/* * Fish Detector Hook * Copyright (c) 2002 Philip Gladstone * * This file implements a fish detector. It is used to see when a * goldfish passes in front of the camera. It does this by counting * the number of input pixels that fall within a particular HSV * range. * * It takes a multitude of arguments: * * -h <num>-<num> the range of H values that are fish * -s <num>-<num> the range of S values that are fish * -v <num>-<num> the range of V values that are fish * -z zap all non-fish values to black * -l <num> limit the number of saved files to <num> * -i <num> only check frames every <num> seconds * -t <num> the threshold for the amount of fish pixels (range 0-1) * -d turn debugging on * -D <directory> where to put the fish images * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <stdarg.h> #include <string.h> #include <time.h> #include <stdio.h> #include <dirent.h> #include "framehook.h" #include "dsputil.h" #include "avformat.h" #define SCALEBITS 10 #define ONE_HALF (1 << (SCALEBITS - 1)) #define FIX(x) ((int) ((x) * (1<<SCALEBITS) + 0.5)) #define YUV_TO_RGB1_CCIR(cb1, cr1)\ {\ cb = (cb1) - 128;\ cr = (cr1) - 128;\ r_add = FIX(1.40200*255.0/224.0) * cr + ONE_HALF;\ g_add = - FIX(0.34414*255.0/224.0) * cb - FIX(0.71414*255.0/224.0) * cr + \ ONE_HALF;\ b_add = FIX(1.77200*255.0/224.0) * cb + ONE_HALF;\ } #define YUV_TO_RGB2_CCIR(r, g, b, y1)\ {\ yt = ((y1) - 16) * FIX(255.0/219.0);\ r = cm[(yt + r_add) >> SCALEBITS];\ g = cm[(yt + g_add) >> SCALEBITS];\ b = cm[(yt + b_add) >> SCALEBITS];\ } typedef struct { int h; /* 0 .. 360 */ int s; /* 0 .. 255 */ int v; /* 0 .. 255 */ } HSV; typedef struct { int zapping; int threshold; HSV dark, bright; char *dir; int file_limit; int debug; int min_interval; int64_t next_pts; int inset; int min_width; } ContextInfo; static void dorange(const char *s, int *first, int *second, int maxval) { sscanf(s, "%d-%d", first, second); if (*first > maxval) *first = maxval; if (*second > maxval) *second = maxval; } void Release(void *ctx) { if (ctx) av_free(ctx); } int Configure(void **ctxp, int argc, char *argv[]) { ContextInfo *ci; int c; *ctxp = av_mallocz(sizeof(ContextInfo)); ci = (ContextInfo *) *ctxp; optind = 0; ci->dir = "/tmp"; ci->threshold = 100; ci->file_limit = 100; ci->min_interval = 1000000; ci->inset = 10; /* Percent */ while ((c = getopt(argc, argv, "w:i:dh:s:v:zl:t:D:")) > 0) { switch (c) { case 'h': dorange(optarg, &ci->dark.h, &ci->bright.h, 360); break; case 's': dorange(optarg, &ci->dark.s, &ci->bright.s, 255); break; case 'v': dorange(optarg, &ci->dark.v, &ci->bright.v, 255); break; case 'z': ci->zapping = 1; break; case 'l': ci->file_limit = atoi(optarg); break; case 'i': ci->min_interval = 1000000 * atof(optarg); break; case 't': ci->threshold = atof(optarg) * 1000; if (ci->threshold > 1000 || ci->threshold < 0) { fprintf(stderr, "Invalid threshold value '%s' (range is 0-1)\n", optarg); return -1; } break; case 'w': ci->min_width = atoi(optarg); break; case 'd': ci->debug++; break; case 'D': ci->dir = av_strdup(optarg); break; default: fprintf(stderr, "Unrecognized argument '%s'\n", argv[optind]); return -1; } } fprintf(stderr, "Fish detector configured:\n"); fprintf(stderr, " HSV range: %d,%d,%d - %d,%d,%d\n", ci->dark.h, ci->dark.s, ci->dark.v, ci->bright.h, ci->bright.s, ci->bright.v); fprintf(stderr, " Threshold is %d%% pixels\n", ci->threshold / 10); return 