aboutsummaryrefslogtreecommitdiffstats
path: root/doc/platform.texi
blob: 68e23bf7c170556933460d7dd7fe67c589ae019f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
\input texinfo @c -*- texinfo -*-

@settitle Platform Specific information
@titlepage
@center @titlefont{Platform Specific information}
@end titlepage

@top

@contents

@chapter Unix-like

Some parts of FFmpeg cannot be built with version 2.15 of the GNU
assembler which is still provided by a few AMD64 distributions. To
make sure your compiler really uses the required version of gas
after a binutils upgrade, run:

@example
$(gcc -print-prog-name=as) --version
@end example

If not, then you should install a different compiler that has no
hard-coded path to gas. In the worst case pass @code{--disable-asm}
to configure.

@section BSD

BSD make will not build FFmpeg, you need to install and use GNU Make
(@command{gmake}).

@section (Open)Solaris

GNU Make is required to build FFmpeg, so you have to invoke (@command{gmake}),
standard Solaris Make will not work. When building with a non-c99 front-end
(gcc, generic suncc) add either @code{--extra-libs=/usr/lib/values-xpg6.o}
or @code{--extra-libs=/usr/lib/64/values-xpg6.o} to the configure options
since the libc is not c99-compliant by default. The probes performed by
configure may raise an exception leading to the death of configure itself
due to a bug in the system shell. Simply invoke a different shell such as
bash directly to work around this:

@example
bash ./configure
@end example

@anchor{Darwin}
@section Darwin (Mac OS X, iPhone)

The toolchain provided with Xcode is sufficient to build the basic
unacelerated code.

Mac OS X on PowerPC or ARM (iPhone) requires a preprocessor from
@url{http://github.com/yuvi/gas-preprocessor} to build the optimized
assembler functions. Just download the Perl script and put it somewhere
in your PATH, FFmpeg's configure will pick it up automatically.

Mac OS X on amd64 and x86 requires @command{yasm} to build most of the
optimized assembler functions. @uref{http://www.finkproject.org/, Fink},
@uref{http://www.gentoo.org/proj/en/gentoo-alt/prefix/bootstrap-macos.xml, Gentoo Prefix},
@uref{http://mxcl.github.com/homebrew/, Homebrew}
or @uref{http://www.macports.org, MacPorts} can easily provide it.


@chapter DOS

Using a cross-compiler is preferred for various reasons.
@url{http://www.delorie.com/howto/djgpp/linux-x-djgpp.html}


@chapter OS/2

For information about compiling FFmpeg on OS/2 see
@url{http://www.edm2.com/index.php/FFmpeg}.


@chapter Windows

To get help and instructions for building FFmpeg under Windows, check out
the FFmpeg Windows Help Forum at
@url{http://ffmpeg.arrozcru.org/}.

@section Native Windows compilation using MinGW or MinGW-w64

FFmpeg can be built to run natively on Windows using the MinGW or MinGW-w64
toolchains. Install the latest versions of MSYS and MinGW or MinGW-w64 from
@url{http://www.mingw.org/} or @url{http://mingw-w64.sourceforge.net/}.
You can find detailed installation instructions in the download section and
the FAQ.

Notes:

@itemize

@item Building natively using MSYS can be sped up by disabling implicit rules
in the Makefile by calling @code{make -r} instead of plain @code{make}. This
speed up is close to non-existent for normal one-off builds and is only
noticeable when running make for a second time (for example during
@code{make install}).

@item In order to compile FFplay, you must have the MinGW development library
of @uref{http://www.libsdl.org/, SDL} and @code{pkg-config} installed.

@item By using @code{./configure --enable-shared} when configuring FFmpeg,
you can build the FFmpeg libraries (e.g. libavutil, libavcodec,
libavformat) as DLLs.

@end itemize

@section Microsoft Visual C++

FFmpeg can be built with MSVC using a C99-to-C89 conversion utility and
wrapper.

You will need the following prerequisites:

@itemize
@item @uref{https://github.com/rbultje/c99-to-c89/, C99-to-C89 Converter & Wrapper}
@item @uref{http://code.google.com/p/msinttypes/, msinttypes}
@item @uref{http://www.mingw.org/, MSYS}
@item @uref{http://yasm.tortall.net/, YASM}
@item @uref{http://gnuwin32.sourceforge.net/packages/bc.htm, bc for Windows} if
you want to run @uref{fate.html, FATE}.
@end itemize

To set up a proper MSVC environment in MSYS, you simply need to run
@code{msys.bat} from the Visual Studio command prompt.

Place @code{makedef}, @code{c99wrap.exe}, @code{c99conv.exe}, and @code{yasm.exe}
somewhere in your @code{PATH}.

Next, make sure @code{inttypes.h} and any other headers and libs you want to use
are located in a spot that MSVC can see. Do so by modifying the @code{LIB} and
@code{INCLUDE} environment variables to include the @strong{Windows} paths to
these directories. Alternatively, you can try and use the
@code{--extra-cflags}/@code{--extra-ldflags} configure options.

Finally, run:

@example
./configure --toolchain=msvc
make
make install
@end example

If you wish to compile static libraries, add @code{--enable-shared} to your
configure options. Note that due to the way MSVC handles DLL imports and
exports, you cannot compile static and shared libraries at the same time, and
enabling shared libraries will automatically disable the static ones.

