aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aac.c
blob: 5427d7c672c51f131f4646c91c10280c21391434 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
/*
 * AAC decoder
 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file libavcodec/aac.c
 * AAC decoder
 * @author Oded Shimon  ( ods15 ods15 dyndns org )
 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
 */

/*
 * supported tools
 *
 * Support?             Name
 * N (code in SoC repo) gain control
 * Y                    block switching
 * Y                    window shapes - standard
 * N                    window shapes - Low Delay
 * Y                    filterbank - standard
 * N (code in SoC repo) filterbank - Scalable Sample Rate
 * Y                    Temporal Noise Shaping
 * N (code in SoC repo) Long Term Prediction
 * Y                    intensity stereo
 * Y                    channel coupling
 * Y                    frequency domain prediction
 * Y                    Perceptual Noise Substitution
 * Y                    Mid/Side stereo
 * N                    Scalable Inverse AAC Quantization
 * N                    Frequency Selective Switch
 * N                    upsampling filter
 * Y                    quantization & coding - AAC
 * N                    quantization & coding - TwinVQ
 * N                    quantization & coding - BSAC
 * N                    AAC Error Resilience tools
 * N                    Error Resilience payload syntax
 * N                    Error Protection tool
 * N                    CELP
 * N                    Silence Compression
 * N                    HVXC
 * N                    HVXC 4kbits/s VR
 * N                    Structured Audio tools
 * N                    Structured Audio Sample Bank Format
 * N                    MIDI
 * N                    Harmonic and Individual Lines plus Noise
 * N                    Text-To-Speech Interface
 * N (in progress)      Spectral Band Replication
 * Y (not in this code) Layer-1
 * Y (not in this code) Layer-2
 * Y (not in this code) Layer-3
 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
 * N (planned)          Parametric Stereo
 * N                    Direct Stream Transfer
 *
 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
           Parametric Stereo.
 */


#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "dsputil.h"
#include "lpc.h"

#include "aac.h"
#include "aactab.h"
#include "aacdectab.h"
#include "mpeg4audio.h"
#include "aac_parser.h"

#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>

union float754 { float f; uint32_t i; };

static VLC vlc_scalefactors;
static VLC vlc_spectral[11];


static ChannelElement* get_che(AACContext *ac, int type, int elem_id) {
    static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
    if (ac->tag_che_map[type][elem_id]) {
        return ac->tag_che_map[type][elem_id];
    }
    if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
        return NULL;
    }
    switch (ac->m4ac.chan_config) {
        case 7:
            if (ac->tags_mapped == 3 && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
            }
        case 6:
            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
               instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
               encountered such a stream, transfer the LFE[0] element to SCE[1] */
            if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
                ac->tags_mapped++;
                return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
            }
        case 5:
            if (ac->tags_mapped == 2 && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
            }
        case 4:
            if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
            }
        case 3:
        case 2:
            if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
            } else if (ac->m4ac.chan_config == 2) {
                return NULL;
            }
        case 1:
            if (!ac->tags_mapped && type == TYPE_SCE) {
                ac->tags_mapped++;
                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
            }
        default:
            return NULL;
    }
}

/**
 * Configure output channel order based on the current program configuration element.
 *
 * @param   che_pos current channel position configuration
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) {
    AVCodecContext *avctx = ac->avccontext;
    int i, type, channels = 0;

    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));

    /* Allocate or free elements depending on if they are in the
     * current program configuration.
     *
     * Set up default 1:1 output mapping.
     *
     * For a 5.1 stream the output order will be:
     *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
     */

    for(i = 0; i < MAX_ELEM_ID; i++) {
        for(type = 0; type < 4; type++) {
            if(che_pos[type][i]) {
                if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
                    return AVERROR(ENOMEM);
                if(type != TYPE_CCE) {
                    ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
                    if(type == TYPE_CPE) {
                        ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
                    }
                }
            } else
                av_freep(&ac->che[type][i]);
        }
    }

    if (channel_config) {
        memset(ac->tag_che_map, 0,       4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
        ac->tags_mapped = 0;
    } else {
        memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
        ac->tags_mapped = 4*MAX_ELEM_ID;
    }

    avctx->channels = channels;

    return 0;
}

/**
 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
 *
 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
 * @param sce_map mono (Single Channel Element) map
 * @param type speaker type/position for these channels
 */
static void decode_channel_map(enum ChannelPosition *cpe_map,
        enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
    while(n--) {
        enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
        map[get_bits(gb, 4)] = type;
    }
}

/**
 * Decode program configuration element; reference: table 4.2.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
        GetBitContext * gb) {
    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;

    skip_bits(gb, 2);  // object_type

    sampling_index = get_bits(gb, 4);
    if(sampling_index > 12) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
        return -1;
    }
    ac->m4ac.sampling_index = sampling_index;
    ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
    num_front       = get_bits(gb, 4);
    num_side        = get_bits(gb, 4);
    num_back        = get_bits(gb, 4);
    num_lfe         = get_bits(gb, 2);
    num_assoc_data  = get_bits(gb, 3);
    num_cc          = get_bits(gb, 4);

    if (get_bits1(gb))
        skip_bits(gb, 4); // mono_mixdown_tag
    if (get_bits1(gb))
        skip_bits(gb, 4); // stereo_mixdown_tag

    if (get_bits1(gb))
        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround

    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
    decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );

    skip_bits_long(gb, 4 * num_assoc_data);

    decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );

    align_get_bits(gb);

    /* comment field, first byte is length */
    skip_bits_long(gb, 8 * get_bits(gb, 8));
    return 0;
}

/**
 * Set up channel positions based on a default channel configuration
 * as specified in table 1.17.
 *
 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
        int channel_config)
{
    if(channel_config < 1 || channel_config > 7) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
               channel_config);
        return -1;
    }

    /* default channel configurations:
     *
     * 1ch : front center (mono)
     * 2ch : L + R (stereo)
     * 3ch : front center + L + R
     * 4ch : front center + L + R + back center
     * 5ch : front center + L + R + back stereo
     * 6ch : front center + L + R + back stereo + LFE
     * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
     */

    if(channel_config != 2)
        new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
    if(channel_config > 1)
        new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
    if(channel_config == 4)
        new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
    if(channel_config > 4)
        new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
                                 = AAC_CHANNEL_BACK;  // back stereo
    if(channel_config > 5)
        new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
    if(channel_config == 7)
        new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right

    return 0;
}

/**
 * Decode GA "General Audio" specific configuration; reference: table 4.1.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
    int extension_flag, ret;

    if(get_bits1(gb)) {  // frameLengthFlag
        ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
        return -1;
    }

    if (get_bits1(gb))       // dependsOnCoreCoder
        skip_bits(gb, 14);   // coreCoderDelay
    extension_flag = get_bits1(gb);

    if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
       ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
        skip_bits(gb, 3);     // layerNr

    memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
    if (channel_config == 0) {
        skip_bits(gb, 4);  // element_instance_tag
        if((ret = decode_pce(ac, new_che_pos, gb)))
            return ret;
    } else {
        if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
            return ret;
    }
    if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
        return ret;

    if (extension_flag) {
        switch (ac->m4ac.object_type) {
            case AOT_ER_BSAC:
                skip_bits(gb, 5);    // numOfSubFrame
                skip_bits(gb, 11);   // layer_length
                break;
            case AOT_ER_AAC_LC:
            case AOT_ER_AAC_LTP:
            case AOT_ER_AAC_SCALABLE:
            case AOT_ER_AAC_LD:
                skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
                                    * aacScalefactorDataResilienceFlag
                                    * aacSpectralDataResilienceFlag
                                    */
                break;
        }
        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
    }
    return 0;
}

/**
 * Decode audio specific configuration; reference: table 1.13.
 *
 * @param   data        pointer to AVCodecContext extradata
 * @param   data_size   size of AVCCodecContext extradata
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
    GetBitContext gb;
    int i;

    init_get_bits(&gb, data, data_size * 8);

    if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
        return -1;
    if(ac->m4ac.sampling_index > 12) {
        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
        return -1;
    }

    skip_bits_long(&gb, i);

    switch (ac->m4ac.object_type) {
    case AOT_AAC_MAIN:
    case AOT_AAC_LC:
        if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
            return -1;
        break;
    default:
        av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
               ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
        return -1;
    }
    return 0;
}

/**
 * linear congruential pseudorandom number generator
 *
 * @param   previous_val    pointer to the current state of the generator
 *
 * @return  Returns a 32-bit pseudorandom integer
 */
static av_always_inline int lcg_random(int previous_val) {
    return previous_val * 1664525 + 1013904223;
}

static void reset_predict_state(PredictorState * ps) {
    ps->r0 = 0.0f;
    ps->r1 = 0.0f;
    ps->cor0 = 0.0f;
    ps->cor1 = 0.0f;
    ps->var0 = 1.0f;
    ps->var1 = 1.0f;
}

static void reset_all_predictors(PredictorState * ps) {
    int i;
    for (i = 0; i < MAX_PREDICTORS; i++)
        reset_predict_state(&ps[i]);
}

static void reset_predictor_group(PredictorState * ps, int group_num) {
    int i;
    for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
        reset_predict_state(&ps[i]);
}

static av_cold int aac_decode_init(AVCodecContext * avccontext) {
    AACContext * ac = avccontext->priv_data;
    int i;

    ac->avccontext = avccontext;

    if (avccontext->extradata_size > 0) {
        if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
            return -1;
        avccontext->sample_rate = ac->m4ac.sample_rate;
    } else if (avccontext->channels > 0) {
        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
        memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
        if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8)))
            return -1;
        if(output_configure(ac, ac->che_pos, new_che_pos, 1))
            return -1;
        ac->m4ac.sample_rate = avccontext->sample_rate;
    }

    avccontext->sample_fmt  = SAMPLE_FMT_S16;
    avccontext->frame_size  = 1024;

    AAC_INIT_VLC_STATIC( 0, 144);
    AAC_INIT_VLC_STATIC( 1, 114);
    AAC_INIT_VLC_STATIC( 2, 188);
    AAC_INIT_VLC_STATIC( 3, 180);
    AAC_INIT_VLC_STATIC( 4, 172);
    AAC_INIT_VLC_STATIC( 5, 140);
    AAC_INIT_VLC_STATIC( 6, 168);
    AAC_INIT_VLC_STATIC( 7, 114);
    AAC_INIT_VLC_STATIC( 8, 262);
    AAC_INIT_VLC_STATIC( 9, 248);
    AAC_INIT_VLC_STATIC(10, 384);

    dsputil_init(&ac->dsp, avccontext);

    ac->random_state = 0x1f2e3d4c;

