/* * Copyright (C) 2007 Michael Niedermayer <michaelni@gmx.at> * Copyright (C) 2009 Konstantin Shishkov * based on public domain SHA-1 code by Steve Reid <steve@edmweb.com> * and on BSD-licensed SHA-2 code by Aaron D. Gifford * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <string.h> #include "attributes.h" #include "avutil.h" #include "bswap.h" #include "sha.h" #include "intreadwrite.h" #include "mem.h" /** hash context */ typedef struct AVSHA { uint8_t digest_len; ///< digest length in 32-bit words uint64_t count; ///< number of bytes in buffer uint8_t buffer[64]; ///< 512-bit buffer of input values used in hash updating uint32_t state[8]; ///< current hash value /** function used to update hash for 512-bit input block */ void (*transform)(uint32_t *state, const uint8_t buffer[64]); } AVSHA; struct AVSHA *av_sha_alloc(void) { return av_mallocz(sizeof(struct AVSHA)); } #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define blk0(i) (block[i] = AV_RB32(buffer + 4 * (i))) #define blk(i) (block[i] = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1)) #define R0(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk0(i) + 0x5A827999 + rol(v, 5); w = rol(w, 30); #define R1(v,w,x,y,z,i) z += ((w&(x^y))^y) + blk (i) + 0x5A827999 + rol(v, 5); w = rol(w, 30); #define R2(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30); #define R3(v,w,x,y,z,i) z += (((w|x)&y)|(w&x)) + blk (i) + 0x8F1BBCDC + rol(v, 5); w = rol(w, 30); #define R4(v,w,x,y,z,i) z += ( w^x ^y) + blk (i) + 0xCA62C1D6 + rol(v, 5); w = rol(w, 30); /* Hash a single 512-bit block. This is the core of the algorithm. */ static void sha1_transform(uint32_t state[5], const uint8_t buffer[64]) { uint32_t block[80]; unsigned int i, a, b, c, d, e; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; #if CONFIG_SMALL for (i = 0; i < 80; i++) { int t; if (i < 16) t = AV_RB32(buffer + 4 * i); else t = rol(block[i-3] ^ block[i-8] ^ block[i-14] ^ block[i-16], 1); block[i] = t; t += e + rol(a, 5); if (i < 40) { if (i < 20) t += ((b&(c^d))^d) + 0x5A827999; else t += ( b^c ^d) + 0x6ED9EBA1; } else { if (i < 60) t += (((b|c)&d)|(b&c)) + 0x8F1BBCDC; else t += ( b^c ^d) + 0xCA62C1D6; } e = d; d = c; c = rol(b, 30); b = a; a = t; } #else for (i = 0; i < 15; i += 5) { R0(a, b, c, d, e, 0 + i); R0(e, a, b, c, d, 1 + i); R0(d, e, a, b, c, 2 + i); R0(c, d, e, a, b, 3 + i); R0(b, c, d, e, a, 4 + i); } R0(a, b, c, d, e, 15); R1(e, a, b, c, d, 16); R1(d, e, a, b, c, 17); R1(c, d, e, a, b, 18); R1(b, c, d, e, a, 19); for (i = 20; i < 40; i += 5) { R2(a, b, c, d, e, 0 + i); R2(e, a, b, c, d, 1 + i); R2(d, e, a, b, c, 2 + i); R2(c, d, e, a, b, 3 + i); R2(b, c, d, e, a, 4 + i); } for (; i < 60; i += 5) { R3(a, b, c, d, e, 0 + i); R3(e, a, b, c, d, 1 + i); R3(d, e, a, b, c, 2 + i); R3(c, d, e, a, b, 3 + i); R3(b, c, d, e, a, 4 + i); } for (; i < 80; i += 5) { R4(a, b, c, d, e, 0 + i); R4(e, a, b, c, d, 1 + i); R4(d, e, a, b, c, 2 + i); R4(c, d, e, a, b, 3 + i); R4(b, c, d, e, a, 4 + i); } #endif state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } static const uint32_t K256[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #define Ch(x,y,z) (((x) & ((y) ^ (z))) ^ (z)) #define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y))) #define Sigma0_256(x) (rol((x), 