/* * Copyright (C) 2012 Peng Gao <peng@multicorewareinc.com> * Copyright (C) 2012 Li Cao <li@multicorewareinc.com> * Copyright (C) 2012 Wei Gao <weigao@multicorewareinc.com> * Copyright (C) 2013 Lenny Wang <lwanghpc@gmail.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "opencl.h" #include "avstring.h" #include "log.h" #include "avassert.h" #include "opt.h" #if HAVE_THREADS #if HAVE_PTHREADS #include <pthread.h> #elif HAVE_W32THREADS #include "compat/w32pthreads.h" #elif HAVE_OS2THREADS #include "compat/os2threads.h" #endif #include "atomic.h" static volatile pthread_mutex_t *atomic_opencl_lock = NULL; #define LOCK_OPENCL pthread_mutex_lock(atomic_opencl_lock) #define UNLOCK_OPENCL pthread_mutex_unlock(atomic_opencl_lock) #else #define LOCK_OPENCL #define UNLOCK_OPENCL #endif #define MAX_KERNEL_CODE_NUM 200 typedef struct { int is_compiled; const char *kernel_string; } KernelCode; typedef struct { const AVClass *class; int log_offset; void *log_ctx; int init_count; int opt_init_flag; /** * if set to 1, the OpenCL environment was created by the user and * passed as AVOpenCLExternalEnv when initing ,0:created by opencl wrapper. */ int is_user_created; int platform_idx; int device_idx; cl_platform_id platform_id; cl_device_type device_type; cl_context context; cl_device_id device_id; cl_command_queue command_queue; int kernel_code_count; KernelCode kernel_code[MAX_KERNEL_CODE_NUM]; AVOpenCLDeviceList device_list; } OpenclContext; #define OFFSET(x) offsetof(OpenclContext, x) static const AVOption opencl_options[] = { { "platform_idx", "set platform index value", OFFSET(platform_idx), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX}, { "device_idx", "set device index value", OFFSET(device_idx), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX}, { NULL } }; static const AVClass openclutils_class = { .class_name = "OPENCLUTILS", .option = opencl_options, .item_name = av_default_item_name, .version = LIBAVUTIL_VERSION_INT, .log_level_offset_offset = offsetof(OpenclContext, log_offset), .parent_log_context_offset = offsetof(OpenclContext, log_ctx), }; static OpenclContext opencl_ctx = {&openclutils_class}; static const cl_device_type device_type[] = {CL_DEVICE_TYPE_GPU, CL_DEVICE_TYPE_CPU}; typedef struct { int err_code; const char *err_str; } OpenclErrorMsg; static const OpenclErrorMsg opencl_err_msg[] = { {CL_DEVICE_NOT_FOUND, "DEVICE NOT FOUND"}, {CL_DEVICE_NOT_AVAILABLE, "DEVICE NOT AVAILABLE"}, {CL_COMPILER_NOT_AVAILABLE, "COMPILER NOT AVAILABLE"}, {CL_MEM_OBJECT_ALLOCATION_FAILURE, "MEM OBJECT ALLOCATION FAILURE"}, {CL_OUT_OF_RESOURCES, "OUT OF RESOURCES"}, {CL_OUT_OF_HOST_MEMORY, "OUT OF HOST MEMORY"}, {CL_PROFILING_INFO_NOT_AVAILABLE, "PROFILING INFO NOT AVAILABLE"}, {CL_MEM_COPY_OVERLAP, "MEM COPY OVERLAP"}, {CL_IMAGE_FORMAT_MISMATCH, "IMAGE FORMAT MISMATCH"}, {CL_IMAGE_FORMAT_NOT_SUPPORTED, "IMAGE FORMAT NOT_SUPPORTED"}, {CL_BUILD_PROGRAM_FAILURE, "BUILD PROGRAM FAILURE"}, {CL_MAP_FAILURE, "MAP FAILURE"}, {CL_MISALIGNED_SUB_BUFFER_OFFSET, "MISALIGNED SUB BUFFER OFFSET"}, {CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST, "EXEC STATUS ERROR FOR EVENTS IN WAIT LIST"}, {CL_COMPILE_PROGRAM_FAILURE, "COMPILE PROGRAM FAILURE"}, {CL_LINKER_NOT_AVAILABLE, "LINKER NOT AVAILABLE"}, {CL_LINK_PROGRAM_FAILURE, "LINK PROGRAM FAILURE"}, {CL_DEVICE_PARTITION_FAILED, "DEVICE PARTITION FAILED"}, {CL_KERNEL_ARG_INFO_NOT_AVAILABLE, "KERNEL ARG INFO NOT AVAILABLE"}, {CL_INVALID_VALUE, "INVALID VALUE"}, {CL_INVALID_DEVICE_TYPE, "INVALID DEVICE TYPE"}, {CL_INVALID_PLATFORM, "INVALID