/* * copyright (c) 2007 Michael Niedermayer <michaelni@gmx.at> * * some optimization ideas from aes128.c by Reimar Doeffinger * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "common.h" #include "aes.h" typedef union { uint64_t u64[2]; uint32_t u32[4]; uint8_t u8x4[4][4]; uint8_t u8[16]; } av_aes_block; typedef struct AVAES{ // Note: round_key[16] is accessed in the init code, but this only // overwrites state, which does not matter (see also r7471). av_aes_block round_key[15]; av_aes_block state[2]; int rounds; }AVAES; const int av_aes_size= sizeof(AVAES); static const uint8_t rcon[10] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; static uint8_t sbox[256]; static uint8_t inv_sbox[256]; #if CONFIG_SMALL static uint32_t enc_multbl[1][256]; static uint32_t dec_multbl[1][256]; #else static uint32_t enc_multbl[4][256]; static uint32_t dec_multbl[4][256]; #endif static inline void addkey(av_aes_block *dst, const av_aes_block *src, const av_aes_block *round_key){ dst->u64[0] = src->u64[0] ^ round_key->u64[0]; dst->u64[1] = src->u64[1] ^ round_key->u64[1]; } static void subshift(av_aes_block s0[2], int s, const uint8_t *box){ av_aes_block *s1= (av_aes_block *)(s0[0].u8 - s); av_aes_block *s3= (av_aes_block *)(s0[0].u8 + s); s0[0].u8[0]=box[s0[1].u8[ 0]]; s0[0].u8[ 4]=box[s0[1].u8[ 4]]; s0[0].u8[ 8]=box[s0[1].u8[ 8]]; s0[0].u8[12]=box[s0[1].u8[12]]; s1[0].u8[3]=box[s1[1].u8[ 7]]; s1[0].u8[ 7]=box[s1[1].u8[11]]; s1[0].u8[11]=box[s1[1].u8[15]]; s1[0].u8[15]=box[s1[1].u8[ 3]]; s0[0].u8[2]=box[s0[1].u8[10]]; s0[0].u8[10]=box[s0[1].u8[ 2]]; s0[0].u8[ 6]=box[s0[1].u8[14]]; s0[0].u8[14]=box[s0[1].u8[ 6]]; s3[0].u8[1]=box[s3[1].u8[13]]; s3[0].u8[13]=box[s3[1].u8[ 9]]; s3[0].u8[ 9]=box[s3[1].u8[ 5]]; s3[0].u8[ 5]=box[s3[1].u8[ 1]]; } static inline int mix_core(uint32_t multbl[][256], int a, int b, int c, int d){ #if CONFIG_SMALL #define ROT(x,s) ((x<<s)|(x>>(32-s))) return multbl[0][a] ^ ROT(multbl[0][b], 8) ^ ROT(multbl[0][c], 16) ^ ROT(multbl[0][d], 24); #else return multbl[0][a] ^ multbl[1][b] ^ multbl[2][c] ^ multbl[3][d]; #endif } static inline void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3){ uint8_t (*src)[4] = state[1].u8x4; state[0].u32[0] = mix_core(multbl, src[0][0], src[s1 ][1], src[2][2], src[s3 ][3]); state[0].u32[1] = mix_core(multbl, src[1][0], src[s3-1][1], src[3][2], src[s1-1][3]); state[0].u32[2] = mix_core(multbl, src[2][0], src[s3 ][1], src[0][2], src[s1 ][3]); state[0].u32[3] = mix_core(multbl, src[3][0], src[s1-1][1], src[1][2], src[s3-1][3]); } static inline void crypt(AVAES *a, int s, const uint8_t *sbox, uint32_t multbl[][256]){ int r; for(r=a->rounds-1; r>0; r--){ mix(a->state, multbl, 3-s, 1+s); addkey(&a->state[1], &a->state[0], &a->round_key[r]); } subshift(&a->state[0], s, sbox); } void av_aes_crypt(AVAES *a, uint8_t *dst_, const uint8_t *src_, int count, uint8_t *iv_, int decrypt){ av_aes_block *dst = (av_aes_block *)dst_; const av_aes_block *src = (const av_aes_block *)src_; av_aes_block *iv = (av_aes_block *)iv_; while(count--){ addkey(&a->state[1], src, &a->round_key[a->rounds]); if(decrypt) { crypt(a, 0, inv_sbox, dec_multbl); if(iv){ addkey(&a->state[0], &a->state[0], iv); memcpy(iv, src, 16); } addkey(dst, &a->state[0], &a->round_key[0]); }else{ if(iv) addkey(&a->state[1], &a->state[1], iv); crypt(a, 