    // -1024 - Compensate wrong IMDCT method.
    // 32768 - Required to scale values to the correct range for the bias method
    //         for float to int16 conversion.

    if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
        ac->add_bias = 385.0f;
        ac->sf_scale = 1. / (-1024. * 32768.);
        ac->sf_offset = 0;
    } else {
        ac->add_bias = 0.0f;
        ac->sf_scale = 1. / -1024.;
        ac->sf_offset = 60;
    }

#if !CONFIG_HARDCODED_TABLES
    for (i = 0; i < 428; i++)
        ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
#endif /* CONFIG_HARDCODED_TABLES */

    INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
        ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
        ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
        352);

    ff_mdct_init(&ac->mdct, 11, 1);
    ff_mdct_init(&ac->mdct_small, 8, 1);
    // window initialization
    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
    ff_sine_window_init(ff_sine_1024, 1024);
    ff_sine_window_init(ff_sine_128, 128);

    return 0;
}

/**
 * Skip data_stream_element; reference: table 4.10.
 */
static void skip_data_stream_element(GetBitContext * gb) {
    int byte_align = get_bits1(gb);
    int count = get_bits(gb, 8);
    if (count == 255)
        count += get_bits(gb, 8);
    if (byte_align)
        align_get_bits(gb);
    skip_bits_long(gb, 8 * count);
}

static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
    int sfb;
    if (get_bits1(gb)) {
        ics->predictor_reset_group = get_bits(gb, 5);
        if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
            av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
            return -1;
        }
    }
    for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
        ics->prediction_used[sfb] = get_bits1(gb);
    }
    return 0;
}

/**
 * Decode Individual Channel Stream info; reference: table 4.6.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 */
static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
    if (get_bits1(gb)) {
        av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
        memset(ics, 0, sizeof(IndividualChannelStream));
        return -1;
    }
    ics->window_sequence[1] = ics->window_sequence[0];
    ics->window_sequence[0] = get_bits(gb, 2);
    ics->use_kb_window[1] = ics->use_kb_window[0];
    ics->use_kb_window[0] = get_bits1(gb);
    ics->num_window_groups = 1;
    ics->group_len[0] = 1;
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        int i;
        ics->max_sfb = get_bits(gb, 4);
        for (i = 0; i < 7; i++) {
            if (get_bits1(gb)) {
                ics->group_len[ics->num_window_groups-1]++;
            } else {
                ics->num_window_groups++;
                ics->group_len[ics->num_window_groups-1] = 1;
            }
        }
        ics->num_windows   = 8;
        ics->swb_offset    =      swb_offset_128[ac->m4ac.sampling_index];
        ics->num_swb       =  ff_aac_num_swb_128[ac->m4ac.sampling_index];
        ics->tns_max_bands =   tns_max_bands_128[ac->m4ac.sampling_index];
        ics->predictor_present = 0;
    } else {
        ics->max_sfb       = get_bits(gb, 6);
        ics->num_windows   = 1;
        ics->swb_offset    =     swb_offset_1024[ac->m4ac.sampling_index];
        ics->num_swb       = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
        ics->tns_max_bands =  tns_max_bands_1024[ac->m4ac.sampling_index];
        ics->predictor_present = get_bits1(gb);
        ics->predictor_reset_group = 0;
        if (ics->predictor_present) {
            if (ac->m4ac.object_type == AOT_AAC_MAIN) {
                if (decode_prediction(ac, ics, gb)) {
                    memset(ics, 0, sizeof(IndividualChannelStream));
                    return -1;
                }
            } else if (ac->m4ac.object_type == AOT_AAC_LC) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
                memset(ics, 0, sizeof(IndividualChannelStream));
                return -1;
            } else {
                ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
                memset(ics, 0, sizeof(IndividualChannelStream));
                return -1;
            }
        }
    }

    if(ics->max_sfb > ics->num_swb) {
        av_log(ac->avccontext, AV_LOG_ERROR,
            "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
            ics->max_sfb, ics->num_swb);
        memset(ics, 0, sizeof(IndividualChannelStream));
        return -1;
    }

    return 0;
}

/**
 * Decode band types (section_data payload); reference: table 4.46.
 *
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_band_types(AACContext * ac, enum BandType band_type[120],
        int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
    int g, idx = 0;
    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
    for (g = 0; g < ics->num_window_groups; g++) {
        int k = 0;
        while (k < ics->max_sfb) {
            uint8_t sect_len = k;
            int sect_len_incr;
            int sect_band_type = get_bits(gb, 4);
            if (sect_band_type == 12) {
                av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
                return -1;
            }
            while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
                sect_len += sect_len_incr;
            sect_len += sect_len_incr;
            if (sect_len > ics->max_sfb) {
                av_log(ac->avccontext, AV_LOG_ERROR,
                    "Number of bands (%d) exceeds limit (%d).\n",
                    sect_len, ics->max_sfb);
                return -1;
            }
            for (; k < sect_len; k++) {
                band_type        [idx]   = sect_band_type;
                band_type_run_end[idx++] = sect_len;
            }
        }
    }
    return 0;
}

