/* * yuv2rgb.c, Software YUV to RGB coverter * * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * All Rights Reserved. * * Functions broken out from display_x11.c and several new modes * added by H�kan Hjort <d95hjort@dtek.chalmers.se> * * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr> * * This file is part of mpeg2dec, a free MPEG-2 video decoder * * mpeg2dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * mpeg2dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support) * 1,4,8bpp support by Michael Niedermayer (michaelni@gmx.at) * context / deglobalize stuff by Michael Niedermayer */ #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include <assert.h> #include "config.h" //#include "video_out.h" #include "rgb2rgb.h" #include "swscale.h" #include "swscale_internal.h" #include "mangle.h" #include "libvo/img_format.h" //FIXME try to reduce dependency of such stuff #ifdef HAVE_MLIB #include "yuv2rgb_mlib.c" #endif #define DITHER1XBPP // only for mmx const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={ { 1, 3, 1, 3, 1, 3, 1, 3, }, { 2, 0, 2, 0, 2, 0, 2, 0, }, }; const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={ { 6, 2, 6, 2, 6, 2, 6, 2, }, { 0, 4, 0, 4, 0, 4, 0, 4, }, }; const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={ { 17, 9, 23, 15, 16, 8, 22, 14, }, { 5, 29, 3, 27, 4, 28, 2, 26, }, { 21, 13, 19, 11, 20, 12, 18, 10, }, { 0, 24, 6, 30, 1, 25, 7, 31, }, { 16, 8, 22, 14, 17, 9, 23, 15, }, { 4, 28, 2, 26, 5, 29, 3, 27, }, { 20, 12, 18, 10, 21, 13, 19, 11, }, { 1, 25, 7, 31, 0, 24, 6, 30, }, }; #if 0 const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={ { 0, 48, 12, 60, 3, 51, 15, 63, }, { 32, 16, 44, 28, 35, 19, 47, 31, }, { 8, 56, 4, 52, 11, 59, 7, 55, }, { 40, 24, 36, 20, 43, 27, 39, 23, }, { 2, 50, 14, 62, 1, 49, 13, 61, }, { 34, 18, 46, 30, 33, 17, 45, 29, }, { 10, 58, 6, 54, 9, 57, 5, 53, }, { 42, 26, 38, 22, 41, 25, 37, 21, }, }; #endif const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={ { 0, 55, 14, 68, 3, 58, 17, 72, }, { 37, 18, 50, 32, 40, 22, 54, 35, }, { 9, 64, 5, 59, 13, 67, 8, 63, }, { 46, 27, 41, 23, 49, 31, 44, 26, }, { 2, 57, 16, 71, 1, 56, 15, 70, }, { 39, 21, 52, 34, 38, 19, 51, 33, }, { 11, 66, 7, 62, 10, 65, 6, 60, }, { 48, 30, 43, 25, 47, 29, 42, 24, }, }; #if 0 const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={ { 68, 36, 92, 60, 66, 34, 90, 58, }, { 20, 116, 12, 108, 18, 114, 10, 106, }, { 84, 52, 76, 44, 82, 50, 74, 42, }, { 0, 96, 24, 120, 6, 102, 30, 126, }, { 64, 32, 88, 56, 70, 38, 94, 62, }, { 16, 112, 8, 104, 22, 118, 14, 110, }, { 80, 48, 72, 40, 86, 54, 78, 46, }, { 4, 100, 28, 124, 2, 98, 26, 122, }, }; #endif #if 1 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={ {117, 62, 158, 103, 113, 58, 155, 100, }, { 34, 199, 21, 186, 31, 196, 17, 182, }, {144, 89, 131, 76, 141, 86, 127, 72, }, { 0, 165, 41, 206, 10, 175, 52, 217, }, {110, 55, 151, 96, 120, 65, 162, 107, }, { 28, 193, 14, 179, 38, 203, 24, 189, }, {138, 83, 124, 69, 148, 93, 134, 79, }, { 7, 172, 48, 213, 3, 168, 45, 210, }, }; #elif 1 // tries to correct a gamma of 1.5 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={ { 0, 143, 18, 200, 2, 156, 25, 215, }, { 78, 28, 125, 64, 89, 36, 138, 74, }, { 10, 180, 3, 161, 16, 195, 8, 175, }, {109, 51, 93, 38, 121, 60, 105, 47, }, { 1, 152, 23, 210, 0, 147, 20, 205, }, { 85, 33, 134, 71, 81, 30, 130, 67, }, { 14, 190, 6, 171, 12, 185, 5, 166, }, {117, 57, 101, 44, 113, 54, 97, 41, }, }; #elif 1 // tries to correct a gamma of 2.0 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={ { 0, 124, 8, 193, 0, 140, 12, 213, }, { 55, 14, 104, 42, 66, 19, 119, 52, }, { 3, 168, 1, 145, 6, 187, 3, 162, }, { 86, 31, 70, 21, 99, 39, 82, 28, }, { 0, 134, 11, 206, 0, 129, 9, 200, }, { 62, 17, 114, 48, 58, 16, 109, 45, }, { 5, 181, 2, 157, 4, 175, 1, 151, }, { 95, 36, 78, 26, 90, 34, 74, 24, }, }; #else // tries to correct a gamma of 2.5 const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={ { 0, 107, 3, 187, 0, 125, 6, 212, }, { 39, 7, 86, 28, 49, 11, 102, 36, }, { 1, 158, 0, 131, 3, 180, 1, 151, }, { 68, 19, 52, 12, 81, 25, 64, 17, }, { 0, 119, 5, 203, 0, 113, 4, 195, }, { 45, 9, 96, 33, 42, 8, 91, 30, }, { 2, 172, 1, 144, 2, 165, 0, 137, }, { 77, 23, 60, 15, 72, 21, 56, 14, }, }; #endif #if defined(ARCH_X86) || defined(ARCH_X86_64) /* hope these constant values are cache line aligned */ uint64_t attribute_used __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ffULL; uint64_t attribute_used __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8ULL; uint64_t attribute_used __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfcULL; uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFULL; uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00ULL; uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000ULL; // the volatile is required because gcc otherwise optimizes some writes away not knowing that these // are read in the asm block volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither; volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither; volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither; volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither; uint64_t __attribute__((aligned(8))) dither4[2]={ 0x0103010301030103LL, 0x0200020002000200LL,}; uint64_t __attribute__((aligned(8))) dither8[2]={ 0x0602060206020602LL, 0x0004000400040004LL,}; #undef HAVE_MMX //MMX versions #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX #include "yuv2rgb_template.c" //MMX2 versions #undef RENAME #define HAVE_MMX #define HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX2 #include "yuv2rgb_template.c" #endif // CAN_COMPILE_X86_ASM const int32_t Inverse_Table_6_9[8][4] = { {117504, 138453, 13954, 34903}, /* no sequence_display_extension */ {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */ {104597, 132201, 25675, 53279}, /* unspecified */ {104597, 132201, 25675, 53279}, /* reserved */ {104448, 132798, 24759, 53109}, /* FCC */ {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */ {104597, 132201, 25675, 53279}, /* SMPTE 170M */ {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */ }; #define RGB(i) \ U = pu[i]; \ V = pv[i]; \ r = c->table_rV[V]; \ g = c->table_gU[U] + c->table_gV[V]; \ b = c->table_bU[U]; #define DST1(i) \ Y = py_1[2*i]; \ dst_1[2*i] = r[Y] + g[Y] + b[Y]; \ Y = py_1[2*i+1]; \ dst_1[2*i+1] = r[Y] + g[Y] + b[Y]; #define DST2(i) \ Y = py_2[2*i]; \ dst_2[2*i] = r[Y] + g[Y] + b[Y]; \ Y = py_2[2*i+1]; \ dst_2[2*i+1] = r[Y] + g[Y] + b[Y]; #define DST1RGB(i) \ Y = py_1[2*i]; \ dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \ Y = py_1[2*i+1]; \ dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y]; #define DST2RGB(i) \ Y = py_2[2*i]; \ dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \ Y = py_2[2*i+1]; \ dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y]; #define DST1BGR(i) \ Y = py_1[2*i]; \ dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \ Y = py_1[2*i+1]; \ dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y]; #define DST2BGR(i) \ Y = py_2[2*i]; \ dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \ Y = py_2[2*i+1]; \ dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y]; #define PROLOG(func_name, dst_type) \ static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \ int srcSliceH, uint8_t* dst[], int dstStride[]){\ int y;\ \ if(c->srcFormat == IMGFMT_422P){\ srcStride[1] *= 2;\ srcStride[2] *= 2;\ }\ for(y=0; y<srcSliceH; y+=2){\ dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\ dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\ dst_type *r, *g, *b;\ uint8_t *py_1= src[0] + y*srcStride[0];\ uint8_t *py_2= py_1 + srcStride[0];\ uint8_t *pu= src[1] + (y>>1)*srcStride[1];\ uint8_t *pv= src[2] + (y>>1)*srcStride[2];\ unsigned int h_size= c->dstW>>3;\ while (h_size--) {\ int U, V, Y;\ #define EPILOG(dst_delta)\ pu += 4;\ pv += 4;\ py_1 += 8;\ py_2 += 8;\ dst_1 += dst_delta;\ dst_2 += dst_delta;\ }\ }\ return srcSliceH;\ } PROLOG(yuv2rgb_c_32, uint32_t) RGB(0); DST1(0); DST2(0); RGB(1); DST2(1); DST1(1); RGB(2); DST1(2); DST2(2); RGB(3); DST2(3); DST1(3); EPILOG(8) PROLOG(yuv2rgb_c_24_rgb, uint8_t) RGB(0); DST1RGB(0); DST2RGB(0); RGB(1); DST2RGB(1); DST1RGB(1); RGB(2); DST1RGB(2); DST2RGB(2); RGB(3); DST2RGB(3); DST1RGB(3); EPILOG(24) // only trivial mods from yuv2rgb_c_24_rgb PROLOG(yuv2rgb_c_24_bgr, uint8_t) RGB(0); DST1BGR(0); DST2BGR(0); RGB(1); DST2BGR(1); DST1BGR(1); RGB(2); DST1BGR(2); DST2BGR(2); RGB(3); DST2BGR(3); DST1BGR(3); EPILOG(24) // This is exactly the same code as yuv2rgb_c_32 except for the types of // r, g, b, dst_1, dst_2 PROLOG(yuv2rgb_c_16, uint16_t) RGB(0); DST1(0); DST2(0); RGB(1); DST2(1); DST1(1); RGB(2); DST1(2); DST2(2); RGB(3); DST2(3); DST1(3); EPILOG(8) // This is exactly the same code as yuv2rgb_c_32 except for the types of // r, g, b, dst_1, dst_2 PROLOG(yuv2rgb_c_8, uint8_t) RGB(0); DST1(0); DST2(0); RGB(1); DST2(1); DST1(1); RGB(2); DST1(2); DST2(2); RGB(3); DST2(3); DST1(3); EPILOG(8) // r, g, b, dst_1, dst_2 PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t) const uint8_t *d32= dither_8x8_32[y&7]; const uint8_t *d64= dither_8x8_73[y&7]; #define DST1bpp8(i,o) \ Y = py_1[2*i]; \ dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \ Y = py_1[2*i+1]; \ dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]]; #define DST2bpp8(i,o) \ Y = py_2[2*i]; \ dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \ Y = py_2[2*i+1]; \ dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]]; RGB(0); DST1bpp8(0,0); DST2bpp8(0,0); RGB(1); DST2bpp8(1,2); DST1bpp8(1,2); RGB(2); DST1bpp8(2,4); DST2bpp8(2,4); RGB(3); DST2bpp8(3,6); DST1bpp8(3,6); EPILOG(8) // This is exactly the same code as yuv2rgb_c_32 except for the types of // r, g, b, dst_1, dst_2 PROLOG(yuv2rgb_c_4, uint8_t) int acc; #define DST1_4(i) \ Y = py_1[2*i]; \ acc = r[Y] + g[Y] + b[Y]; \ Y = py_1[2*i+1]; \ acc |= (r[Y] + g[Y] + b[Y])<<4;\ dst_1[i] = acc; #define DST2_4(i) \ Y = py_2[2*i]; \ acc = r[Y] + g[Y] + b[Y]; \ Y = py_2[2*i+1]; \ acc |= (r[Y] + g[Y] + b[Y])<<4;\ dst_2[i] = acc; RGB(0); DST1_4(0); DST2_4(0); RGB(1); DST2_4(1); DST1_4(1); RGB(2); DST1_4(2); DST2_4(2); RGB(3); DST2_4(3); DST1_4(3); EPILOG(4) PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t) const uint8_t *d64= dither_8x8_73[y&7]; const uint8_t *d128=dither_8x8_220[y&7]; int acc; #define DST1bpp4(i,o) \ Y = py_1[2*i]; \ acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \ Y = py_1[2*i+1]; \ acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4;\ dst_1[i]= acc; #define DST2bpp4(i,o) \ Y = py_2[2*i]; \ acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \ Y = py_2[2*i+1]; \ acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4;\ dst_2[i]= acc; RGB(0); DST1bpp4(0,0); DST2bpp4(0,0); RGB(1); DST2bpp4(1,2); DST1bpp4(1,2); RGB(2); DST1bpp4(2,4); DST2bpp4(2,4); RGB(3); DST2bpp4(3,6); DST1bpp4(3,6); EPILOG(4) // This is exactly the same code as yuv2rgb_c_32 except for the types of // r, g, b, dst_1, dst_2 PROLOG(yuv2rgb_c_4b, uint8_t) RGB(0); DST1(0); DST2(0); RGB(1); DST2(1); DST1(1); RGB(2); DST1(2); DST2(2); RGB(3); DST2(3); DST1(3); EPILOG(8) PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t) const uint8_t *d64= dither_8x8_73[y&7]; const uint8_t *d128=dither_8x8_220[y&7]; #define DST1bpp4b(i,o) \ Y = py_1[2*i]; \ dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \ Y = py_1[2*i+1]; \ dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]]; #define DST2bpp4b(i,o) \ Y = py_2[2*i]; \ dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \ Y = py_2[2*i+1]; \ dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]]; RGB(0); DST1bpp4b(0,0); DST2bpp4b(0,0); RGB(1); DST2bpp4b(1,2); DST1bpp4b(1,2); RGB(2); DST1bpp4b(2,4); DST2bpp4b(2,4); RGB(3); DST2bpp4b(3,6); DST1bpp4b(3,6); EPILOG(8) PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t) const uint8_t *d128=dither_8x8_220[y&7]; char out_1=0, out_2=0; g= c->table_gU[128] + c->table_gV[128]; #define DST1bpp1(i,o) \ Y = py_1[2*i]; \ out_1+= out_1 + g[Y+d128[0+o]]; \ Y = py_1[2*i+1]; \ out_1+= out_1 + g[Y+d128[1+o]]; #define DST2bpp1(i,o) \ Y = py_2[2*i]; \ out_2+= out_2 + g[Y+d128[8+o]]; \ Y = py_2[2*i+1]; \ out_2+= out_2 + g[Y+d128[9+o]]; DST1bpp1(0,0); DST2bpp1(0,0); DST2bpp1(1,2); DST1bpp1(1,2); DST1bpp1(2,4); DST2bpp1(2,4); DST2bpp1(3,6); DST1bpp1(3,6); dst_1[0]= out_1; dst_2[0]= out_2; EPILOG(1) SwsFunc yuv2rgb_get_func_ptr (SwsContext *c) { #if defined(ARCH_X86) || defined(ARCH_X86_64) if(c->flags & SWS_CPU_CAPS_MMX2){ switch(c->dstFormat){ case IMGFMT_BGR32: return yuv420_rgb32_MMX2; case IMGFMT_BGR24: return yuv420_rgb24_MMX2; case IMGFMT_BGR16: return yuv420_rgb16_MMX2; case IMGFMT_BGR15: return yuv420_rgb15_MMX2; } } if(c->flags & SWS_CPU_CAPS_MMX){ switch(c->dstFormat){ case IMGFMT_BGR32: return yuv420_rgb32_MMX; case IMGFMT_BGR24: return yuv420_rgb24_MMX; case IMGFMT_BGR16: return yuv420_rgb16_MMX; case IMGFMT_BGR15: return yuv420_rgb15_MMX; } } #endif #ifdef HAVE_MLIB { SwsFunc t= yuv2rgb_init_mlib(c); if(t) return t; } #endif #ifdef HAVE_ALTIVEC if (c->flags & SWS_CPU_CAPS_ALTIVEC) { SwsFunc t = yuv2rgb_init_altivec(c); if(t) return t; } #endif MSG_WARN("No accelerated colorspace conversion found\n"); switch(c->dstFormat){ case IMGFMT_RGB32: case IMGFMT_BGR32: return yuv2rgb_c_32; case IMGFMT_RGB24: return yuv2rgb_c_24_rgb; case IMGFMT_BGR24: return yuv2rgb_c_24_bgr; case IMGFMT_RGB16: case IMGFMT_BGR16: case IMGFMT_RGB15: case IMGFMT_BGR15: return yuv2rgb_c_16; case IMGFMT_RGB8: case IMGFMT_BGR8: return yuv2rgb_c_8_ordered_dither; case IMGFMT_RGB4: case IMGFMT_BGR4: return yuv2rgb_c_4_ordered_dither; case IMGFMT_RG4B: case IMGFMT_BG4B: return yuv2rgb_c_4b_ordered_dither; case IMGFMT_RGB1: case IMGFMT_BGR1: return yuv2rgb_c_1_ordered_dither; default: assert(0); } return NULL; } static int div_round (int dividend, int divisor) { if (dividend > 0) return (dividend + (divisor>>1)) / divisor; else return -((-dividend + (divisor>>1)) / divisor); } int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation) { const int isRgb = IMGFMT_IS_BGR(c->dstFormat); const int bpp = isRgb?IMGFMT_RGB_DEPTH(c->dstFormat):IMGFMT_BGR_DEPTH(c->dstFormat); int i; uint8_t table_Y[1024]; uint32_t *table_32 = 0; uint16_t *table_16 = 0; uint8_t *table_8 = 0; uint8_t *table_332 = 0; uint8_t *table_121 = 0; uint8_t *table_1 = 0; int entry_size = 0; void *table_r = 0, *table_g = 0, *table_b = 0; void *table_start; int64_t crv = inv_table[0]; int64_t cbu = inv_table[1]; int64_t cgu = -inv_table[2]; int64_t cgv = -inv_table[3]; int64_t cy = 1<<16; int64_t oy = 0; //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv); if(!fullRange){ cy= (cy*255) / 219; oy= 16<<16; } cy = (cy *contrast )>>16; crv= (crv*contrast * saturation)>>32; cbu= (cbu*contrast * saturation)>>32; cgu= (cgu*contrast * saturation)>>32; cgv= (cgv*contrast * saturation)>>32; //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv); oy -= 256*brightness; for (i = 0; i < 1024; i++) { int j; j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32; j = (j < 0) ? 0 : ((j > 255) ? 