PLATFORM"}, {CL_INVALID_DEVICE, "INVALID DEVICE"}, {CL_INVALID_CONTEXT, "INVALID CONTEXT"}, {CL_INVALID_QUEUE_PROPERTIES, "INVALID QUEUE PROPERTIES"}, {CL_INVALID_COMMAND_QUEUE, "INVALID COMMAND QUEUE"}, {CL_INVALID_HOST_PTR, "INVALID HOST PTR"}, {CL_INVALID_MEM_OBJECT, "INVALID MEM OBJECT"}, {CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, "INVALID IMAGE FORMAT DESCRIPTOR"}, {CL_INVALID_IMAGE_SIZE, "INVALID IMAGE SIZE"}, {CL_INVALID_SAMPLER, "INVALID SAMPLER"}, {CL_INVALID_BINARY, "INVALID BINARY"}, {CL_INVALID_BUILD_OPTIONS, "INVALID BUILD OPTIONS"}, {CL_INVALID_PROGRAM, "INVALID PROGRAM"}, {CL_INVALID_PROGRAM_EXECUTABLE, "INVALID PROGRAM EXECUTABLE"}, {CL_INVALID_KERNEL_NAME, "INVALID KERNEL NAME"}, {CL_INVALID_KERNEL_DEFINITION, "INVALID KERNEL DEFINITION"}, {CL_INVALID_KERNEL, "INVALID KERNEL"}, {CL_INVALID_ARG_INDEX, "INVALID ARG INDEX"}, {CL_INVALID_ARG_VALUE, "INVALID ARG VALUE"}, {CL_INVALID_ARG_SIZE, "INVALID ARG_SIZE"}, {CL_INVALID_KERNEL_ARGS, "INVALID KERNEL ARGS"}, {CL_INVALID_WORK_DIMENSION, "INVALID WORK DIMENSION"}, {CL_INVALID_WORK_GROUP_SIZE, "INVALID WORK GROUP SIZE"}, {CL_INVALID_WORK_ITEM_SIZE, "INVALID WORK ITEM SIZE"}, {CL_INVALID_GLOBAL_OFFSET, "INVALID GLOBAL OFFSET"}, {CL_INVALID_EVENT_WAIT_LIST, "INVALID EVENT WAIT LIST"}, {CL_INVALID_EVENT, "INVALID EVENT"}, {CL_INVALID_OPERATION, "INVALID OPERATION"}, {CL_INVALID_GL_OBJECT, "INVALID GL OBJECT"}, {CL_INVALID_BUFFER_SIZE, "INVALID BUFFER SIZE"}, {CL_INVALID_MIP_LEVEL, "INVALID MIP LEVEL"}, {CL_INVALID_GLOBAL_WORK_SIZE, "INVALID GLOBAL WORK SIZE"}, {CL_INVALID_PROPERTY, "INVALID PROPERTY"}, {CL_INVALID_IMAGE_DESCRIPTOR, "INVALID IMAGE DESCRIPTOR"}, {CL_INVALID_COMPILER_OPTIONS, "INVALID COMPILER OPTIONS"}, {CL_INVALID_LINKER_OPTIONS, "INVALID LINKER OPTIONS"}, {CL_INVALID_DEVICE_PARTITION_COUNT, "INVALID DEVICE PARTITION COUNT"}, }; const char *av_opencl_errstr(cl_int status) { int i; for (i = 0; i < FF_ARRAY_ELEMS(opencl_err_msg); i++) { if (opencl_err_msg[i].err_code == status) return opencl_err_msg[i].err_str; } return "unknown error"; } static void free_device_list(AVOpenCLDeviceList *device_list) { int i, j; if (!device_list) return; for (i = 0; i < device_list->platform_num; i++) { if (!device_list->platform_node[i]) continue; for (j = 0; j < device_list->platform_node[i]->device_num; j++) { av_freep(&(device_list->platform_node[i]->device_node[j]->device_name)); av_freep(&(device_list->platform_node[i]->device_node[j])); } av_freep(&device_list->platform_node[i]->device_node); av_freep(&(device_list->platform_node[i]->platform_name)); av_freep(&device_list->platform_node[i]); } av_freep(&device_list->platform_node); device_list->platform_num = 0; } static int get_device_list(AVOpenCLDeviceList *device_list) { cl_int status; int i, j, k, device_num, total_devices_num, ret = 0; int *devices_num; cl_platform_id *platform_ids = NULL; cl_device_id *device_ids = NULL; AVOpenCLDeviceNode *device_node = NULL; size_t platform_name_size = 0; size_t device_name_size = 0; status = clGetPlatformIDs(0, NULL, &device_list->platform_num); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not get OpenCL platform ids: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } platform_ids = av_mallocz_array(device_list->platform_num, sizeof(cl_platform_id)); if (!platform_ids) return AVERROR(ENOMEM); status = clGetPlatformIDs(device_list->platform_num, platform_ids, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not get OpenCL platform ids: %s\n", av_opencl_errstr(status)); ret = AVERROR_EXTERNAL; goto end; } device_list->platform_node = av_mallocz_array(device_list->platform_num, sizeof(AVOpenCLPlatformNode *)); if (!device_list->platform_node) { ret = AVERROR(ENOMEM); goto end; } devices_num = av_mallocz(sizeof(int) * FF_ARRAY_ELEMS(device_type)); if (!devices_num) { ret = AVERROR(ENOMEM); goto end; } for (i = 0; i < device_list->platform_num; i++) { device_list->platform_node[i] = av_mallocz(sizeof(AVOpenCLPlatformNode)); if (!device_list->platform_node[i]) { ret = AVERROR(ENOMEM); goto end; } device_list->platform_node[i]->platform_id = platform_ids[i]; status = clGetPlatformInfo(platform_ids[i], CL_PLATFORM_VENDOR, 0, NULL, &platform_name_size); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not get size of platform name: %s\n", av_opencl_errstr(status)); } else { device_list->platform_node[i]->platform_name = av_malloc(platform_name_size * sizeof(char)); if (!device_list->platform_node[i]->platform_name) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not allocate memory for device name: %s\n", av_opencl_errstr(status)); } else { status = clGetPlatformInfo(platform_ids[i], CL_PLATFORM_VENDOR, platform_name_size * sizeof(char), device_list->platform_node[i]->platform_name, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not get platform name: %s\n", av_opencl_errstr(status)); } } } total_devices_num = 0; for (j = 0; j < FF_ARRAY_ELEMS(device_type); j++) { status = clGetDeviceIDs(device_list->platform_node[i]->platform_id, device_type[j], 0, NULL, &devices_num[j]); total_devices_num += devices_num[j]; } device_list->platform_node[i]->device_node = av_mallocz_array(total_devices_num, sizeof(AVOpenCLDeviceNode *)); if (!device_list->platform_node[i]->device_node) { ret = AVERROR(ENOMEM); goto end; } for (j = 0; j < FF_ARRAY_ELEMS(device_type); j++) { if (devices_num[j]) { device_ids = av_mallocz_array(devices_num[j], sizeof(cl_device_id)); if (!device_ids) { ret = AVERROR(ENOMEM); goto end; } status = clGetDeviceIDs(device_list->platform_node[i]->platform_id, device_type[j], devices_num[j], device_ids, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not get device ID: %s:\n", av_opencl_errstr(status)); av_freep(&device_ids); continue; } for (k = 0; k < devices_num[j]; k++) { device_num = device_list->platform_node[i]->device_num; device_list->platform_node[i]->device_node[device_num] = av_mallocz(sizeof(AVOpenCLDeviceNode)); if (!device_list->platform_node[i]->device_node[device_num]) { ret = AVERROR(ENOMEM); goto end; } device_node = device_list->platform_node[i]->device_node[device_num]; device_node->device_id = device_ids[k]; device_node->device_type = device_type[j]; status = clGetDeviceInfo(device_node->device_id, CL_DEVICE_NAME, 0, NULL, &device_name_size); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not get size of device name: %s\n", av_opencl_errstr(status)); continue; } device_node->device_name = av_malloc(device_name_size * sizeof(char)); if (!device_node->device_name) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not allocate memory for device name: %s\n", av_opencl_errstr(status)); continue; } status = clGetDeviceInfo(device_node->device_id, CL_DEVICE_NAME, device_name_size * sizeof(char), device_node->device_name, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_WARNING, "Could not get device name: %s\n", av_opencl_errstr(status)); continue; } device_list->platform_node[i]->device_num++; } av_freep(&device_ids); } } } end: av_freep(&platform_ids); av_freep(&devices_num); av_freep(&device_ids); if (ret < 0) free_device_list(device_list); return ret; } int av_opencl_get_device_list(AVOpenCLDeviceList **device_list) { int ret = 0; *device_list = av_mallocz(sizeof(AVOpenCLDeviceList)); if (!