1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
/*
* copyright (c) 2013 Andrew Kelley
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* libavfilter API usage example.
*
* @example filter_audio.c
* This example will generate a sine wave audio,
* pass it through a simple filter chain, and then compute the MD5 checksum of
* the output data.
*
* The filter chain it uses is:
* (input) -> abuffer -> volume -> aformat -> abuffersink -> (output)
*
* abuffer: This provides the endpoint where you can feed the decoded samples.
* volume: In this example we hardcode it to 0.90.
* aformat: This converts the samples to the samplefreq, channel layout,
* and sample format required by the audio device.
* abuffersink: This provides the endpoint where you can read the samples after
* they have passed through the filter chain.
*/
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "libavutil/channel_layout.h"
#include "libavutil/md5.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "libavfilter/avfilter.h"
#include "libavfilter/buffersink.h"
#include "libavfilter/buffersrc.h"
#define INPUT_SAMPLERATE 48000
#define INPUT_FORMAT AV_SAMPLE_FMT_FLTP
#define INPUT_CHANNEL_LAYOUT (AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0
#define VOLUME_VAL 0.90
static int init_filter_graph(AVFilterGraph **graph, AVFilterContext **src,
AVFilterContext **sink)
{
AVFilterGraph *filter_graph;
AVFilterContext *abuffer_ctx;
const AVFilter *abuffer;
AVFilterContext *volume_ctx;
const AVFilter *volume;
AVFilterContext *aformat_ctx;
const AVFilter *aformat;
AVFilterContext *abuffersink_ctx;
const AVFilter *abuffersink;
AVDictionary *options_dict = NULL;
uint8_t options_str[1024];
uint8_t ch_layout[64];
int err;
/* Create a new filtergraph, which will contain all the filters. */
filter_graph = avfilter_graph_alloc();
if (!filter_graph) {
fprintf(stderr, "Unable to create filter graph.\n");
return AVERROR(ENOMEM);
}
/* Create the abuffer filter;
* it will be used for feeding the data into the graph. */
abuffer = avfilter_get_by_name("abuffer");
if (!abuffer) {
fprintf(stderr, "Could not find the abuffer filter.\n");
return AVERROR_FILTER_NOT_FOUND;
}
abuffer_ctx = avfilter_graph_alloc_filter(filter_graph, abuffer, "src");
if (!abuffer_ctx) {
fprintf(stderr, "Could not allocate the abuffer instance.\n");
return AVERROR(ENOMEM);
}
/* Set the filter options through the AVOptions API. */
av_channel_layout_describe(&INPUT_CHANNEL_LAYOUT, ch_layout, sizeof(ch_layout));
av_opt_set (abuffer_ctx, "channel_layout", ch_layout, AV_OPT_SEARCH_CHILDREN);
av_opt_set (abuffer_ctx, "sample_fmt", av_get_sample_fmt_name(INPUT_FORMAT), AV_OPT_SEARCH_CHILDREN);
av_opt_set_q (abuffer_ctx, "time_base", (AVRational){ 1, INPUT_SAMPLERATE }, AV_OPT_SEARCH_CHILDREN);
av_opt_set_int(abuffer_ctx, "sample_rate", INPUT_SAMPLERATE, AV_OPT_SEARCH_CHILDREN);
/* Now initialize the filter; we pass NULL options, since we have already
* set all the options above. */
err = avfilter_init_str(abuffer_ctx, NULL);
if (err < 0) {
fprintf(stderr, "Could not initialize the abuffer filter.\n");
return err;
}
/* Create volume filter. */
volume = avfilter_get_by_name("volume");
if (!volume) {
fprintf(stderr, "Could not find the volume filter.\n");
return AVERROR_FILTER_NOT_FOUND;
}
volume_ctx = avfilter_graph_alloc_filter(filter_graph, volume, "volume");
if (!volume_ctx) {
fprintf(stderr, "Could not allocate the volume instance.\n");
return AVERROR(ENOMEM);
}
/* A different way of passing the options is as key/value pairs in a
* dictionary. */
av_dict_set(&options_dict, "volume", AV_STRINGIFY(VOLUME_VAL), 0);
err = avfilter_init_dict(volume_ctx, &options_dict);
av_dict_free(&options_dict);
if (err < 0) {
fprintf(stderr, "Could not initialize the volume filter.\n");
return err;
}
/* Create the aformat filter;
* it ensures that the output is of the format we want. */
aformat = avfilter_get_by_name("aformat");
if (!aformat) {
fprintf(stderr, "Could not find the aformat filter.\n");
return AVERROR_FILTER_NOT_FOUND;
}
aformat_ctx = avfilter_graph_alloc_filter(filter_graph, aformat, "aformat");
if (!aformat_ctx) {
fprintf(stderr, "Could not allocate the aformat instance.\n");
return AVERROR(ENOMEM);
}
/* A third way of passing the options is in a string of the form
* key1=value1:key2=value2.... */
snprintf(options_str, sizeof(options_str),
"sample_fmts=%s:sample_rates=%d:channel_layouts=stereo",
av_get_sample_fmt_name(AV_SAMPLE_FMT_S16), 44100);
err = avfilter_init_str(aformat_ctx, options_str);
if (err < 0) {
av_log(NULL, AV_LOG_ERROR, "Could not initialize the aformat filter.\n");
return err;
}
/* Finally create the abuffersink filter;
* it will be used to get the filtered data out of the graph. */