/**
 * Decode scalefactors; reference: table 4.47.
 *
 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
 * @param   band_type           array of the used band type
 * @param   band_type_run_end   array of the last scalefactor band of a band type run
 * @param   sf                  array of scalefactors or intensity stereo positions
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
        unsigned int global_gain, IndividualChannelStream * ics,
        enum BandType band_type[120], int band_type_run_end[120]) {
    const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
    int g, i, idx = 0;
    int offset[3] = { global_gain, global_gain - 90, 100 };
    int noise_flag = 1;
    static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            int run_end = band_type_run_end[idx];
            if (band_type[idx] == ZERO_BT) {
                for(; i < run_end; i++, idx++)
                    sf[idx] = 0.;
            }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
                for(; i < run_end; i++, idx++) {
                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[2] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[2], offset[2]);
                        return -1;
                    }
                    sf[idx]  = ff_aac_pow2sf_tab[-offset[2] + 300];
                }
            }else if(band_type[idx] == NOISE_BT) {
                for(; i < run_end; i++, idx++) {
                    if(noise_flag-- > 0)
                        offset[1] += get_bits(gb, 9) - 256;
                    else
                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[1] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[1], offset[1]);
                        return -1;
                    }
                    sf[idx]  = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
                }
            }else {
                for(; i < run_end; i++, idx++) {
                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                    if(offset[0] > 255U) {
                        av_log(ac->avccontext, AV_LOG_ERROR,
                            "%s (%d) out of range.\n", sf_str[0], offset[0]);
                        return -1;
                    }
                    sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
                }
            }
        }
    }
    return 0;
}

/**
 * Decode pulse data; reference: table 4.7.
 */
static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
    int i, pulse_swb;
    pulse->num_pulse = get_bits(gb, 2) + 1;
    pulse_swb        = get_bits(gb, 6);
    if (pulse_swb >= num_swb)
        return -1;
    pulse->pos[0]    = swb_offset[pulse_swb];
    pulse->pos[0]   += get_bits(gb, 5);
    if (pulse->pos[0] > 1023)
        return -1;
    pulse->amp[0]    = get_bits(gb, 4);
    for (i = 1; i < pulse->num_pulse; i++) {
        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
        if (pulse->pos[i] > 1023)
            return -1;
        pulse->amp[i] = get_bits(gb, 4);
    }
    return 0;
}

/**
 * Decode Temporal Noise Shaping data; reference: table 4.48.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
        GetBitContext * gb, const IndividualChannelStream * ics) {
    int w, filt, i, coef_len, coef_res, coef_compress;
    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
    for (w = 0; w < ics->num_windows; w++) {
        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
            coef_res = get_bits1(gb);

            for (filt = 0; filt < tns->n_filt[w]; filt++) {
                int tmp2_idx;
                tns->length[w][filt] = get_bits(gb, 6 - 2*is8);

                if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
                    av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
                           tns->order[w][filt], tns_max_order);
                    tns->order[w][filt] = 0;
                    return -1;
                }
                if (tns->order[w][filt]) {
                    tns->direction[w][filt] = get_bits1(gb);
                    coef_compress = get_bits1(gb);
                    coef_len = coef_res + 3 - coef_compress;
                    tmp2_idx = 2*coef_compress + coef_res;

                    for (i = 0; i < tns->order[w][filt]; i++)
                        tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
                }
            }
        }
    }
    return 0;
}

/**
 * Decode Mid/Side data; reference: table 4.54.
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
        int ms_present) {
    int idx;
    if (ms_present == 1) {
        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
            cpe->ms_mask[idx] = get_bits1(gb);
    } else if (ms_present == 2) {
        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
    }
}

/**
 * Decode spectral data; reference: table 4.50.
 * Dequantize and scale spectral data; reference: 4.6.3.3.
 *
 * @param   coef            array of dequantized, scaled spectral data
 * @param   sf              array of scalefactors or intensity stereo positions
 * @param   pulse_present   set if pulses are present
 * @param   pulse           pointer to pulse data struct
 * @param   band_type       array of the used band type
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
        int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
    int i, k, g, idx = 0;
    const int c = 1024/ics->num_windows;
    const uint16_t * offsets = ics->swb_offset;
    float *coef_base = coef;
    static const float sign_lookup[] = { 1.0f, -1.0f };

    for (g = 0; g < ics->num_windows; g++)
        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));