(*device_list)) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not allocate opencl device list\n"); return AVERROR(ENOMEM); } ret = get_device_list(*device_list); if (ret < 0) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not get device list from environment\n"); free_device_list(*device_list); av_freep(device_list); return ret; } return ret; } void av_opencl_free_device_list(AVOpenCLDeviceList **device_list) { free_device_list(*device_list); av_freep(device_list); } static inline int init_opencl_mtx(void) { #if HAVE_THREADS if (!atomic_opencl_lock) { int err; pthread_mutex_t *tmp = av_malloc(sizeof(pthread_mutex_t)); if (!tmp) return AVERROR(ENOMEM); if ((err = pthread_mutex_init(tmp, NULL))) { av_free(tmp); return AVERROR(err); } if (avpriv_atomic_ptr_cas(&atomic_opencl_lock, NULL, tmp)) { pthread_mutex_destroy(tmp); av_free(tmp); } } #endif return 0; } int av_opencl_set_option(const char *key, const char *val) { int ret = init_opencl_mtx( ); if (ret < 0) return ret; LOCK_OPENCL; if (!opencl_ctx.opt_init_flag) { av_opt_set_defaults(&opencl_ctx); opencl_ctx.opt_init_flag = 1; } ret = av_opt_set(&opencl_ctx, key, val, 0); UNLOCK_OPENCL; return ret; } int av_opencl_get_option(const char *key, uint8_t **out_val) { int ret = 0; LOCK_OPENCL; ret = av_opt_get(&opencl_ctx, key, 0, out_val); UNLOCK_OPENCL; return ret; } void av_opencl_free_option(void) { /*FIXME: free openclutils context*/ LOCK_OPENCL; av_opt_free(&opencl_ctx); UNLOCK_OPENCL; } AVOpenCLExternalEnv *av_opencl_alloc_external_env(void) { AVOpenCLExternalEnv *ext = av_mallocz(sizeof(AVOpenCLExternalEnv)); if (!ext) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not malloc external opencl environment data space\n"); } return ext; } void av_opencl_free_external_env(AVOpenCLExternalEnv **ext_opencl_env) { av_freep(ext_opencl_env); } int av_opencl_register_kernel_code(const char *kernel_code) { int i, ret = init_opencl_mtx( ); if (ret < 0) return ret; LOCK_OPENCL; if (opencl_ctx.kernel_code_count >= MAX_KERNEL_CODE_NUM) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not register kernel code, maximum number of registered kernel code %d already reached\n", MAX_KERNEL_CODE_NUM); ret = AVERROR(EINVAL); goto end; } for (i = 0; i < opencl_ctx.kernel_code_count; i++) { if (opencl_ctx.kernel_code[i].kernel_string == kernel_code) { av_log(&opencl_ctx, AV_LOG_WARNING, "Same kernel code has been registered\n"); goto end; } } opencl_ctx.kernel_code[opencl_ctx.kernel_code_count].kernel_string = kernel_code; opencl_ctx.kernel_code[opencl_ctx.kernel_code_count].is_compiled = 0; opencl_ctx.kernel_code_count++; end: UNLOCK_OPENCL; return ret; } cl_program av_opencl_compile(const char *program_name, const char *build_opts) { int i; cl_int status; int kernel_code_idx = 0; const char *kernel_source; size_t kernel_code_len; char* ptr = NULL; cl_program program = NULL; LOCK_OPENCL; for (i = 0; i < opencl_ctx.kernel_code_count; i++) { // identify a program using a unique name within the kernel source ptr = av_stristr(opencl_ctx.kernel_code[i].kernel_string, program_name); if (ptr && !opencl_ctx.kernel_code[i].is_compiled) { kernel_source = opencl_ctx.kernel_code[i].kernel_string; kernel_code_len = strlen(opencl_ctx.kernel_code[i].kernel_string); kernel_code_idx = i; break; } } if (!kernel_source) { av_log(&opencl_ctx, AV_LOG_ERROR, "Unable