abuffersink = avfilter_get_by_name("abuffersink");
if (!abuffersink) {
fprintf(stderr, "Could not find the abuffersink filter.\n");
return AVERROR_FILTER_NOT_FOUND;
}
abuffersink_ctx = avfilter_graph_alloc_filter(filter_graph, abuffersink, "sink");
if (!abuffersink_ctx) {
fprintf(stderr, "Could not allocate the abuffersink instance.\n");
return AVERROR(ENOMEM);
}
/* This filter takes no options. */
err = avfilter_init_str(abuffersink_ctx, NULL);
if (err < 0) {
fprintf(stderr, "Could not initialize the abuffersink instance.\n");
return err;
}
/* Connect the filters;
* in this simple case the filters just form a linear chain. */
err = avfilter_link(abuffer_ctx, 0, volume_ctx, 0);
if (err >= 0)
err = avfilter_link(volume_ctx, 0, aformat_ctx, 0);
if (err >= 0)
err = avfilter_link(aformat_ctx, 0, abuffersink_ctx, 0);
if (err < 0) {
fprintf(stderr, "Error connecting filters\n");
return err;
}
/* Configure the graph. */
err = avfilter_graph_config(filter_graph, NULL);
if (err < 0) {
av_log(NULL, AV_LOG_ERROR, "Error configuring the filter graph\n");
return err;
}
*graph = filter_graph;
*src = abuffer_ctx;
*sink = abuffersink_ctx;
return 0;
}
/* Do something useful with the filtered data: this simple
* example just prints the MD5 checksum of each plane to stdout. */
static int process_output(struct AVMD5 *md5, AVFrame *frame)
{
int planar = av_sample_fmt_is_planar(frame->format);
int channels = frame->ch_layout.nb_channels;
int planes = planar ? channels : 1;
int bps = av_get_bytes_per_sample(frame->format);
int plane_size = bps * frame->nb_samples * (planar ? 1 : channels);
int i, j;
for (i = 0; i < planes; i++) {
uint8_t checksum[16];
av_md5_init(md5);
av_md5_sum(checksum, frame->extended_data[i], plane_size);
fprintf(stdout, "plane %d: 0x", i);
for (j = 0; j < sizeof(checksum); j++)
fprintf(stdout, "%02X", checksum[j]);
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
return 0;
}
/* Construct a frame of audio data to be filtered;
* this simple example just synthesizes a sine wave. */
static int get_input(AVFrame *frame, int frame_num)
{
int err, i, j;
#define FRAME_SIZE 1024
/* Set up the frame properties and allocate the buffer for the data. */
frame->sample_rate = INPUT_SAMPLERATE;
frame->format = INPUT_FORMAT;
av_channel_layout_copy(&frame->ch_layout, &INPUT_CHANNEL_LAYOUT);
frame->nb_samples = FRAME_SIZE;
frame->pts = frame_num * FRAME_SIZE;
err = av_frame_get_buffer(frame, 0);
if (err < 0)
return err;
/* Fill the data for each channel. */
for (i = 0; i < 5; i++) {
float *data = (float*)frame->extended_data[i];
for (j = 0; j < frame->nb_samples; j++)
data[j] = sin(2 * M_PI * (frame_num + j) * (i + 1) / FRAME_SIZE);
}
return 0;
}
int main(int argc, char *argv[])
{
struct AVMD5 *md5;
AVFilterGraph *graph;
AVFilterContext *src, *sink;
AVFrame *frame;
uint8_t errstr[1024];
float duration;
int err, nb_frames, i;
if (argc < 2) {
fprintf(stderr, "Usage: %s <duration>\n", argv[0]);
return 1;
}
duration = atof(argv[1]);
nb_frames = duration * INPUT_SAMPLERATE / FRAME_SIZE;
if (nb_frames <= 0) {
fprintf(stderr, "Invalid duration: %s\n", argv[1]);
return 1;
}
/* Allocate the frame we will be using to store the data. */
frame = av_frame_alloc();
if (!frame) {
fprintf(stderr, "Error allocating the frame\n");
return 1;
}
md5 = av_md5_alloc();
if (!md5) {
fprintf(stderr, "Error allocating the MD5 context\n");
return 1;
}
/* Set up the filtergraph. */
err = init_filter_graph(&graph, &src, &sink);
if (err < 0) {
fprintf(stderr, "Unable to init filter graph:");
goto fail;
}
/* the main filtering loop */
for (i = 0; i < nb_frames; i++) {
/* get an input frame to be filtered */
err = get_input(frame, i);
if (err < 0) {
fprintf(stderr, "Error generating input frame:");
goto fail;
}
/* Send the frame to the input of the filtergraph. */
err = av_buffersrc_add_frame(src, frame);
if (err < 0) {
av_frame_unref(frame);
fprintf(stderr, "Error submitting the frame to the filtergraph:");
goto fail;
}
/* Get all the filtered output that is available. */
while ((err = av_buffersink_get_frame(sink, frame)) >= 0) {
/* now do something with our filtered frame */
err = process_output(md5, frame);
if (err < 0) {
fprintf(stderr, "Error processing the filtered frame:");
goto fail;
}
av_frame_unref(frame);
}
if (err == AVERROR(EAGAIN)) {
/* Need to feed more frames in. */
continue;
} else if (err == AVERROR_EOF) {
/* Nothing more to do, finish. */
break;
} else if (err < 0) {
/* An error occurred. */
fprintf(stderr, "Error filtering the data:");
goto fail;
}
}
avfilter_graph_free(&graph);
av_frame_free(&frame);
av_freep(&md5);
return 0;
fail:
av_strerror(err, errstr, sizeof(errstr));
fprintf(stderr, "%s\n", errstr);
return 1;
}
|