/* * UDP prototype streaming system * Copyright (c) 2000, 2001, 2002 Fabrice Bellard * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * UDP protocol */ #define _DEFAULT_SOURCE #define _BSD_SOURCE /* Needed for using struct ip_mreq with recent glibc */ #include "avformat.h" #include "avio_internal.h" #include "libavutil/parseutils.h" #include "libavutil/fifo.h" #include "libavutil/intreadwrite.h" #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/log.h" #include "libavutil/time.h" #include "internal.h" #include "network.h" #include "os_support.h" #include "url.h" #if HAVE_UDPLITE_H #include "udplite.h" #else /* On many Linux systems, udplite.h is missing but the kernel supports UDP-Lite. * So, we provide a fallback here. */ #define UDPLITE_SEND_CSCOV 10 #define UDPLITE_RECV_CSCOV 11 #endif #ifndef IPPROTO_UDPLITE #define IPPROTO_UDPLITE 136 #endif #if HAVE_PTHREAD_CANCEL #include <pthread.h> #endif #ifndef HAVE_PTHREAD_CANCEL #define HAVE_PTHREAD_CANCEL 0 #endif #ifndef IPV6_ADD_MEMBERSHIP #define IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP #define IPV6_DROP_MEMBERSHIP IPV6_LEAVE_GROUP #endif #define UDP_TX_BUF_SIZE 32768 #define UDP_MAX_PKT_SIZE 65536 #define UDP_HEADER_SIZE 8 typedef struct UDPContext { const AVClass *class; int udp_fd; int ttl; int udplite_coverage; int buffer_size; int pkt_size; int is_multicast; int is_broadcast; int local_port; int reuse_socket; int overrun_nonfatal; struct sockaddr_storage dest_addr; int dest_addr_len; int is_connected; /* Circular Buffer variables for use in UDP receive code */ int circular_buffer_size; AVFifoBuffer *fifo; int circular_buffer_error; #if HAVE_PTHREAD_CANCEL pthread_t circular_buffer_thread; pthread_mutex_t mutex; pthread_cond_t cond; int thread_started; #endif uint8_t tmp[UDP_MAX_PKT_SIZE+4]; int remaining_in_dg; char *localaddr; int timeout; struct sockaddr_storage local_addr_storage; char *sources; char *block; } UDPContext; #define OFFSET(x) offsetof(UDPContext, x) #define D AV_OPT_FLAG_DECODING_PARAM #define E AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "buffer_size", "System data size (in bytes)", OFFSET(buffer_size), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E }, { "localport", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, D|E }, { "local_port", "Local port", OFFSET(local_port), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, .flags = D|E }, { "localaddr", "Local address", OFFSET(localaddr), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E }, { "udplite_coverage", "choose UDPLite head size which should be validated by checksum", OFFSET(udplite_coverage), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX, D|E }, { "pkt_size", "Maximum UDP packet size", OFFSET(pkt_size), AV_OPT_TYPE_INT, { .i64 = 1472 }, -1, INT_MAX, .flags = D|E }, { "reuse", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, D|E }, { "reuse_socket", "explicitly allow reusing UDP sockets", OFFSET(reuse_socket), AV_OPT_TYPE_BOOL, { .i64 = -1 }, -1, 1, .flags = D|E }, { "broadcast", "explicitly allow or disallow broadcast destination", OFFSET(is_broadcast), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, E }, { "ttl", "Time to live (multicast only)", OFFSET(ttl), AV_OPT_TYPE_INT, { .i64 = 16 }, 0, INT_MAX, E }, { "connect", "set if connect() should be called on socket", OFFSET(is_connected), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, .flags = D|E }, { "fifo_size", "set the UDP receiving circular buffer size, expressed as a number of packets with size of 188 bytes", OFFSET(circular_buffer_size), AV_OPT_TYPE_INT, {.i64 = 7*4096}, 0, INT_MAX, D }, { "overrun_nonfatal", "survive in case of UDP receiving circular buffer overrun", OFFSET(overrun_nonfatal), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, D }, { "timeout", "set raise error timeout (only in read mode)", OFFSET(timeout), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D }, { "sources", "Source list", OFFSET(sources), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E }, { "block", "Block list", OFFSET(block), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = D|E }, { NULL } }; static const AVClass udp_class = { .class_name = "udp", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static const AVClass udplite_context_class = { .class_name = "udplite", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static void log_net_error(void *ctx, int level, const char* prefix) { char errbuf[100]; av_strerror(ff_neterrno(), errbuf, sizeof(errbuf)); av_log(ctx, level, "%s: %s\n", prefix, errbuf); } static int udp_set_multicast_ttl(int sockfd, int mcastTTL, struct sockaddr *addr) { #ifdef IP_MULTICAST_TTL if (addr->sa_family == AF_INET) { if (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL, &mcastTTL, sizeof(mcastTTL)) < 0) { log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_MULTICAST_TTL)"); return -1; } } #endif #if defined(IPPROTO_IPV6) && defined(IPV6_MULTICAST_HOPS) if (addr->sa_family == AF_INET6) { if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &mcastTTL, sizeof(mcastTTL)) < 0) { log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_MULTICAST_HOPS)"); return -1; } } #endif return 0; } static int udp_join_multicast_group(int sockfd, struct sockaddr *addr,struct sockaddr *local_addr) { #ifdef IP_ADD_MEMBERSHIP if (addr->sa_family == AF_INET) { struct ip_mreq mreq; mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (local_addr) mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr; else mreq.imr_interface.s_addr= INADDR_ANY; if (setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) { log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_ADD_MEMBERSHIP)"); return -1; } } #endif #if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6) if (addr->sa_family == AF_INET6) { struct ipv6_mreq mreq6; memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr)); mreq6.ipv6mr_interface= 0; if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) { log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_ADD_MEMBERSHIP)"); return -1; } } #endif return 0; } static int udp_leave_multicast_group(int sockfd, struct sockaddr *addr,struct sockaddr *local_addr) { #ifdef IP_DROP_MEMBERSHIP if (addr->sa_family == AF_INET) { struct ip_mreq mreq; mreq.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (local_addr) mreq.imr_interface= ((struct sockaddr_in *)local_addr)->sin_addr; else mreq.imr_interface.s_addr= INADDR_ANY; if (setsockopt(sockfd, IPPROTO_IP, IP_DROP_MEMBERSHIP, (const void *)&mreq, sizeof(mreq)) < 0) { log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_DROP_MEMBERSHIP)"); return -1; } } #endif #if HAVE_STRUCT_IPV6_MREQ && defined(IPPROTO_IPV6) if (addr->sa_family == AF_INET6) { struct ipv6_mreq mreq6; memcpy(&mreq6.ipv6mr_multiaddr, &(((struct sockaddr_in6 *)addr)->sin6_addr), sizeof(struct in6_addr)); mreq6.ipv6mr_interface= 0; if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_DROP_MEMBERSHIP, &mreq6, sizeof(mreq6)) < 0) { log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IPV6_DROP_MEMBERSHIP)"); return -1; } } #endif return 0; } static struct addrinfo *udp_resolve_host(URLContext *h, const char *hostname, int port, int type, int family, int flags) { struct addrinfo hints = { 0 }, *res = 0; int error; char sport[16]; const char *node = 0, *service = "0"; if (port > 0) { snprintf(sport, sizeof(sport), "%d", port); service = sport; } if ((hostname) && (hostname[0] != '\0') && (hostname[0] != '?')) { node = hostname; } hints.ai_socktype = type; hints.ai_family = family; hints.ai_flags = flags; if ((error = getaddrinfo(node, service, &hints, &res))) { res = NULL; av_log(h, AV_LOG_ERROR, "getaddrinfo(%s, %s): %s\n", node ? node : "unknown", service ? service : "unknown", gai_strerror(error)); } return res; } static int udp_set_multicast_sources(URLContext *h, int sockfd, struct sockaddr *addr, int addr_len, char **sources, int nb_sources, int include) { #if HAVE_STRUCT_GROUP_SOURCE_REQ && defined(MCAST_BLOCK_SOURCE) && !defined(_WIN32) /* These ones are available in the microsoft SDK, but don't seem to work * as on linux, so just prefer the v4-only approach there for now. */ int i; for (i = 0; i < nb_sources; i++) { struct group_source_req mreqs; int level = addr->sa_family == AF_INET ? IPPROTO_IP : IPPROTO_IPV6; struct addrinfo *sourceaddr = udp_resolve_host(h, sources[i], 0, SOCK_DGRAM, AF_UNSPEC, 0); if (!sourceaddr) return AVERROR(ENOENT); mreqs.gsr_interface = 0; memcpy(&mreqs.gsr_group, addr, addr_len); memcpy(&mreqs.gsr_source, sourceaddr->ai_addr, sourceaddr->ai_addrlen); freeaddrinfo(sourceaddr); if (setsockopt(sockfd, level, include ? MCAST_JOIN_SOURCE_GROUP : MCAST_BLOCK_SOURCE, (const void *)&mreqs, sizeof(mreqs)) < 0) { if (include) log_net_error(NULL, AV_LOG_ERROR, "setsockopt(MCAST_JOIN_SOURCE_GROUP)"); else log_net_error(NULL, AV_LOG_ERROR, "setsockopt(MCAST_BLOCK_SOURCE)"); return ff_neterrno(); } } #elif HAVE_STRUCT_IP_MREQ_SOURCE && defined(IP_BLOCK_SOURCE) int i; if (addr->sa_family != AF_INET) { av_log(NULL, AV_LOG_ERROR, "Setting multicast sources only supported for IPv4\n"); return AVERROR(EINVAL); } for (i = 0; i < nb_sources; i++) { struct ip_mreq_source mreqs; struct addrinfo *sourceaddr = udp_resolve_host(h, sources[i], 0, SOCK_DGRAM, AF_UNSPEC, 0); if (!sourceaddr) return AVERROR(ENOENT); if (sourceaddr->ai_addr->sa_family != AF_INET) { freeaddrinfo(sourceaddr); av_log(NULL, AV_LOG_ERROR, "%s is of incorrect protocol family\n", sources[i]); return AVERROR(EINVAL); } mreqs.imr_multiaddr.s_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; mreqs.imr_interface.s_addr = INADDR_ANY; mreqs.imr_sourceaddr.s_addr = ((struct sockaddr_in *)sourceaddr->ai_addr)->sin_addr.s_addr; freeaddrinfo(sourceaddr); if (setsockopt(sockfd, IPPROTO_IP, include ? IP_ADD_SOURCE_MEMBERSHIP : IP_BLOCK_SOURCE, (const void *)&mreqs, sizeof(mreqs)) < 0) { if (include) log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_ADD_SOURCE_MEMBERSHIP)"); else log_net_error(NULL, AV_LOG_ERROR, "setsockopt(IP_BLOCK_SOURCE)"); return ff_neterrno(); } } #else return AVERROR(ENOSYS); #endif return 0; } static int udp_set_url(URLContext *h, struct sockaddr_storage *addr, const char *hostname, int