    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            const int cur_band_type = band_type[idx];
            const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
            const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
            int group;
            if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
                }
            }else if (cur_band_type == NOISE_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    float scale;
                    float band_energy = 0;
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        ac->random_state  = lcg_random(ac->random_state);
                        coef[group*128+k] = ac->random_state;
                        band_energy += coef[group*128+k]*coef[group*128+k];
                    }
                    scale = sf[idx] / sqrtf(band_energy);
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        coef[group*128+k] *= scale;
                    }
                }
            }else {
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k += dim) {
                        const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
                        const int coef_tmp_idx = (group << 7) + k;
                        const float *vq_ptr;
                        int j;
                        if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
                            av_log(ac->avccontext, AV_LOG_ERROR,
                                "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
                                cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
                            return -1;
                        }
                        vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
                        if (is_cb_unsigned) {
                            if (vq_ptr[0]) coef[coef_tmp_idx    ] = sign_lookup[get_bits1(gb)];
                            if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
                            if (dim == 4) {
                                if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
                                if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
                            }
                            if (cur_band_type == ESC_BT) {
                                for (j = 0; j < 2; j++) {
                                    if (vq_ptr[j] == 64.0f) {
                                        int n = 4;
                                        /* The total length of escape_sequence must be < 22 bits according
                                           to the specification (i.e. max is 11111111110xxxxxxxxxx). */
                                        while (get_bits1(gb) && n < 15) n++;
                                        if(n == 15) {
                                            av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
                                            return -1;
                                        }
                                        n = (1<<n) + get_bits(gb, n);
                                        coef[coef_tmp_idx + j] *= cbrtf(n) * n;
                                    }else
                                        coef[coef_tmp_idx + j] *= vq_ptr[j];
                                }
                            }else
                            {
                                coef[coef_tmp_idx    ] *= vq_ptr[0];
                                coef[coef_tmp_idx + 1] *= vq_ptr[1];
                                if (dim == 4) {
                                    coef[coef_tmp_idx + 2] *= vq_ptr[2];
                                    coef[coef_tmp_idx + 3] *= vq_ptr[3];
                                }
                            }
                        }else {
                            coef[coef_tmp_idx    ] = vq_ptr[0];
                            coef[coef_tmp_idx + 1] = vq_ptr[1];
                            if (dim == 4) {
                                coef[coef_tmp_idx + 2] = vq_ptr[2];
                                coef[coef_tmp_idx + 3] = vq_ptr[3];
                            }
                        }
                        coef[coef_tmp_idx    ] *= sf[idx];
                        coef[coef_tmp_idx + 1] *= sf[idx];
                        if (dim == 4) {
                            coef[coef_tmp_idx + 2] *= sf[idx];
                            coef[coef_tmp_idx + 3] *= sf[idx];
                        }
                    }
                }
            }
        }
        coef += ics->group_len[g]<<7;
    }

    if (pulse_present) {
        idx = 0;
        for(i = 0; i < pulse->num_pulse; i++){
            float co  = coef_base[ pulse->pos[i] ];
            while(offsets[idx + 1] <= pulse->pos[i])
                idx++;
            if (band_type[idx] != NOISE_BT && sf[idx]) {
                float ico = -pulse->amp[i];
                if (co) {
                    co /= sf[idx];
                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
                }
                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
            }
        }
    }
    return 0;
}

static av_always_inline float flt16_round(float pf) {
    union float754 tmp;
    tmp.f = pf;
    tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
    return tmp.f;
}

static av_always_inline float flt16_even(float pf) {
    union float754 tmp;
    tmp.f = pf;
    tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U>>16)) & 0xFFFF0000U;
    return tmp.f;
}

static av_always_inline float flt16_trunc(float pf) {
    union float754 pun;
    pun.f = pf;
    pun.i &= 0xFFFF0000U;
    return pun.f;
}

static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
    const float a     = 0.953125; // 61.0/64
    const float alpha = 0.90625;  // 29.0/32
    float e0, e1;
    float pv;
    float k1, k2;

    k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
    k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;

    pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
    if (output_enable)
        *coef += pv * ac->sf_scale;

    e0 = *coef / ac->sf_scale;
    e1 = e0 - k1 * ps->r0;

    ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
    ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
    ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
    ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));

    ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
    ps->r0 = flt16_trunc(a * e0);
}

/**
 * Apply AAC-Main style frequency domain prediction.
 */
static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
    int sfb, k;

    if (!sce->ics.predictor_initialized) {
        reset_all_predictors(sce->predictor_state);
        sce->ics.predictor_initialized = 1;
    }

    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
        for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
                predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
                    sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
            }
        }
        if (sce->ics.predictor_reset_group)
            reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
    } else
        reset_all_predictors(sce->predictor_state);
}

/**
 * Decode an individual_channel_stream payload; reference: table 4.44.
 *
 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
    Pulse pulse;
    TemporalNoiseShaping * tns = &sce->tns;
    IndividualChannelStream * ics = &sce->ics;
    float * out = sce->coeffs;
    int global_gain, pulse_present = 0;

    /* This assignment is to silence a GCC warning about the variable being used
     * uninitialized when in fact it always is.
     */
    pulse.num_pulse = 0;

    global_gain = get_bits(gb, 8);

    if (!common_window && !scale_flag) {
        if (decode_ics_info(ac, ics, gb, 0) < 0)
            return -1;
    }

    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
        return -1;
    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
        return -1;

    pulse_present = 0;
    if (!scale_flag) {
        if ((pulse_present = get_bits1(gb))) {
            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
                return -1;
            }
            if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
                return -1;
            }
        }
        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
            return -1;
        if (get_bits1(gb)) {
            ff_log_missing_feature(ac->avccontext, "SSR", 1);
            return -1;
        }
    }

    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
        return -1;

    if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
        apply_prediction(ac, sce);

    return 0;
}

/**
 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
 */
static void apply_mid_side_stereo(ChannelElement * cpe) {
    const IndividualChannelStream * ics = &cpe->ch[0].ics;
    float *ch0 = cpe->ch[0].coeffs;
    float *ch1 = cpe->ch[1].coeffs;
    int g, i, k, group, idx = 0;
    const uint16_t * offsets = ics->swb_offset;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cpe->ms_mask[idx] &&
                cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        float tmp = ch0[group*128 + k] - ch1[group*128 + k];
                        ch0[group*128 + k] += ch1[group*128 + k];
                        ch1[group*128 + k] = tmp;
                    }
                }
            }
        }
        ch0 += ics->group_len[g]*128;
        ch1 += ics->group_len[g]*128;
    }
}