255 : j); table_Y[i] = j; } switch (bpp) { case 32: table_start= table_32 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t)); entry_size = sizeof (uint32_t); table_r = table_32 + 197; table_b = table_32 + 197 + 685; table_g = table_32 + 197 + 2*682; for (i = -197; i < 256+197; i++) ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0); for (i = -132; i < 256+132; i++) ((uint32_t *)table_g)[i] = table_Y[i+384] << 8; for (i = -232; i < 256+232; i++) ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16); break; case 24: table_start= table_8 = malloc ((256 + 2*232) * sizeof (uint8_t)); entry_size = sizeof (uint8_t); table_r = table_g = table_b = table_8 + 232; for (i = -232; i < 256+232; i++) ((uint8_t * )table_b)[i] = table_Y[i+384]; break; case 15: case 16: table_start= table_16 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t)); entry_size = sizeof (uint16_t); table_r = table_16 + 197; table_b = table_16 + 197 + 685; table_g = table_16 + 197 + 2*682; for (i = -197; i < 256+197; i++) { int j = table_Y[i+384] >> 3; if (isRgb) j <<= ((bpp==16) ? 11 : 10); ((uint16_t *)table_r)[i] = j; } for (i = -132; i < 256+132; i++) { int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3); ((uint16_t *)table_g)[i] = j << 5; } for (i = -232; i < 256+232; i++) { int j = table_Y[i+384] >> 3; if (!isRgb) j <<= ((bpp==16) ? 11 : 10); ((uint16_t *)table_b)[i] = j; } break; case 8: table_start= table_332 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t)); entry_size = sizeof (uint8_t); table_r = table_332 + 197; table_b = table_332 + 197 + 685; table_g = table_332 + 197 + 2*682; for (i = -197; i < 256+197; i++) { int j = (table_Y[i+384 - 16] + 18)/36; if (isRgb) j <<= 5; ((uint8_t *)table_r)[i] = j; } for (i = -132; i < 256+132; i++) { int j = (table_Y[i+384 - 16] + 18)/36; if (!isRgb) j <<= 1; ((uint8_t *)table_g)[i] = j << 2; } for (i = -232; i < 256+232; i++) { int j = (table_Y[i+384 - 37] + 43)/85; if (!isRgb) j <<= 6; ((uint8_t *)table_b)[i] = j; } break; case 4: case 4|128: table_start= table_121 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t)); entry_size = sizeof (uint8_t); table_r = table_121 + 197; table_b = table_121 + 197 + 685; table_g = table_121 + 197 + 2*682; for (i = -197; i < 256+197; i++) { int j = table_Y[i+384 - 110] >> 7; if (isRgb) j <<= 3; ((uint8_t *)table_r)[i] = j; } for (i = -132; i < 256+132; i++) { int j = (table_Y[i+384 - 37]+ 43)/85; ((uint8_t *)table_g)[i] = j << 1; } for (i = -232; i < 256+232; i++) { int j =table_Y[i+384 - 110] >> 7; if (!isRgb) j <<= 3; ((uint8_t *)table_b)[i] = j; } break; case 1: table_start= table_1 = malloc (256*2 * sizeof (uint8_t)); entry_size = sizeof (uint8_t); table_g = table_1; table_r = table_b = NULL; for (i = 0; i < 256+256; i++) { int j = table_Y[i + 384 - 110]>>7; ((uint8_t *)table_g)[i] = j; } break; default: table_start= NULL; MSG_ERR("%ibpp not supported by yuv2rgb\n", bpp); //free mem? return -1; } for (i = 0; i < 256; i++) { c->table_rV[i] = table_r + entry_size * div_round (crv * (i-128), 76309); c->table_gU[i] = table_g + entry_size * div_round (cgu * (i-128), 76309); c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309); c->table_bU[i] = table_b + entry_size * div_round (cbu * (i-128), 76309); } if(c->yuvTable) free(c->yuvTable); c->yuvTable= table_start; return 0; }