to find OpenCL kernel source '%s'\n", program_name); goto end; } /* create a CL program from kernel source */ program = clCreateProgramWithSource(opencl_ctx.context, 1, &kernel_source, &kernel_code_len, &status); if(status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Unable to create OpenCL program '%s': %s\n", program_name, av_opencl_errstr(status)); program = NULL; goto end; } status = clBuildProgram(program, 1, &(opencl_ctx.device_id), build_opts, NULL, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Compilation failed with OpenCL program: %s\n", program_name); program = NULL; goto end; } opencl_ctx.kernel_code[kernel_code_idx].is_compiled = 1; end: UNLOCK_OPENCL; return program; } cl_command_queue av_opencl_get_command_queue(void) { return opencl_ctx.command_queue; } static int init_opencl_env(OpenclContext *opencl_ctx, AVOpenCLExternalEnv *ext_opencl_env) { cl_int status; cl_context_properties cps[3]; int i, ret = 0; AVOpenCLDeviceNode *device_node = NULL; if (ext_opencl_env) { if (opencl_ctx->is_user_created) return 0; opencl_ctx->platform_id = ext_opencl_env->platform_id; opencl_ctx->is_user_created = 1; opencl_ctx->command_queue = ext_opencl_env->command_queue; opencl_ctx->context = ext_opencl_env->context; opencl_ctx->device_id = ext_opencl_env->device_id; opencl_ctx->device_type = ext_opencl_env->device_type; } else { if (!opencl_ctx->is_user_created) { if (!opencl_ctx->device_list.platform_num) { ret = get_device_list(&opencl_ctx->device_list); if (ret < 0) { return ret; } } if (opencl_ctx->platform_idx >= 0) { if (opencl_ctx->device_list.platform_num < opencl_ctx->platform_idx + 1) { av_log(opencl_ctx, AV_LOG_ERROR, "User set platform index not exist\n"); return AVERROR(EINVAL); } if (!opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->device_num) { av_log(opencl_ctx, AV_LOG_ERROR, "No devices in user specific platform with index %d\n", opencl_ctx->platform_idx); return AVERROR(EINVAL); } opencl_ctx->platform_id = opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->platform_id; } else { /* get a usable platform by default*/ for (i = 0; i < opencl_ctx->device_list.platform_num; i++) { if (opencl_ctx->device_list.platform_node[i]->device_num) { opencl_ctx->platform_id = opencl_ctx->device_list.platform_node[i]->platform_id; opencl_ctx->platform_idx = i; break; } } } if (!opencl_ctx->platform_id) { av_log(opencl_ctx, AV_LOG_ERROR, "Could not get OpenCL platforms\n"); return AVERROR_EXTERNAL; } /* get a usable device*/ if (opencl_ctx->device_idx >= 0) { if (opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->device_num < opencl_ctx->device_idx + 1) { av_log(opencl_ctx, AV_LOG_ERROR, "Could not get OpenCL device idx %d in the user set platform\n", opencl_ctx->platform_idx); return AVERROR(EINVAL); } } else { opencl_ctx->device_idx = 0; } device_node = opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->device_node[opencl_ctx->device_idx]; opencl_ctx->device_id = device_node->device_id; opencl_ctx->device_type = device_node->device_type; /* * Use available platform. */ av_log(opencl_ctx, AV_LOG_VERBOSE, "Platform Name: %s, Device Name: %s\n", opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->platform_name, device_node->device_name); cps[0] = CL_CONTEXT_PLATFORM; cps[1] = (cl_context_properties)opencl_ctx->platform_id; cps[2] = 0; opencl_ctx->context = clCreateContextFromType(cps, opencl_ctx->device_type, NULL, NULL, &status); if (status != CL_SUCCESS) { av_log(opencl_ctx, AV_LOG_ERROR, "Could not get OpenCL context from device