/**
 * intensity stereo decoding; reference: 4.6.8.2.3
 *
 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
 *                      [3] reserved for scalable AAC
 */
static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
    const IndividualChannelStream * ics = &cpe->ch[1].ics;
    SingleChannelElement * sce1 = &cpe->ch[1];
    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
    const uint16_t * offsets = ics->swb_offset;
    int g, group, i, k, idx = 0;
    int c;
    float scale;
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb;) {
            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
                const int bt_run_end = sce1->band_type_run_end[idx];
                for (; i < bt_run_end; i++, idx++) {
                    c = -1 + 2 * (sce1->band_type[idx] - 14);
                    if (ms_present)
                        c *= 1 - 2 * cpe->ms_mask[idx];
                    scale = c * sce1->sf[idx];
                    for (group = 0; group < ics->group_len[g]; group++)
                        for (k = offsets[i]; k < offsets[i+1]; k++)
                            coef1[group*128 + k] = scale * coef0[group*128 + k];
                }
            } else {
                int bt_run_end = sce1->band_type_run_end[idx];
                idx += bt_run_end - i;
                i    = bt_run_end;
            }
        }
        coef0 += ics->group_len[g]*128;
        coef1 += ics->group_len[g]*128;
    }
}

/**
 * Decode a channel_pair_element; reference: table 4.4.
 *
 * @param   elem_id Identifies the instance of a syntax element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
    int i, ret, common_window, ms_present = 0;

    common_window = get_bits1(gb);
    if (common_window) {
        if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
            return -1;
        i = cpe->ch[1].ics.use_kb_window[0];
        cpe->ch[1].ics = cpe->ch[0].ics;
        cpe->ch[1].ics.use_kb_window[1] = i;
        ms_present = get_bits(gb, 2);
        if(ms_present == 3) {
            av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
            return -1;
        } else if(ms_present)
            decode_mid_side_stereo(cpe, gb, ms_present);
    }
    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
        return ret;
    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
        return ret;

    if (common_window) {
        if (ms_present)
            apply_mid_side_stereo(cpe);
        if (ac->m4ac.object_type == AOT_AAC_MAIN) {
            apply_prediction(ac, &cpe->ch[0]);
            apply_prediction(ac, &cpe->ch[1]);
        }
    }

    apply_intensity_stereo(cpe, ms_present);
    return 0;
}

/**
 * Decode coupling_channel_element; reference: table 4.8.
 *
 * @param   elem_id Identifies the instance of a syntax element.
 *
 * @return  Returns error status. 0 - OK, !0 - error
 */
static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
    int num_gain = 0;
    int c, g, sfb, ret;
    int sign;
    float scale;
    SingleChannelElement * sce = &che->ch[0];
    ChannelCoupling * coup     = &che->coup;

    coup->coupling_point = 2*get_bits1(gb);
    coup->num_coupled = get_bits(gb, 3);
    for (c = 0; c <= coup->num_coupled; c++) {
        num_gain++;
        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
        coup->id_select[c] = get_bits(gb, 4);
        if (coup->type[c] == TYPE_CPE) {
            coup->ch_select[c] = get_bits(gb, 2);
            if (coup->ch_select[c] == 3)
                num_gain++;
        } else
            coup->ch_select[c] = 2;
    }
    coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1);

    sign = get_bits(gb, 1);
    scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));

    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
        return ret;

    for (c = 0; c < num_gain; c++) {
        int idx = 0;
        int cge = 1;
        int gain = 0;
        float gain_cache = 1.;
        if (c) {
            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
            gain_cache = pow(scale, -gain);
        }
        if (coup->coupling_point == AFTER_IMDCT) {
            coup->gain[c][0] = gain_cache;
        } else {
            for (g = 0; g < sce->ics.num_window_groups; g++) {
                for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
                    if (sce->band_type[idx] != ZERO_BT) {
                        if (!cge) {
                            int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
                                if (t) {
                                int s = 1;
                                t = gain += t;
                                if (sign) {
                                    s  -= 2 * (t & 0x1);
                                    t >>= 1;
                                }
                                gain_cache = pow(scale, -t) * s;
                            }
                        }
                        coup->gain[c][idx] = gain_cache;
                    }
                }
            }
        }
    }
    return 0;
}

/**
 * Decode Spectral Band Replication extension data; reference: table 4.55.
 *
 * @param   crc flag indicating the presence of CRC checksum
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
 */
static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
    // TODO : sbr_extension implementation
    ff_log_missing_feature(ac->avccontext, "SBR", 0);
    skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
    return cnt;
}

/**
 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
    int i;
    int num_excl_chan = 0;

    do {
        for (i = 0; i < 7; i++)
            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));

    return num_excl_chan / 7;
}

/**
 * Decode dynamic range information; reference: table 4.52.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed.
 */
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
    int n = 1;
    int drc_num_bands = 1;
    int i;

    /* pce_tag_present? */
    if(get_bits1(gb)) {
        che_drc->pce_instance_tag  = get_bits(gb, 4);
        skip_bits(gb, 4); // tag_reserved_bits
        n++;
    }

    /* excluded_chns_present? */
    if(get_bits1(gb)) {
        n += decode_drc_channel_exclusions(che_drc, gb);
    }

