr_quiet = fmaxf(PSY_3GPP_RPEMIN*band[g].thr_quiet,
                                          fminf(band[g].thr_quiet,
                                          PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
            }
            band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25);

            ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
        }
    }
    memcpy(pch->prev_band, pch->band, sizeof(pch->band));
}

static av_cold void psy_3gpp_end(FFPsyContext *apc)
{
    Psy3gppContext *pctx = (Psy3gppContext*) apc->model_priv_data;
    av_freep(&pctx->ch);
    av_freep(&apc->model_priv_data);
}


const FFPsyModel ff_aac_psy_model =
{
    .name    = "3GPP TS 26.403-inspired model",
    .init    = psy_3gpp_init,
    .window  = psy_3gpp_window,
    .analyze = psy_3gpp_analyze,
    .end     = psy_3gpp_end,
};