30) ^ rol((x), 19) ^ rol((x), 10)) #define Sigma1_256(x) (rol((x), 26) ^ rol((x), 21) ^ rol((x), 7)) #define sigma0_256(x) (rol((x), 25) ^ rol((x), 14) ^ ((x) >> 3)) #define sigma1_256(x) (rol((x), 15) ^ rol((x), 13) ^ ((x) >> 10)) #undef blk #define blk(i) (block[i] = block[i - 16] + sigma0_256(block[i - 15]) + \ sigma1_256(block[i - 2]) + block[i - 7]) #define ROUND256(a,b,c,d,e,f,g,h) \ T1 += (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[i]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ i++ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = blk0(i); \ ROUND256(a,b,c,d,e,f,g,h) #define ROUND256_16_TO_63(a,b,c,d,e,f,g,h) \ T1 = blk(i); \ ROUND256(a,b,c,d,e,f,g,h) static void sha256_transform(uint32_t *state, const uint8_t buffer[64]) { unsigned int i, a, b, c, d, e, f, g, h; uint32_t block[64]; uint32_t T1; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; #if CONFIG_SMALL for (i = 0; i < 64; i++) { uint32_t T2; if (i < 16) T1 = blk0(i); else T1 = blk(i); T1 += h + Sigma1_256(e) + Ch(e, f, g) + K256[i]; T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } #else for (i = 0; i < 16;) { ROUND256_0_TO_15(a, b, c, d, e, f, g, h); ROUND256_0_TO_15(h, a, b, c, d, e, f, g); ROUND256_0_TO_15(g, h, a, b, c, d, e, f); ROUND256_0_TO_15(f, g, h, a, b, c, d, e); ROUND256_0_TO_15(e, f, g, h, a, b, c, d); ROUND256_0_TO_15(d, e, f, g, h, a, b, c); ROUND256_0_TO_15(c, d, e, f, g, h, a, b); ROUND256_0_TO_15(b, c, d, e, f, g, h, a); } for (; i < 64;) { ROUND256_16_TO_63(a, b, c, d, e, f, g, h); ROUND256_16_TO_63(h, a, b, c, d, e, f, g); ROUND256_16_TO_63(g, h, a, b, c, d, e, f); ROUND256_16_TO_63(f, g, h, a, b, c, d, e); ROUND256_16_TO_63(e, f, g, h, a, b, c, d); ROUND256_16_TO_63(d, e, f, g, h, a, b, c); ROUND256_16_TO_63(c, d, e, f, g, h, a, b); ROUND256_16_TO_63(b, c, d, e, f, g, h, a); } #endif state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } av_cold int av_sha_init(AVSHA *ctx, int bits) { ctx->digest_len = bits >> 5; switch (bits) { case 160: // SHA-1 ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xC3D2E1F0; ctx->transform = sha1_transform; break; case 224: // SHA-224 ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; ctx->transform = sha256_transform; break; case 256: // SHA-256 ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; ctx->transform = sha256_transform; break; default: return -1; } ctx->count = 0; return 0; } void av_sha_update(AVSHA* ctx, const uint8_t* data, unsigned int len) { unsigned int i, j; j = ctx->count & 63; ctx->count += len; #if CONFIG_SMALL for (i = 0; i < len; i++) { ctx->buffer[j++] = data[i]; if (64 == j) { ctx->transform(ctx->state, ctx->buffer); j = 0; } } #else if ((j + len) > 63) { memcpy(&ctx->buffer[j], data, (i = 64 - j)); ctx->transform(ctx->state, ctx->buffer); for (; i + 63 < len; i += 64) ctx->transform(ctx->state, &data[i]); j = 0; } else i = 0; memcpy(&ctx->buffer[j], &data[i], len - i); #endif } void av_sha_final(AVSHA* ctx, uint8_t *digest) { int i; uint64_t finalcount = av_be2ne64(ctx->count << 3); av_sha_update(ctx, "\200", 1); while ((ctx->count & 63) != 56) av_sha_update(ctx, "", 1); av_sha_update(ctx, (uint8_t *)&finalcount, 8); /* Should cause a transform() */ for (i = 0; i < ctx->digest_len; i++) AV_WB32(digest + i*4, ctx->state[i]); }