port) { struct addrinfo *res0; int addr_len; res0 = udp_resolve_host(h, hostname, port, SOCK_DGRAM, AF_UNSPEC, 0); if (!res0) return AVERROR(EIO); memcpy(addr, res0->ai_addr, res0->ai_addrlen); addr_len = res0->ai_addrlen; freeaddrinfo(res0); return addr_len; } static int udp_socket_create(URLContext *h, struct sockaddr_storage *addr, socklen_t *addr_len, const char *localaddr) { UDPContext *s = h->priv_data; int udp_fd = -1; struct addrinfo *res0, *res; int family = AF_UNSPEC; if (((struct sockaddr *) &s->dest_addr)->sa_family) family = ((struct sockaddr *) &s->dest_addr)->sa_family; res0 = udp_resolve_host(h, (localaddr && localaddr[0]) ? localaddr : NULL, s->local_port, SOCK_DGRAM, family, AI_PASSIVE); if (!res0) goto fail; for (res = res0; res; res=res->ai_next) { if (s->udplite_coverage) udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, IPPROTO_UDPLITE); else udp_fd = ff_socket(res->ai_family, SOCK_DGRAM, 0); if (udp_fd != -1) break; log_net_error(NULL, AV_LOG_ERROR, "socket"); } if (udp_fd < 0) goto fail; memcpy(addr, res->ai_addr, res->ai_addrlen); *addr_len = res->ai_addrlen; freeaddrinfo(res0); return udp_fd; fail: if (udp_fd >= 0) closesocket(udp_fd); if(res0) freeaddrinfo(res0); return -1; } static int udp_port(struct sockaddr_storage *addr, int addr_len) { char sbuf[sizeof(int)*3+1]; int error; if ((error = getnameinfo((struct sockaddr *)addr, addr_len, NULL, 0, sbuf, sizeof(sbuf), NI_NUMERICSERV)) != 0) { av_log(NULL, AV_LOG_ERROR, "getnameinfo: %s\n", gai_strerror(error)); return -1; } return strtol(sbuf, NULL, 10); } /** * If no filename is given to av_open_input_file because you want to * get the local port first, then you must call this function to set * the remote server address. * * url syntax: udp://host:port[?option=val...] * option: 'ttl=n' : set the ttl value (for multicast only) * 'localport=n' : set the local port * 'pkt_size=n' : set max packet size * 'reuse=1' : enable reusing the socket * 'overrun_nonfatal=1': survive in case of circular buffer overrun * * @param h media file context * @param uri of the remote server * @return zero if no error. */ int ff_udp_set_remote_url(URLContext *h, const char *uri) { UDPContext *s = h->priv_data; char hostname[256], buf[10]; int port; const char *p; av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri); /* set the destination address */ s->dest_addr_len = udp_set_url(h, &s->dest_addr, hostname, port); if (s->dest_addr_len < 0) { return AVERROR(EIO); } s->is_multicast = ff_is_multicast_address((struct sockaddr*) &s->dest_addr); p = strchr(uri, '?'); if (p) { if (av_find_info_tag(buf, sizeof(buf), "connect", p)) { int was_connected = s->is_connected; s->is_connected = strtol(buf, NULL, 10); if (s->is_connected && !was_connected) { if (connect(s->udp_fd, (struct sockaddr *) &s->dest_addr, s->dest_addr_len)) { s->is_connected = 0; log_net_error(h, AV_LOG_ERROR, "connect"); return AVERROR(EIO); } } } } return 0; } /** * Return the local port used by the UDP connection * @param h media file context * @return the local port number */ int ff_udp_get_local_port(URLContext *h) { UDPContext *s = h->priv_data; return s->local_port; } /** * Return the udp file handle for select() usage to wait for several RTP * streams at the same time. * @param h media file context */ static int udp_get_file_handle(URLContext *h) { UDPContext *s = h->priv_data; return s->udp_fd; } #if