/* * Generates a synthetic YUV video sequence suitable for codec testing. * NOTE: No floats are used to guarantee a bit exact output. * * Copyright (c) 2002 Fabrice Bellard * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <stdlib.h> #include <stdint.h> #include <stdio.h> #define SCALEBITS 8 #define ONE_HALF (1 << (SCALEBITS - 1)) #define FIX(x) ((int) ((x) * (1L<<SCALEBITS) + 0.5)) static void rgb24_to_yuv420p(uint8_t *lum, uint8_t *cb, uint8_t *cr, uint8_t *src, int width, int height) { int wrap, wrap3, x, y; int r, g, b, r1, g1, b1; uint8_t *p; wrap = width; wrap3 = width * 3; p = src; for(y=0;y<height;y+=2) { for(x=0;x<width;x+=2) { r = p[0]; g = p[1]; b = p[2]; r1 = r; g1 = g; b1 = b; lum[0] = (FIX(0.29900) * r + FIX(0.58700) * g + FIX(0.11400) * b + ONE_HALF) >> SCALEBITS; r = p[3]; g = p[4]; b = p[5]; r1 += r; g1 += g; b1 += b; lum[1] = (FIX(0.29900) * r + FIX(0.58700) * g + FIX(0.11400) * b + ONE_HALF) >> SCALEBITS; p += wrap3; lum += wrap; r = p[0]; g = p[1]; b = p[2]; r1 += r; g1 += g; b1 += b; lum[0] = (FIX(0.29900) * r + FIX(0.58700) * g + FIX(0.11400) * b + ONE_HALF) >> SCALEBITS; r = p[3]; g = p[4]; b = p[5]; r1 += r; g1 += g; b1 += b; lum[1] = (FIX(0.29900) * r + FIX(0.58700) * g + FIX(0.11400) * b + ONE_HALF) >> SCALEBITS; cb[0] = ((- FIX(0.16874) * r1 - FIX(0.33126) * g1 + FIX(0.50000) * b1 + 4 * ONE_HALF - 1) >> (SCALEBITS + 2)) + 128; cr[0] = ((FIX(0.50000) * r1 - FIX(0.41869) * g1 - FIX(0.08131) * b1 + 4 * ONE_HALF - 1) >> (SCALEBITS + 2)) + 128; cb++; cr++; p += -wrap3 + 2 * 3; lum += -wrap + 2; } p += wrap3; lum += wrap; } } /* cif format */ #define DEFAULT_WIDTH 352 #define DEFAULT_HEIGHT 288 #define DEFAULT_NB_PICT 50 /* 2 seconds */ static void pgmyuv_save(const char *filename, int w, int h, unsigned char *rgb_tab) { FILE *f; int i, h2, w2; unsigned char *cb, *cr; unsigned char *lum_tab, *cb_tab, *cr_tab; lum_tab = malloc(w * h); cb_tab = malloc((w * h) / 4); cr_tab = malloc((w * h) / 4); rgb24_to_yuv420p(lum_tab, cb_tab, cr_tab, rgb_tab, w, h); f = fopen(filename,"wb"); fprintf(f, "P5\n%d %d\n%d\n", w, (h * 3) / 2, 255); fwrite(lum_tab, 1, w * h, f); h2 = h / 2; w2 = w / 2; cb = cb_tab; cr = cr_tab; for(i=0;i<h2;i++) { fwrite(cb, 1, w2, f); fwrite(cr, 1, w2, f); cb += w2; cr += w2; } fclose(f); free(lum_tab); free(cb_tab); free(cr_tab); } unsigned char *rgb_tab; int width, height, wrap; static void put_pixel(int x, int y, int r, int g, int b) { unsigned char *p; if (x < 0 || x >= width || y < 0 || y >= height) return; p = rgb_tab + y * wrap + x * 3; p[0] = r; p[1] = g; p[2] = b; } static unsigned int myrnd(unsigned int *seed_ptr, int n) { unsigned int seed, val; seed = *seed_ptr; seed = (seed * 314159) + 1; if (n == 256) { val = seed >> 24; } else { val = seed % n; } *seed_ptr = seed; return val; } #define NOISE_X 10 #define NOISE_Y 30 #define NOISE_W 26 #define FRAC_BITS 8 #define FRAC_ONE (1 << FRAC_BITS) /* cosine approximate with 1-x^2 */ static int int_cos(int a) { int v, neg; a = a & (FRAC_ONE - 1); if (a >= (FRAC_ONE / 2)) a = FRAC_ONE - a; neg = 0; if (a > (FRAC_ONE / 4)) { neg = -1; a = (FRAC_ONE / 2) - a; } v = FRAC_ONE - ((a * a) >> 4); v = (v ^ neg) - neg; return v; } #define NB_OBJS 10 typedef struct VObj { int x, y, w, h; int r, g, b; } VObj; VObj objs[NB_OBJS]; unsigned int seed = 1; static void gen_image(int num, int w, int h) { int r, g, b, x, y, i, dx, dy, x1, y1; unsigned int seed1; if (num == 0) { for(i=0;i<NB_OBJS;i++) { objs[i].x = myrnd(&seed, w); objs[i].y = myrnd(&seed, h); objs[i].w = myrnd(&seed, w / 4) + 10; objs[i].h = myrnd(&seed, h / 4) + 10; objs[i].r = myrnd(&seed, 256); objs[i].g = myrnd(&seed, 256); objs[i].b = myrnd(&seed, 256); } } /* first a moving background with gradients */ /* test motion estimation */ dx = int_cos(num * FRAC_ONE / 50) * 35; dy = int_cos(num * FRAC_ONE / 50 + FRAC_ONE / 10) * 30; for(y=0;y<h;y++) { for(x=0;x<w;x++) { x1 = (x << FRAC_BITS) + dx; y1 = (y << FRAC_BITS) + dy; r = ((y1 * 7) >> FRAC_BITS) & 0xff; g = (((x1 + y1) * 9) >> FRAC_BITS) & 0xff; b = ((x1 * 5) >> FRAC_BITS) & 0xff; put_pixel(x, y, r, g, b); } } /* then some noise with very high intensity to test saturation */ seed1 = num; for(y=0;y<NOISE_W;y++) { for(x=0;x<NOISE_W;x++) { r = myrnd(&seed1, 256); g = myrnd(&seed1, 256); b = myrnd(&seed1, 256); put_pixel(x + NOISE_X, y + NOISE_Y, r, g, b); } } /* then moving objects */ for(i=0;i<NB_OBJS;i++) { VObj *p = &objs[i]; seed1 = i; for(y=0;y<p->h;y++) { for(x=0;x<p->w;x++) { r = p->r; g = p->g; b = p->b; /* add a per object noise */ r += myrnd(&seed1, 50); g += myrnd(&seed1, 50); b += myrnd(&seed1, 50); put_pixel(x + p->x, y + p->y, r, g, b); } } p->x += myrnd(&seed, 21) - 10; p->y += myrnd(&seed, 21) - 10; } } int main(int argc, char **argv) { int w, h, i; char buf[1024]; if (argc != 2) { printf("usage: %s file\n" "generate a test video stream\n", argv[0]); exit(1); } w = DEFAULT_WIDTH; h = DEFAULT_HEIGHT; rgb_tab = malloc(w * h * 3); wrap = w * 3; width = w; height = h; for(i=0;i<DEFAULT_NB_PICT;i++) { snprintf(buf, sizeof(buf), "%s%02d.pgm", argv[1], i); gen_image(i, w, h); pgmyuv_save(buf, w, h, rgb_tab); } free(rgb_tab); return 0; }