0; } static void get_hsv(HSV *hsv, int r, int g, int b) { int i, v, x, f; x = (r < g) ? r : g; if (b < x) x = b; v = (r > g) ? r : g; if (b > v) v = b; if (v == x) { hsv->h = 0; hsv->s = 0; hsv->v = v; return; } if (r == v) { f = g - b; i = 0; } else if (g == v) { f = b - r; i = 2 * 60; } else { f = r - g; i = 4 * 60; } hsv->h = i + (60 * f) / (v - x); if (hsv->h < 0) hsv->h += 360; hsv->s = (255 * (v - x)) / v; hsv->v = v; return; } void Process(void *ctx, AVPicture *picture, enum PixelFormat pix_fmt, int width, int height, int64_t pts) { ContextInfo *ci = (ContextInfo *) ctx; uint8_t *cm = cropTbl + MAX_NEG_CROP; int rowsize = picture->linesize[0]; #if 0 printf("pix_fmt = %d, width = %d, pts = %lld, ci->next_pts = %lld\n", pix_fmt, width, pts, ci->next_pts); #endif if (pts < ci->next_pts) return; if (width < ci->min_width) return; ci->next_pts = pts + 1000000; if (pix_fmt == PIX_FMT_YUV420P) { uint8_t *y, *u, *v; int width2 = width >> 1; int inrange = 0; int pixcnt; int h; int h_start, h_end; int w_start, w_end; h_end = 2 * ((ci->inset * height) / 200); h_start = height - h_end; w_end = (ci->inset * width2) / 100; w_start = width2 - w_end; pixcnt = ((h_start - h_end) >> 1) * (w_start - w_end); y = picture->data[0] + h_end * picture->linesize[0] + w_end * 2; u = picture->data[1] + h_end * picture->linesize[1] / 2 + w_end; v = picture->data[2] + h_end * picture->linesize[2] / 2 + w_end; for (h = h_start; h > h_end; h -= 2) { int w; for (w = w_start; w > w_end; w--) { unsigned int r,g,b; HSV hsv; int cb, cr, yt, r_add, g_add, b_add; YUV_TO_RGB1_CCIR(u[0], v[0]); YUV_TO_RGB2_CCIR(r, g, b, y[0]); get_hsv(&hsv, r, g, b); if (ci->debug > 1) fprintf(stderr, "(%d,%d,%d) -> (%d,%d,%d)\n", r,g,b,hsv.h,hsv.s,hsv.v); if (hsv.h >= ci->dark.h && hsv.h <= ci->bright.h && hsv.s >= ci->dark.s && hsv.s <= ci->bright.s && hsv.v >= ci->dark.v && hsv.v <= ci->bright.v) { inrange++; } else if (ci->zapping) { y[0] = y[1] = y[rowsize] = y[rowsize + 1] = 16; u[0] = 128; v[0] = 128; } y+= 2; u++; v++; } y += picture->linesize[0] * 2 - (w_start - w_end) * 2; u += picture->linesize[1] - (w_start - w_end); v += picture->linesize[2] - (w_start - w_end); } if (ci->debug) fprintf(stderr, "Fish: Inrange=%d of %d = %d threshold\n", inrange, pixcnt, 1000 * inrange / pixcnt); if (inrange * 1000 / pixcnt >= ci->threshold) { /* Save to file */ int size; char *buf; AVPicture picture1; static int frame_counter; static int foundfile; if ((frame_counter++ % 20) == 0) { /* Check how many files we have */ DIR *d; foundfile = 0; d = opendir(ci->dir); if (d) { struct dirent *dent; while ((dent = readdir(d))) { if (strncmp("fishimg", dent->d_name, 7) == 0) { if (strcmp(".ppm", dent->d_name + strlen(dent->d_name) - 4) == 0) { foundfile++; } } } closedir(d); } } if (foundfile < ci->file_limit) { size = avpicture_get_size(PIX_FMT_RGB24, width, height); buf = av_malloc(size); avpicture_fill(&picture1, buf, PIX_FMT_RGB24, width, height); if (img_convert(&picture1, PIX_FMT_RGB24, picture, pix_fmt, width, height) >= 0) { /* Write out the PPM file */ FILE *f; char fname[256]; snprintf(fname, sizeof(fname), "%s/fishimg%ld_%"PRId64".ppm", ci->dir, (long)(av_gettime() / 1000000), pts); f = fopen(fname, "w"); if (f) { fprintf(f, "P6 %d %d 255\n", width, height); fwrite(buf, width * height * 3, 1, f); fclose(f); } } av_free(buf); ci->next_pts = pts + ci->min_interval; } } } }