/* * yuv2rgb.c, Software YUV to RGB coverter * * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca> * All Rights Reserved. * * Functions broken out from display_x11.c and several new modes * added by H�kan Hjort <d95hjort@dtek.chalmers.se> * * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr> * * This file is part of mpeg2dec, a free MPEG-2 video decoder * * mpeg2dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * mpeg2dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support) */ #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include "config.h" //#include "video_out.h" #include "rgb2rgb.h" #include "../cpudetect.h" #include "../mangle.h" #include "../mp_msg.h" #ifdef HAVE_MLIB #include "yuv2rgb_mlib.c" #endif #define DITHER1XBPP // only for mmx #ifdef ARCH_X86 #define CAN_COMPILE_X86_ASM #endif #ifdef CAN_COMPILE_X86_ASM /* hope these constant values are cache line aligned */ uint64_t __attribute__((aligned(8))) mmx_80w = 0x0080008000800080; uint64_t __attribute__((aligned(8))) mmx_10w = 0x1010101010101010; uint64_t __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ff; uint64_t __attribute__((aligned(8))) mmx_Y_coeff = 0x253f253f253f253f; /* hope these constant values are cache line aligned */ uint64_t __attribute__((aligned(8))) mmx_U_green = 0xf37df37df37df37d; uint64_t __attribute__((aligned(8))) mmx_U_blue = 0x4093409340934093; uint64_t __attribute__((aligned(8))) mmx_V_red = 0x3312331233123312; uint64_t __attribute__((aligned(8))) mmx_V_green = 0xe5fce5fce5fce5fc; /* hope these constant values are cache line aligned */ uint64_t __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8; uint64_t __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfc; uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL; uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL; uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL; // the volatile is required because gcc otherwise optimizes some writes away not knowing that these // are read in the asm block volatile uint64_t __attribute__((aligned(8))) b5Dither; volatile uint64_t __attribute__((aligned(8))) g5Dither; volatile uint64_t __attribute__((aligned(8))) g6Dither; volatile uint64_t __attribute__((aligned(8))) r5Dither; uint64_t __attribute__((aligned(8))) dither4[2]={ 0x0103010301030103LL, 0x0200020002000200LL,}; uint64_t __attribute__((aligned(8))) dither8[2]={ 0x0602060206020602LL, 0x0004000400040004LL,}; #undef HAVE_MMX #undef ARCH_X86 //MMX versions #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define ARCH_X86 #define RENAME(a) a ## _MMX #include "yuv2rgb_template.c" //MMX2 versions #undef RENAME #define HAVE_MMX #define HAVE_MMX2 #undef HAVE_3DNOW #define ARCH_X86 #define RENAME(a) a ## _MMX2 #include "yuv2rgb_template.c" #endif // CAN_COMPILE_X86_ASM uint32_t matrix_coefficients = 6; const int32_t Inverse_Table_6_9[8][4] = { {117504, 138453, 13954, 34903}, /* no sequence_display_extension */ {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */ {104597, 132201, 25675, 53279}, /* unspecified */ {104597, 132201, 25675, 53279}, /* reserved */ {104448, 132798, 24759, 53109}, /* FCC */ {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */ {104597, 132201, 25675, 53279}, /* SMPTE 170M */ {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */ }; static void yuv2rgb_c_init (int bpp, int mode); yuv2rgb_fun yuv2rgb; static void (* yuv2rgb_c_internal) (uint8_t *, uint8_t *, uint8_t *, uint8_t *, void *, void *, int); static void yuv2rgb_c (void * dst, uint8_t * py, uint8_t * pu, uint8_t * pv, int h_size, int