type: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } opencl_ctx->command_queue = clCreateCommandQueue(opencl_ctx->context, opencl_ctx->device_id, 0, &status); if (status != CL_SUCCESS) { av_log(opencl_ctx, AV_LOG_ERROR, "Could not create OpenCL command queue: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } } } return ret; } int av_opencl_init(AVOpenCLExternalEnv *ext_opencl_env) { int ret = init_opencl_mtx( ); if (ret < 0) return ret; LOCK_OPENCL; if (!opencl_ctx.init_count) { if (!opencl_ctx.opt_init_flag) { av_opt_set_defaults(&opencl_ctx); opencl_ctx.opt_init_flag = 1; } ret = init_opencl_env(&opencl_ctx, ext_opencl_env); if (ret < 0) goto end; if (opencl_ctx.kernel_code_count <= 0) { av_log(&opencl_ctx, AV_LOG_ERROR, "No kernel code is registered, compile kernel file failed\n"); ret = AVERROR(EINVAL); goto end; } } opencl_ctx.init_count++; end: UNLOCK_OPENCL; return ret; } void av_opencl_uninit(void) { int i; cl_int status; LOCK_OPENCL; opencl_ctx.init_count--; if (opencl_ctx.is_user_created) goto end; if (opencl_ctx.init_count > 0) goto end; if (opencl_ctx.command_queue) { status = clReleaseCommandQueue(opencl_ctx.command_queue); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not release OpenCL command queue: %s\n", av_opencl_errstr(status)); } opencl_ctx.command_queue = NULL; } if (opencl_ctx.context) { status = clReleaseContext(opencl_ctx.context); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not release OpenCL context: %s\n", av_opencl_errstr(status)); } opencl_ctx.context = NULL; } for (i = 0; i < opencl_ctx.kernel_code_count; i++) { opencl_ctx.kernel_code[i].is_compiled = 0; } free_device_list(&opencl_ctx.device_list); end: if (opencl_ctx.init_count <= 0) av_opt_free(&opencl_ctx); //FIXME: free openclutils context UNLOCK_OPENCL; } int av_opencl_buffer_create(cl_mem *cl_buf, size_t cl_buf_size, int flags, void *host_ptr) { cl_int status; *cl_buf = clCreateBuffer(opencl_ctx.context, flags, cl_buf_size, host_ptr, &status); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not create OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } return 0; } void av_opencl_buffer_release(cl_mem *cl_buf) { cl_int status = 0; if (!cl_buf) return; status = clReleaseMemObject(*cl_buf); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not release OpenCL buffer: %s\n", av_opencl_errstr(status)); } memset(cl_buf, 0, sizeof(*cl_buf)); } int av_opencl_buffer_write(cl_mem dst_cl_buf, uint8_t *src_buf, size_t buf_size) { cl_int status; void *mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, dst_cl_buf, CL_TRUE, CL_MAP_WRITE, 0, sizeof(uint8_t) * buf_size, 0, NULL, NULL, &status); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not map OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } memcpy(mapped, src_buf, buf_size); status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, dst_cl_buf, mapped, 0, NULL, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } return 0; } int av_opencl_buffer_read(uint8_t *dst_buf, cl_mem src_cl_buf, size_t buf_size) { cl_int status; void *mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, src_cl_buf, CL_TRUE, CL_MAP_READ, 0, buf_size, 0, NULL, NULL, &status); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not map OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } memcpy(dst_buf, mapped, buf_size); status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, src_cl_buf, mapped, 0, NULL, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } return 0; } int av_opencl_buffer_write_image(cl_mem