    /* drc_bands_present? */
    if (get_bits1(gb)) {
        che_drc->band_incr            = get_bits(gb, 4);
        che_drc->interpolation_scheme = get_bits(gb, 4);
        n++;
        drc_num_bands += che_drc->band_incr;
        for (i = 0; i < drc_num_bands; i++) {
            che_drc->band_top[i] = get_bits(gb, 8);
            n++;
        }
    }

    /* prog_ref_level_present? */
    if (get_bits1(gb)) {
        che_drc->prog_ref_level = get_bits(gb, 7);
        skip_bits1(gb); // prog_ref_level_reserved_bits
        n++;
    }

    for (i = 0; i < drc_num_bands; i++) {
        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
        n++;
    }

    return n;
}

/**
 * Decode extension data (incomplete); reference: table 4.51.
 *
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return Returns number of bytes consumed
 */
static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
    int crc_flag = 0;
    int res = cnt;
    switch (get_bits(gb, 4)) { // extension type
        case EXT_SBR_DATA_CRC:
            crc_flag++;
        case EXT_SBR_DATA:
            res = decode_sbr_extension(ac, gb, crc_flag, cnt);
            break;
        case EXT_DYNAMIC_RANGE:
            res = decode_dynamic_range(&ac->che_drc, gb, cnt);
            break;
        case EXT_FILL:
        case EXT_FILL_DATA:
        case EXT_DATA_ELEMENT:
        default:
            skip_bits_long(gb, 8*cnt - 4);
            break;
    };
    return res;
}

/**
 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
 *
 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
 * @param   coef    spectral coefficients
 */
static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
    const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
    int w, filt, m, i;
    int bottom, top, order, start, end, size, inc;
    float lpc[TNS_MAX_ORDER];

    for (w = 0; w < ics->num_windows; w++) {
        bottom = ics->num_swb;
        for (filt = 0; filt < tns->n_filt[w]; filt++) {
            top    = bottom;
            bottom = FFMAX(0, top - tns->length[w][filt]);
            order  = tns->order[w][filt];
            if (order == 0)
                continue;

            // tns_decode_coef
            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);

            start = ics->swb_offset[FFMIN(bottom, mmm)];
            end   = ics->swb_offset[FFMIN(   top, mmm)];
            if ((size = end - start) <= 0)
                continue;
            if (tns->direction[w][filt]) {
                inc = -1; start = end - 1;
            } else {
                inc = 1;
            }
            start += w * 128;

            // ar filter
            for (m = 0; m < size; m++, start += inc)
                for (i = 1; i <= FFMIN(m, order); i++)
                    coef[start] -= coef[start - i*inc] * lpc[i-1];
        }
    }
}

/**
 * Conduct IMDCT and windowing.
 */
static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
    IndividualChannelStream * ics = &sce->ics;
    float * in = sce->coeffs;
    float * out = sce->ret;
    float * saved = sce->saved;
    const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
    const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
    const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
    float * buf = ac->buf_mdct;
    float * temp = ac->temp;
    int i;

    // imdct
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
            av_log(ac->avccontext, AV_LOG_WARNING,
                   "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
                   "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
        for (i = 0; i < 1024; i += 128)
            ff_imdct_half(&ac->mdct_small, buf + i, in + i);
    } else
        ff_imdct_half(&ac->mdct, buf, in);

    /* window overlapping
     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
     * and long to short transitions are considered to be short to short
     * transitions. This leaves just two cases (long to long and short to short)
     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
     */
    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
        (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
    } else {
        for (i = 0; i < 448; i++)
            out[i] = saved[i] + ac->add_bias;

        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
        } else {
            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
            for (i = 576; i < 1024; i++)
                out[i] = buf[i-512] + ac->add_bias;
        }
    }

    // buffer update
    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
        for (i = 0; i < 64; i++)
            saved[i] = temp[64 + i] - ac->add_bias;
        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
    } else { // LONG_STOP or ONLY_LONG
        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
    }
}

/**
 * Apply dependent channel coupling (applied before IMDCT).
 *
 * @param   index   index into coupling gain array
 */
static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
    IndividualChannelStream * ics = &cce->ch[0].ics;
    const uint16_t * offsets = ics->swb_offset;
    float * dest = target->coeffs;
    const float * src = cce->ch[0].coeffs;
    int g, i, group, k, idx = 0;
    if(ac->m4ac.object_type == AOT_AAC_LTP) {
        av_log(ac->avccontext, AV_LOG_ERROR,
               "Dependent coupling is not supported together with LTP\n");
        return;
    }
    for (g = 0; g < ics->num_window_groups; g++) {
        for (i = 0; i < ics->max_sfb; i++, idx++) {
            if (cce->ch[0].band_type[idx] != ZERO_BT) {
                const float gain = cce->coup.gain[index][idx];
                for (group = 0; group < ics->group_len[g]; group++) {
                    for (k = offsets[i]; k < offsets[i+1]; k++) {
                        // XXX dsputil-ize
                        dest[group*128+k] += gain * src[group*128+k];
                    }
                }
            }
        }
        dest += ics->group_len[g]*128;
        src  += ics->group_len[g]*128;
    }
}