2, sbox, enc_multbl); addkey(dst, &a->state[0], &a->round_key[0]); if(iv) memcpy(iv, dst, 16); } src++; dst++; } } static void init_multbl2(uint8_t tbl[1024], const int c[4], const uint8_t *log8, const uint8_t *alog8, const uint8_t *sbox){ int i, j; for(i=0; i<1024; i++){ int x= sbox[i>>2]; if(x) tbl[i]= alog8[ log8[x] + log8[c[i&3]] ]; } #if !CONFIG_SMALL for(j=256; j<1024; j++) for(i=0; i<4; i++) tbl[4*j+i]= tbl[4*j + ((i-1)&3) - 1024]; #endif } // this is based on the reference AES code by Paulo Barreto and Vincent Rijmen int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt) { int i, j, t, rconpointer = 0; uint8_t tk[8][4]; int KC= key_bits>>5; int rounds= KC + 6; uint8_t log8[256]; uint8_t alog8[512]; if(!enc_multbl[FF_ARRAY_ELEMS(enc_multbl)-1][FF_ARRAY_ELEMS(enc_multbl[0])-1]){ j=1; for(i=0; i<255; i++){ alog8[i]= alog8[i+255]= j; log8[j]= i; j^= j+j; if(j>255) j^= 0x11B; } for(i=0; i<256; i++){ j= i ? alog8[255-log8[i]] : 0; j ^= (j<<1) ^ (j<<2) ^ (j<<3) ^ (j<<4); j = (j ^ (j>>8) ^ 99) & 255; inv_sbox[j]= i; sbox [i]= j; } init_multbl2(dec_multbl[0], (const int[4]){0xe, 0x9, 0xd, 0xb}, log8, alog8, inv_sbox); init_multbl2(enc_multbl[0], (const int[4]){0x2, 0x1, 0x1, 0x3}, log8, alog8, sbox); } if(key_bits!=128 && key_bits!=192 && key_bits!=256) return -1; a->rounds= rounds; memcpy(tk, key, KC*4); for(t= 0; t < (rounds+1)*16;) { memcpy(a->round_key[0].u8+t, tk, KC*4); t+= KC*4; for(i = 0; i < 4; i++) tk[0][i] ^= sbox[tk[KC-1][(i+1)&3]]; tk[0][0] ^= rcon[rconpointer++]; for(j = 1; j < KC; j++){ if(KC != 8 || j != KC>>1) for(i = 0; i < 4; i++) tk[j][i] ^= tk[j-1][i]; else for(i = 0; i < 4; i++) tk[j][i] ^= sbox[tk[j-1][i]]; } } if(decrypt){ for(i=1; i<rounds; i++){ av_aes_block tmp[3]; memcpy(&tmp[2], &a->round_key[i], 16); subshift(&tmp[1], 0, sbox); mix(tmp, dec_multbl, 1, 3); memcpy(&a->round_key[i], &tmp[0], 16); } }else{ for(i=0; i<(rounds+1)>>1; i++){ for(j=0; j<16; j++) FFSWAP(int, a->round_key[i].u8[j], a->round_key[rounds-i].u8[j]); } } return 0; } #ifdef TEST #include "lfg.h" #include "log.h" int main(void){ int i,j; AVAES ae, ad, b; uint8_t rkey[2][16]= { {0}, {0x10, 0xa5, 0x88, 0x69, 0xd7, 0x4b, 0xe5, 0xa3, 0x74, 0xcf, 0x86, 0x7c, 0xfb, 0x47, 0x38, 0x59}}; uint8_t pt[16], rpt[2][16]= { {0x6a, 0x84, 0x86, 0x7c, 0xd7, 0x7e, 0x12, 0xad, 0x07, 0xea, 0x1b, 0xe8, 0x95, 0xc5, 0x3f, 0xa3}, {0}}; uint8_t rct[2][16]= { {0x73, 0x22, 0x81, 0xc0, 0xa0, 0xaa, 0xb8, 0xf7, 0xa5, 0x4a, 0x0c, 0x67, 0xa0, 0xc4, 0x5e, 0xcf}, {0x6d, 0x25, 0x1e, 0x69, 0x44, 0xb0, 0x51, 0xe0, 0x4e, 0xaa, 0x6f, 0xb4, 0xdb, 0xf7, 0x84, 0x65}}; uint8_t temp[16]; AVLFG prng; av_aes_init(&ae, "PI=3.141592654..", 128, 0); av_aes_init(&ad, "PI=3.141592654..", 128, 1); av_log_set_level(AV_LOG_DEBUG); av_lfg_init(&prng, 1); for(i=0; i<2; i++){ av_aes_init(&b, rkey[i], 128, 1); av_aes_crypt(&b, temp, rct[i], 1, NULL, 1); for(j=0; j<16; j++) if(rpt[i][j] != temp[j]) av_log(NULL, AV_LOG_ERROR, "%d %02X %02X\n", j, rpt[i][j], temp[j]); } for(i=0; i<10000; i++){ for(j=0; j<16; j++){ pt[j] = av_lfg_get(&prng); } {START_TIMER av_aes_crypt(&ae, temp, pt, 1, NULL, 0); if(!(i&(i-1))) av_log(NULL, AV_LOG_ERROR, "%02X %02X %02X %02X\n", temp[0], temp[5], temp[10], temp[15]); av_aes_crypt(&ad, temp, temp, 1, NULL, 1); STOP_TIMER("aes")} for(j=0; j<16; j++){ if(pt[j] != temp[j]){ av_log(NULL, AV_LOG_ERROR, "%d %d %02X %02X\n", i,j, pt[j], temp[j]); } } } return 0; } #endif