v_size, int rgb_stride, int y_stride, int uv_stride) { v_size >>= 1; while (v_size--) { yuv2rgb_c_internal (py, py + y_stride, pu, pv, dst, dst + rgb_stride, h_size); py += 2 * y_stride; pu += uv_stride; pv += uv_stride; dst += 2 * rgb_stride; } } void yuv2rgb_init (int bpp, int mode) { yuv2rgb = NULL; #ifdef CAN_COMPILE_X86_ASM if(gCpuCaps.hasMMX2) { if (yuv2rgb == NULL /*&& (config.flags & VO_MMX_ENABLE)*/) { yuv2rgb = yuv2rgb_init_MMX2 (bpp, mode); if (yuv2rgb != NULL) mp_msg(MSGT_SWS,MSGL_INFO,"Using MMX2 for colorspace transform\n"); else mp_msg(MSGT_SWS,MSGL_WARN,"Cannot init MMX2 colorspace transform\n"); } } else if(gCpuCaps.hasMMX) { if (yuv2rgb == NULL /*&& (config.flags & VO_MMX_ENABLE)*/) { yuv2rgb = yuv2rgb_init_MMX (bpp, mode); if (yuv2rgb != NULL) mp_msg(MSGT_SWS,MSGL_INFO,"Using MMX for colorspace transform\n"); else mp_msg(MSGT_SWS,MSGL_WARN,"Cannot init MMX colorspace transform\n"); } } #endif #ifdef HAVE_MLIB if (yuv2rgb == NULL /*&& (config.flags & VO_MLIB_ENABLE)*/) { yuv2rgb = yuv2rgb_init_mlib (bpp, mode); if (yuv2rgb != NULL) mp_msg(MSGT_SWS,MSGL_INFO,"Using mlib for colorspace transform\n"); } #endif if (yuv2rgb == NULL) { mp_msg(MSGT_SWS,MSGL_INFO,"No accelerated colorspace conversion found\n"); yuv2rgb_c_init (bpp, mode); yuv2rgb = (yuv2rgb_fun)yuv2rgb_c; } } void * table_rV[256]; void * table_gU[256]; int table_gV[256]; void * table_bU[256]; #define RGB(i) \ U = pu[i]; \ V = pv[i]; \ r = table_rV[V]; \ g = table_gU[U] + table_gV[V]; \ b = table_bU[U]; #define DST1(i) \ Y = py_1[2*i]; \ dst_1[2*i] = r[Y] + g[Y] + b[Y]; \ Y = py_1[2*i+1]; \ dst_1[2*i+1] = r[Y] + g[Y] + b[Y]; #define DST2(i) \ Y = py_2[2*i]; \ dst_2[2*i] = r[Y] + g[Y] + b[Y]; \ Y = py_2[2*i+1]; \ dst_2[2*i+1] = r[Y] + g[Y] + b[Y]; #define DST1RGB(i) \ Y = py_1[2*i]; \ dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \ Y = py_1[2*i+1]; \ dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y]; #define DST2RGB(i) \ Y = py_2[2*i]; \ dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \ Y = py_2[2*i+1]; \ dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y]; #define DST1BGR(i) \ Y = py_1[2*i]; \ dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \ Y = py_1[2*i+1]; \ dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y]; #define DST2BGR(i) \ Y = py_2[2*i]; \ dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \ Y = py_2[2*i+1]; \ dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y]; static void yuv2rgb_c_32 (uint8_t * py_1, uint8_t * py_2, uint8_t * pu, uint8_t * pv, void * _dst_1, void * _dst_2, int h_size) { int U, V, Y; uint32_t * r, * g, * b; uint32_t * dst_1, * dst_2; h_size >>= 3; dst_1 = _dst_1; dst_2 = _dst_2; while (h_size--) { RGB(0); DST1(0); DST2(0); RGB(1); DST2(1); DST1(1); RGB(2); DST1(2); DST2(2); RGB(3); DST2(3); DST1(3); pu += 4; pv += 4; py_1 += 8; py_2 += 8; dst_1 += 8; dst_2 += 8; } } // This is very near from the yuv2rgb_c_32 code static void yuv2rgb_c_24_rgb (uint8_t * py_1, uint8_t * py_2, uint8_t * pu, uint8_t * pv, void * _dst_1, void * _dst_2, int h_size) { int U, V, Y; uint8_t * r, * g, * b; uint8_t * dst_1, * dst_2; h_size >>= 3; dst_1 = _dst_1; dst_2 = _dst_2; while (h_size--) { RGB(0); DST1RGB(0); DST2RGB(0); RGB(1); DST2RGB(1); DST1RGB(1); RGB(2); DST1RGB(2); DST2RGB(2); RGB(3); DST2RGB(3); DST1RGB(3); pu += 4; pv += 4; py_1 += 8; py_2 += 8; dst_1 += 24; dst_2 += 24; } } // only trivial mods from yuv2rgb_c_24_rgb static void yuv2rgb_c_24_bgr (uint8_t * py_1, uint8_t * py_2, uint8_t * pu, uint8_t * pv, void * _dst_1, void * _dst_2, int h_size) { int U, V, Y; uint8_t * r, * g, * b; uint8_t * dst_1, * dst_2; h_size >>= 3; dst_1 = _dst_1; dst_2 = _dst_2; while (h_size--) { RGB(0); DST1BGR(0); DST2BGR(0); RGB(1); DST2BGR(1); DST1BGR(1); RGB(2); DST1BGR(2); DST2BGR(2); RGB(3); DST2BGR(3); DST1BGR(3); pu += 4; pv += 4; py_1 += 8; py_2 += 8; dst_1 += 24; dst_2 += 24; } } // This is exactly the same code as yuv2rgb_c_32 except for the types of // r, g, b, dst_1, dst_2 static void yuv2rgb_c_16 (uint8_t * py_1, uint8_t * py_2, uint8_t * pu, uint8_t * pv, void * _dst_1, void * _dst_2, int h_size) { int U, V, Y; uint16_t * r, * g, * b; uint16_t * dst_1, * dst_2; h_size >>= 3; dst_1 = _dst_1; dst_2 = _dst_2; while (h_size--) { RGB(0); DST1(0); DST2(0); RGB(1); DST2(1); DST1(1); RGB(2); DST1(2); DST2(2); RGB(3); DST2(3); DST1(3); pu += 4; pv += 4; py_1 += 8; py_2 += 8; dst_1 += 8; dst_2 += 8; } } static int div_round (int dividend, int divisor) { if (dividend > 0) return (dividend + (divisor>>1)) / divisor; else return -((-dividend + (divisor>>1)) / divisor); } static void yuv2rgb_c_init (int bpp, int mode) { int i; uint8_t table_Y[1024]; uint32_t *table_32 = 0; uint16_t *table_16 = 0; uint8_t *table_8 = 0; int entry_size = 0; void *table_r = 0, *table_g = 0, *table_b = 0; int crv = Inverse_Table_6_9[matrix_coefficients][0]; int cbu = Inverse_Table_6_9[matrix_coefficients][1]; int cgu = -Inverse_Table_6_9[matrix_coefficients][2]; int cgv = -Inverse_Table_6_9[matrix_coefficients][3]; for (i = 0; i < 1024; i++) { int j; j = (76309 * (i - 384 - 16) + 32768) >> 16; j = (j < 0) ? 0 : ((j > 255) ? 255 : j); table_Y[i] = j; } switch (bpp) { case 32: yuv2rgb_c_internal = yuv2rgb_c_32; table_32 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t)); entry_size = sizeof (uint32_t); table_r = table_32 + 197; table_b = table_32 + 197 + 685; table_g = table_32 + 197 + 2*682; for (i = -197; i < 256+197; i++) ((uint32_t *)table_r)[i] = table_Y[i+384] << ((mode==MODE_RGB) ? 16 : 0); for (i = -132; i < 256+132; i++) ((uint32_t *)table_g)[i] = table_Y[i+384] << 8; for (i = -232; i < 256+232; i++) ((uint32_t *)table_b)[i] = table_Y[i+384] << ((mode==MODE_RGB) ? 0 : 16); break; case 24: // yuv2rgb_c_internal = (mode==MODE_RGB) ? yuv2rgb_c_24_rgb : yuv2rgb_c_24_bgr; yuv2rgb_c_internal = (mode!=MODE_RGB) ? yuv2rgb_c_24_rgb : yuv2rgb_c_24_bgr; table_8 = malloc ((256 + 2*232) * sizeof (uint8_t)); entry_size = sizeof (uint8_t); table_r = table_g = table_b = table_8 + 232; for (i = -232; i < 256+232; i++) ((uint8_t * )table_b)[i] = table_Y[i+384]; break; case 15: case 16: yuv2rgb_c_internal = yuv2rgb_c_16; table_16 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t)); entry_size = sizeof (uint16_t); table_r = table_16 + 197; table_b = table_16 + 197 + 685; table_g = table_16 + 197 + 2*682; for (i = -197; i < 256+197; i++) { int j = table_Y[i+384] >> 3; if (mode == MODE_RGB) j <<= ((bpp==16) ? 11 : 10); ((uint16_t *)table_r)[i] = j; } for (i = -132; i < 256+132; i++) { int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3); ((uint16_t *)table_g)[i] = j << 5; } for (i = -232; i < 256+232; i++) { int j = table_Y[i+384] >> 3; if (mode == MODE_BGR) j <<= ((bpp==16) ? 11 : 10); ((uint16_t *)table_b)[i] = j; } break; default: mp_msg(MSGT_SWS,MSGL_ERR,"%ibpp not supported by yuv2rgb\n", bpp); //exit (1); } for (i = 0; i < 256; i++) { table_rV[i] = table_r + entry_size * div_round (crv * (i-128), 76309); table_gU[i] = table_g + entry_size * div_round (cgu * (i-128), 76309); table_gV[i] = entry_size * div_round (cgv * (i-128), 76309); table_bU[i] = table_b + entry_size * div_round (cbu * (i-128), 76309); } }