HAVE_PTHREAD_CANCEL static void *circular_buffer_task( void *_URLContext) { URLContext *h = _URLContext; UDPContext *s = h->priv_data; int old_cancelstate; pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate); pthread_mutex_lock(&s->mutex); if (ff_socket_nonblock(s->udp_fd, 0) < 0) { av_log(h, AV_LOG_ERROR, "Failed to set blocking mode"); s->circular_buffer_error = AVERROR(EIO); goto end; } while(1) { int len; pthread_mutex_unlock(&s->mutex); /* Blocking operations are always cancellation points; see "General Information" / "Thread Cancelation Overview" in Single Unix. */ pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_cancelstate); len = recv(s->udp_fd, s->tmp+4, sizeof(s->tmp)-4, 0); pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old_cancelstate); pthread_mutex_lock(&s->mutex); if (len < 0) { if (ff_neterrno() != AVERROR(EAGAIN) && ff_neterrno() != AVERROR(EINTR)) { s->circular_buffer_error = ff_neterrno(); goto end; } continue; } AV_WL32(s->tmp, len); if(av_fifo_space(s->fifo) < len + 4) { /* No Space left */ if (s->overrun_nonfatal) { av_log(h, AV_LOG_WARNING, "Circular buffer overrun. " "Surviving due to overrun_nonfatal option\n"); continue; } else { av_log(h, AV_LOG_ERROR, "Circular buffer overrun. " "To avoid, increase fifo_size URL option. " "To survive in such case, use overrun_nonfatal option\n"); s->circular_buffer_error = AVERROR(EIO); goto end; } } av_fifo_generic_write(s->fifo, s->tmp, len+4, NULL); pthread_cond_signal(&s->cond); } end: pthread_cond_signal(&s->cond); pthread_mutex_unlock(&s->mutex); return NULL; } #endif static int parse_source_list(char *buf, char **sources, int *num_sources, int max_sources) { char *source_start; source_start = buf; while (1) { char *next = strchr(source_start, ','); if (next) *next = '\0'; sources[*num_sources] = av_strdup(source_start); if (!sources[*num_sources]) return AVERROR(ENOMEM); source_start = next + 1; (*num_sources)++; if (*num_sources >= max_sources || !next) break; } return 0; } /* put it in UDP context */ /* return non zero if error */ static int udp_open(URLContext *h, const char *uri, int flags) { char hostname[1024], localaddr[1024] = ""; int port, udp_fd = -1, tmp, bind_ret = -1, dscp = -1; UDPContext *s = h->priv_data; int is_output; const char *p; char buf[256]; struct sockaddr_storage my_addr; socklen_t len; int i, num_include_sources = 0, num_exclude_sources = 0; char *include_sources[32], *exclude_sources[32]; h->is_streamed = 1; is_output = !(flags & AVIO_FLAG_READ); if (s->buffer_size < 0) s->buffer_size = is_output ? UDP_TX_BUF_SIZE : UDP_MAX_PKT_SIZE; if (s->sources) { if (parse_source_list(s->sources, include_sources, &num_include_sources, FF_ARRAY_ELEMS(include_sources))) goto fail; } if (s->block) { if (parse_source_list(s->block, exclude_sources, &num_exclude_sources, FF_ARRAY_ELEMS(exclude_sources))) goto fail; } if (s->pkt_size > 0) h->max_packet_size = s->pkt_size; p = strchr(uri, '?'); if (p) { if (av_find_info_tag(buf, sizeof(buf), "reuse", p)) { char *endptr = NULL; s->reuse_socket = strtol(buf, &endptr, 10); /* assume if no digits were found it is a request to enable it */ if (buf == endptr) s->reuse_socket = 1; } if (av_find_info_tag(buf, sizeof(buf), "overrun_nonfatal", p)) { char *endptr = NULL; s->overrun_nonfatal = strtol(buf, &endptr, 10); /* assume if no digits were found it is a request to enable it */ if (buf == endptr) s->overrun_nonfatal = 1; if (!HAVE_PTHREAD_CANCEL) av_log(h, AV_LOG_WARNING, "'overrun_nonfatal' option was set but it is not supported " "on this build (pthread support is required)\n"); } if (av_find_info_tag(buf, sizeof(buf), "ttl", p)) { s->ttl = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "udplite_coverage", p)) { s->udplite_coverage = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "localport", p)) { s->local_port = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "pkt_size", p)) { s->pkt_size = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "buffer_size", p)) { s->buffer_size = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "connect", p)) { s->is_connected = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "dscp", p)) { dscp = strtol(buf, NULL, 10); } if (av_find_info_tag(buf, sizeof(buf), "fifo_size", p)) { s->circular_buffer_size = strtol(buf, NULL, 10); if (!HAVE_PTHREAD_CANCEL) av_log(h, AV_LOG_WARNING, "'circular_buffer_size' option was set but it is not supported " "on this build (pthread support is required)\n"); } if (av_find_info_tag(buf, sizeof(buf), "localaddr", p)) { av_strlcpy(localaddr, buf, sizeof(localaddr)); } if (av_find_info_tag(buf, sizeof(buf), "sources", p)) { if (parse_source_list(buf, include_sources, &num_include_sources, FF_ARRAY_ELEMS(include_sources))) goto fail; } if (av_find_info_tag(buf, sizeof(buf), "block", p)) { if (parse_source_list(buf, exclude_sources, &num_exclude_sources, FF_ARRAY_ELEMS(exclude_sources))) goto fail; } if (!is_output && av_find_info_tag(buf, sizeof(buf), "timeout", p)) s->timeout = strtol(buf, NULL, 10); if (is_output && av_find_info_tag(buf, sizeof(buf), "broadcast", p)) s->is_broadcast = strtol(buf, NULL, 10); } /* handling needed to support options picking from both AVOption and URL */ s->circular_buffer_size *= 188; if (flags & AVIO_FLAG_WRITE) { h->max_packet_size = s->pkt_size; } else { h->max_packet_size = UDP_MAX_PKT_SIZE; } h->rw_timeout = s->timeout; /* fill the dest addr */ av_url_split(NULL, 0, NULL, 0, hostname, sizeof(hostname), &port, NULL, 0, uri); /* XXX: fix av_url_split */ if (hostname[0] == '\0' || hostname[0] == '?') { /* only accepts null hostname if input */ if (!(flags & AVIO_FLAG_READ)) goto fail; } else { if (ff_udp_set_remote_url(h, uri) < 0) goto fail; } if ((s->is_multicast || s->local_port <= 0) && (h->flags & AVIO_FLAG_READ)) s->local_port = port; if (localaddr[0]) udp_fd = udp_socket_create(h, &my_addr, &len, localaddr); else udp_fd = udp_socket_create(h, &my_addr, &len, s->localaddr); if (udp_fd < 0) goto fail; s->local_addr_storage=my_addr; //store for future multicast join /* Follow the requested reuse option, unless it's multicast in which * case enable reuse unless explicitly disabled. */ if (s->reuse_socket > 0 || (s->is_multicast && s->reuse_socket < 0)) { s->reuse_socket = 1; if (setsockopt (udp_fd, SOL_SOCKET, SO_REUSEADDR, &(s->reuse_socket), sizeof(s->reuse_socket)) != 0) goto fail; } if (s->is_broadcast) { #ifdef SO_BROADCAST if (setsockopt (udp_fd, SOL_SOCKET, SO_BROADCAST, &(s->is_broadcast), sizeof(s->is_broadcast)) != 0) #endif goto fail; } /* Set the checksum coverage for UDP-Lite (RFC 3828) for sending and receiving. * The receiver coverage has to be less than or equal to the sender coverage. * Otherwise, the receiver will drop all packets. */ if (s->udplite_coverage) { if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0) av_log(h, AV_LOG_WARNING, "socket option UDPLITE_SEND_CSCOV not available"); if (setsockopt (udp_fd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &(s->udplite_coverage), sizeof(s->udplite_coverage)) != 0) av_log(h, AV_LOG_WARNING, "socket option UDPLITE_RECV_CSCOV not available"); } if (dscp >= 0) { dscp <<= 2; if (setsockopt (udp_fd, IPPROTO_IP, IP_TOS, &dscp, sizeof(dscp)) != 0) goto fail; } /* If multicast, try binding the multicast address first, to avoid * receiving UDP packets from other sources aimed at the same UDP * port. This fails on windows. This makes sending to the same address * using sendto() fail, so only do it if we're opened in read-only mode. */ if (s->is_multicast && !(h->flags & AVIO_FLAG_WRITE)) { bind_ret = bind(udp_fd,(struct sockaddr *)&s->dest_addr, len); } /* bind to the local address if not multicast or if the multicast * bind failed */ /* the bind is needed to give a port to the socket now */ if (bind_ret < 0 && bind(udp_fd,(struct sockaddr *)&my_addr, len) < 0) { log_net_error(h, AV_LOG_ERROR, "bind failed"); goto fail; } len = sizeof(my_addr); getsockname(udp_fd, (struct sockaddr *)&my_addr, &len); s->local_port = udp_port(&my_addr, len); if (s->is_multicast) { if (h->flags & AVIO_FLAG_WRITE) { /* output */ if (udp_set_multicast_ttl(udp_fd, s->ttl, (struct sockaddr *)&s->dest_addr) < 0) goto fail; } if (h->flags & AVIO_FLAG_READ) { /* input */ if (num_include_sources && num_exclude_sources) { av_log(h, AV_LOG_ERROR, "Simultaneously including and excluding multicast sources is not supported\n"); goto fail; } if (num_include_sources) { if (udp_set_multicast_sources(h, udp_fd, (struct sockaddr *)&s->dest_addr, s->dest_addr_len, include_sources, num_include_sources, 1) < 0) goto fail; } else { if (udp_join_multicast_group(udp_fd, (struct sockaddr *)&s->dest_addr,(struct sockaddr *)&s->local_addr_storage) < 0) goto fail; } if (num_exclude_sources) { if (udp_set_multicast_sources(h, udp_fd, (struct sockaddr *)&s->dest_addr, s->dest_addr_len, exclude_sources, num_exclude_sources, 0) < 0) goto fail; } } } if (is_output) { /* limit the tx buf size to limit latency */ tmp = s->buffer_size; if (setsockopt(udp_fd, SOL_SOCKET, SO_SNDBUF, &tmp, sizeof(tmp)) < 0) { log_net_error(h, AV_LOG_ERROR, "setsockopt(SO_SNDBUF)"); goto fail; } } else { /* set udp recv buffer size to the requested value (default 64K) */ tmp = s->buffer_size; if (setsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, sizeof(tmp)) < 0) { log_net_error(h, AV_LOG_WARNING, "setsockopt(SO_RECVBUF)"); } len = sizeof(tmp); if (getsockopt(udp_fd, SOL_SOCKET, SO_RCVBUF, &tmp, &len) < 0) { log_net_error(h, AV_LOG_WARNING, "getsockopt(SO_RCVBUF)"); } else { av_log(h, AV_LOG_DEBUG, "end receive buffer size reported is %d\n", tmp); if(tmp < s->buffer_size) av_log(h, AV_LOG_WARNING, "attempted to set receive buffer to size %d but it only ended up set as %d", s->buffer_size, tmp); } /* make the socket non-blocking */ ff_socket_nonblock(udp_fd, 1); } if (s->is_connected) { if (connect(udp_fd, (struct sockaddr *) &s->dest_addr, s->dest_addr_len)) { log_net_error(h, AV_LOG_ERROR, "connect"); goto fail; } } for (i = 0; i < num_include_sources; i++) av_freep(&include_sources[i]); for (i = 0; i < num_exclude_sources; i++) av_freep(&exclude_sources[i]); s->udp_fd = udp_fd; #if HAVE_PTHREAD_CANCEL if (!is_output && s->circular_buffer_size) { int