dst_cl_buf, size_t cl_buffer_size, int dst_cl_offset, uint8_t **src_data, int *plane_size, int plane_num) { int i, buffer_size = 0; uint8_t *temp; cl_int status; void *mapped; if ((unsigned int)plane_num > 8) { return AVERROR(EINVAL); } for (i = 0;i < plane_num;i++) { buffer_size += plane_size[i]; } if (buffer_size > cl_buffer_size) { av_log(&opencl_ctx, AV_LOG_ERROR, "Cannot write image to OpenCL buffer: buffer too small\n"); return AVERROR(EINVAL); } mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, dst_cl_buf, CL_TRUE, CL_MAP_WRITE, 0, buffer_size + dst_cl_offset, 0, NULL, NULL, &status); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not map OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } temp = mapped; temp += dst_cl_offset; for (i = 0; i < plane_num; i++) { memcpy(temp, src_data[i], plane_size[i]); temp += plane_size[i]; } status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, dst_cl_buf, mapped, 0, NULL, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } return 0; } int av_opencl_buffer_read_image(uint8_t **dst_data, int *plane_size, int plane_num, cl_mem src_cl_buf, size_t cl_buffer_size) { int i,buffer_size = 0,ret = 0; uint8_t *temp; void *mapped; cl_int status; if ((unsigned int)plane_num > 8) { return AVERROR(EINVAL); } for (i = 0; i < plane_num; i++) { buffer_size += plane_size[i]; } if (buffer_size > cl_buffer_size) { av_log(&opencl_ctx, AV_LOG_ERROR, "Cannot write image to CPU buffer: OpenCL buffer too small\n"); return AVERROR(EINVAL); } mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, src_cl_buf, CL_TRUE, CL_MAP_READ, 0, buffer_size, 0, NULL, NULL, &status); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not map OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } temp = mapped; if (ret >= 0) { for (i = 0; i < plane_num; i++) { memcpy(dst_data[i], temp, plane_size[i]); temp += plane_size[i]; } } status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, src_cl_buf, mapped, 0, NULL, NULL); if (status != CL_SUCCESS) { av_log(&opencl_ctx, AV_LOG_ERROR, "Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status)); return AVERROR_EXTERNAL; } return 0; } int64_t av_opencl_benchmark(AVOpenCLDeviceNode *device_node, cl_platform_id platform, int64_t (*benchmark)(AVOpenCLExternalEnv *ext_opencl_env)) { int64_t ret = 0; cl_int status; cl_context_properties cps[3]; AVOpenCLExternalEnv *ext_opencl_env = NULL; ext_opencl_env = av_opencl_alloc_external_env(); ext_opencl_env->device_id = device_node->device_id; ext_opencl_env->device_type = device_node->device_type; av_log(&opencl_ctx, AV_LOG_VERBOSE, "Performing test on OpenCL device %s\n", device_node->device_name); cps[0] = CL_CONTEXT_PLATFORM; cps[1] = (cl_context_properties)platform; cps[2] = 0; ext_opencl_env->context = clCreateContextFromType(cps, ext_opencl_env->device_type, NULL, NULL, &status); if (status != CL_SUCCESS || !ext_opencl_env->context) { ret = AVERROR_EXTERNAL; goto end; } ext_opencl_env->command_queue = clCreateCommandQueue(ext_opencl_env->context, ext_opencl_env->device_id, 0, &status); if (status != CL_SUCCESS || !ext_opencl_env->command_queue) { ret = AVERROR_EXTERNAL; goto end; } ret = benchmark(ext_opencl_env); if (ret < 0) av_log(&opencl_ctx, AV_LOG_ERROR, "Benchmark failed with OpenCL device %s\n", device_node->device_name); end: if (ext_opencl_env->command_queue) clReleaseCommandQueue(ext_opencl_env->command_queue); if (ext_opencl_env->context) clReleaseContext(ext_opencl_env->context); av_opencl_free_external_env(&ext_opencl_env); return ret; }