/**
 * Apply independent channel coupling (applied after IMDCT).
 *
 * @param   index   index into coupling gain array
 */
static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
    int i;
    const float gain = cce->coup.gain[index][0];
    const float bias = ac->add_bias;
    const float* src = cce->ch[0].ret;
    float* dest = target->ret;

    for (i = 0; i < 1024; i++)
        dest[i] += gain * (src[i] - bias);
}

/**
 * channel coupling transformation interface
 *
 * @param   index   index into coupling gain array
 * @param   apply_coupling_method   pointer to (in)dependent coupling function
 */
static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
        enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
        void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
{
    int i, c;

    for (i = 0; i < MAX_ELEM_ID; i++) {
        ChannelElement *cce = ac->che[TYPE_CCE][i];
        int index = 0;

        if (cce && cce->coup.coupling_point == coupling_point) {
            ChannelCoupling * coup = &cce->coup;

            for (c = 0; c <= coup->num_coupled; c++) {
                if (coup->type[c] == type && coup->id_select[c] == elem_id) {
                    if (coup->ch_select[c] != 1) {
                        apply_coupling_method(ac, &cc->ch[0], cce, index);
                        if (coup->ch_select[c] != 0)
                            index++;
                    }
                    if (coup->ch_select[c] != 2)
                        apply_coupling_method(ac, &cc->ch[1], cce, index++);
                } else
                    index += 1 + (coup->ch_select[c] == 3);
            }
        }
    }
}

/**
 * Convert spectral data to float samples, applying all supported tools as appropriate.
 */
static void spectral_to_sample(AACContext * ac) {
    int i, type;
    for(type = 3; type >= 0; type--) {
        for (i = 0; i < MAX_ELEM_ID; i++) {
            ChannelElement *che = ac->che[type][i];
            if(che) {
                if(type <= TYPE_CPE)
                    apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
                if(che->ch[0].tns.present)
                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
                if(che->ch[1].tns.present)
                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
                if(type <= TYPE_CPE)
                    apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
                if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
                    imdct_and_windowing(ac, &che->ch[0]);
                if(type == TYPE_CPE)
                    imdct_and_windowing(ac, &che->ch[1]);
                if(type <= TYPE_CCE)
                    apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
            }
        }
    }
}

static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {

    int size;
    AACADTSHeaderInfo hdr_info;

    size = ff_aac_parse_header(gb, &hdr_info);
    if (size > 0) {
        if (hdr_info.chan_config)
            ac->m4ac.chan_config = hdr_info.chan_config;
        ac->m4ac.sample_rate     = hdr_info.sample_rate;
        ac->m4ac.sampling_index  = hdr_info.sampling_index;
        ac->m4ac.object_type     = hdr_info.object_type;
        if (hdr_info.num_aac_frames == 1) {
            if (!hdr_info.crc_absent)
                skip_bits(gb, 16);
        } else {
            ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
            return -1;
        }
    }
    return size;
}

static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) {
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    AACContext * ac = avccontext->priv_data;
    ChannelElement * che = NULL;
    GetBitContext gb;
    enum RawDataBlockType elem_type;
    int err, elem_id, data_size_tmp;

    init_get_bits(&gb, buf, buf_size*8);

    if (show_bits(&gb, 12) == 0xfff) {
        if (parse_adts_frame_header(ac, &gb) < 0) {
            av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
            return -1;
        }
        if (ac->m4ac.sampling_index > 12) {
            av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
            return -1;
        }
    }

    // parse
    while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
        elem_id = get_bits(&gb, 4);

        if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
            av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
            return -1;
        }

        switch (elem_type) {

        case TYPE_SCE:
            err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
            break;

        case TYPE_CPE:
            err = decode_cpe(ac, &gb, che);
            break;

        case TYPE_CCE:
            err = decode_cce(ac, &gb, che);
            break;

        case TYPE_LFE:
            err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
            break;

        case TYPE_DSE:
            skip_data_stream_element(&gb);
            err = 0;
            break;

        case TYPE_PCE:
        {
            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
            if((err = decode_pce(ac, new_che_pos, &gb)))
                break;
            err = output_configure(ac, ac->che_pos, new_che_pos, 0);
            break;
        }

        case TYPE_FIL:
            if (elem_id == 15)
                elem_id += get_bits(&gb, 8) - 1;
            while (elem_id > 0)
                elem_id -= decode_extension_payload(ac, &gb, elem_id);
            err = 0; /* FIXME */
            break;

        default:
            err = -1; /* should not happen, but keeps compiler happy */
            break;
        }

        if(err)
            return err;
    }

    spectral_to_sample(ac);

    if (!ac->is_saved) {
        ac->is_saved = 1;
        *data_size = 0;
        return buf_size;
    }

    data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
    if(*data_size < data_size_tmp) {
        av_log(avccontext, AV_LOG_ERROR,
               "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
               *data_size, data_size_tmp);
        return -1;
    }
    *data_size = data_size_tmp;

    ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);

    return buf_size;
}

static av_cold int aac_decode_close(AVCodecContext * avccontext) {
    AACContext * ac = avccontext->priv_data;
    int i, type;

    for (i = 0; i < MAX_ELEM_ID; i++) {
        for(type = 0; type < 4; type++)
            av_freep(&ac->che[type][i]);
    }

    ff_mdct_end(&ac->mdct);
    ff_mdct_end(&ac->mdct_small);
    return 0 ;
}

AVCodec aac_decoder = {
    "aac",
    CODEC_TYPE_AUDIO,
    CODEC_ID_AAC,
    sizeof(AACContext),
    aac_decode_init,
    NULL,
    aac_decode_close,
    aac_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
};