Notes:

@itemize

@item It is possible that coreutils' @code{link.exe} conflicts with MSVC's linker.
You can find out by running @code{which link} to see which @code{link.exe} you
are using. If it is located at @code{/bin/link.exe}, then you have the wrong one
in your @code{PATH}. Either move or remove that copy, or make sure MSVC's
@code{link.exe} takes precedence in your @code{PATH} over coreutils'.

@item If you wish to build with zlib support, you will have to grab a compatible
zlib binary from somewhere, with an MSVC import lib, or if you wish to link
statically, you can follow the instructions below to build a compatible
@code{zlib.lib} with MSVC. Regardless of which method you use, you must still
follow step 3, or compilation will fail.
@enumerate
@item Grab the @uref{http://zlib.net/, zlib sources}.
@item Edit @code{win32/Makefile.msc} so that it uses -MT instead of -MD, since
this is how FFmpeg is built as well.
@item Edit @code{zconf.h} and remove its inclusion of @code{unistd.h}. This gets
erroneously included when building FFmpeg.
@item Run @code{nmake -f win32/Makefile.msc}.
@item Move @code{zlib.lib}, @code{zconf.h}, and @code{zlib.h} to somewhere MSVC
can see.
@end enumerate

@item FFmpeg has been tested with Visual Studio 2010 and 2012, Pro and Express.
Anything else is not officially supported.

@end itemize

@subsection Linking to FFmpeg with Microsoft Visual C++

If you plan to link with MSVC-built static libraries, you will need
to make sure you have @code{Runtime Library} set to
@code{Multi-threaded (/MT)} in your project's settings.

FFmpeg headers do not declare global data for Windows DLLs through the usual
dllexport/dllimport interface. Such data will be exported properly while
building, but to use them in your MSVC code you will have to edit the
appropriate headers and mark the data as dllimport. For example, in
libavutil/pixdesc.h you should have:
@example
extern __declspec(dllimport) const AVPixFmtDescriptor av_pix_fmt_descriptors[];
@end example

You will also need to define @code{inline} to something MSVC understands:
@example
#define inline __inline
@end example

Also note, that as stated in @strong{Microsoft Visual C++}, you will need
an MSVC-compatible @uref{http://code.google.com/p/msinttypes/, inttypes.h}.

If you plan on using import libraries created by dlltool, you must
set @code{References} to @code{No (/OPT:NOREF)} under the linker optimization
settings, otherwise the resulting binaries will fail during runtime.
This is not required when using import libraries generated by @code{lib.exe}.
This issue is reported upstream at
@url{http://sourceware.org/bugzilla/show_bug.cgi?id=12633}.

To create import libraries that work with the @code{/OPT:REF} option
(which is enabled by default in Release mode), follow these steps:

@enumerate

@item Open the @emph{Visual Studio Command Prompt}.

Alternatively, in a normal command line prompt, call @file{vcvars32.bat}
which sets up the environment variables for the Visual C++ tools
(the standard location for this file is something like
@file{C:\Program Files (x86_\Microsoft Visual Studio 10.0\VC\bin\vcvars32.bat}).

@item Enter the @file{bin} directory where the created LIB and DLL files
are stored.

@item Generate new import libraries with @command{lib.exe}:

@example
lib /machine:i386 /def:..\lib\foo-version.def  /out:foo.lib
@end example

Replace @code{foo-version} and @code{foo} with the respective library names.

@end enumerate

@anchor{Cross compilation for Windows with Linux}
@section Cross compilation for Windows with Linux

You must use the MinGW cross compilation tools available at
@url{http://www.mingw.org/}.

Then configure FFmpeg with the following options:
@example
./configure --target-os=mingw32 --cross-prefix=i386-mingw32msvc-
@end example
(you can change the cross-prefix according to the prefix chosen for the
MinGW tools).

Then you can easily test FFmpeg with @uref{http://www.winehq.com/, Wine}.

@section Compilation under Cygwin

Please use Cygwin 1.7.x as the obsolete 1.5.x Cygwin versions lack
llrint() in its C library.

Install your Cygwin with all the "Base" packages, plus the
following "Devel" ones:
@example
binutils, gcc4-core, make, git, mingw-runtime, texi2html
@end example

In order to run FATE you will also need the following "Utils" packages:
@example
bc, diffutils
@end example

If you want to build FFmpeg with additional libraries, download Cygwin
"Devel" packages for Ogg and Vorbis from any Cygwin packages repository:
@example
libogg-devel, libvorbis-devel
@end example

These library packages are only available from
@uref{http://sourceware.org/cygwinports/, Cygwin Ports}:

@example
yasm, libSDL-devel, libfaac-devel, libaacplus-devel, libgsm-devel, libmp3lame-devel,
libschroedinger1.0-devel, speex-devel, libtheora-devel, libxvidcore-devel
@end example

The recommendation for x264 is to build it from source, as it evolves too
quickly for Cygwin Ports to be up to date.

@section Crosscompilation for Windows under Cygwin

With Cygwin you can create Windows binaries that do not need the cygwin1.dll.

Just install your Cygwin as explained before, plus these additional
"Devel" packages:
@example
gcc-mingw-core, mingw-runtime, mingw-zlib
@end example

and add some special flags to your configure invocation.

For a static build run
@example
./configure --target-os=mingw32 --extra-cflags=-mno-cygwin --extra-libs=-mno-cygwin
@end example

and for a build with shared libraries
@example
./configure --target-os=mingw32 --enable-shared --disable-static --extra-cflags=-mno-cygwin --extra-libs=-mno-cygwin
@end example

@bye