ret; /* start the task going */ s->fifo = av_fifo_alloc(s->circular_buffer_size); ret = pthread_mutex_init(&s->mutex, NULL); if (ret != 0) { av_log(h, AV_LOG_ERROR, "pthread_mutex_init failed : %s\n", strerror(ret)); goto fail; } ret = pthread_cond_init(&s->cond, NULL); if (ret != 0) { av_log(h, AV_LOG_ERROR, "pthread_cond_init failed : %s\n", strerror(ret)); goto cond_fail; } ret = pthread_create(&s->circular_buffer_thread, NULL, circular_buffer_task, h); if (ret != 0) { av_log(h, AV_LOG_ERROR, "pthread_create failed : %s\n", strerror(ret)); goto thread_fail; } s->thread_started = 1; } #endif return 0; #if HAVE_PTHREAD_CANCEL thread_fail: pthread_cond_destroy(&s->cond); cond_fail: pthread_mutex_destroy(&s->mutex); #endif fail: if (udp_fd >= 0) closesocket(udp_fd); av_fifo_freep(&s->fifo); for (i = 0; i < num_include_sources; i++) av_freep(&include_sources[i]); for (i = 0; i < num_exclude_sources; i++) av_freep(&exclude_sources[i]); return AVERROR(EIO); } static int udplite_open(URLContext *h, const char *uri, int flags) { UDPContext *s = h->priv_data; // set default checksum coverage s->udplite_coverage = UDP_HEADER_SIZE; return udp_open(h, uri, flags); } static int udp_read(URLContext *h, uint8_t *buf, int size) { UDPContext *s = h->priv_data; int ret; #if HAVE_PTHREAD_CANCEL int avail, nonblock = h->flags & AVIO_FLAG_NONBLOCK; if (s->fifo) { pthread_mutex_lock(&s->mutex); do { avail = av_fifo_size(s->fifo); if (avail) { // >=size) { uint8_t tmp[4]; av_fifo_generic_read(s->fifo, tmp, 4, NULL); avail= AV_RL32(tmp); if(avail > size){ av_log(h, AV_LOG_WARNING, "Part of datagram lost due to insufficient buffer size\n"); avail= size; } av_fifo_generic_read(s->fifo, buf, avail, NULL); av_fifo_drain(s->fifo, AV_RL32(tmp) - avail); pthread_mutex_unlock(&s->mutex); return avail; } else if(s->circular_buffer_error){ int err = s->circular_buffer_error; pthread_mutex_unlock(&s->mutex); return err; } else if(nonblock) { pthread_mutex_unlock(&s->mutex); return AVERROR(EAGAIN); } else { /* FIXME: using the monotonic clock would be better, but it does not exist on all supported platforms. */ int64_t t = av_gettime() + 100000; struct timespec tv = { .tv_sec = t / 1000000, .tv_nsec = (t % 1000000) * 1000 }; if (pthread_cond_timedwait(&s->cond, &s->mutex, &tv) < 0) { pthread_mutex_unlock(&s->mutex); return AVERROR(errno == ETIMEDOUT ? EAGAIN : errno); } nonblock = 1; } } while( 1); } #endif if (!(h->flags & AVIO_FLAG_NONBLOCK)) { ret = ff_network_wait_fd(s->udp_fd, 0); if (ret < 0) return ret; } ret = recv(s->udp_fd, buf, size, 0); return ret < 0 ? ff_neterrno() : ret; } static int udp_write(URLContext *h, const uint8_t *buf, int size) { UDPContext *s = h->priv_data; int ret; if (!(h->flags & AVIO_FLAG_NONBLOCK)) { ret = ff_network_wait_fd(s->udp_fd, 1); if (ret < 0) return ret; } if (!s->is_connected) { ret = sendto (s->udp_fd, buf, size, 0, (struct sockaddr *) &s->dest_addr, s->dest_addr_len); } else ret = send(s->udp_fd, buf, size, 0); return ret < 0 ? ff_neterrno() : ret; } static int udp_close(URLContext *h) { UDPContext *s = h->priv_data; if (s->is_multicast && (h->flags & AVIO_FLAG_READ)) udp_leave_multicast_group(s->udp_fd, (struct sockaddr *)&s->dest_addr,(struct sockaddr *)&s->local_addr_storage); closesocket(s->udp_fd); #if HAVE_PTHREAD_CANCEL if (s->thread_started) { int ret; pthread_cancel(s->circular_buffer_thread); ret = pthread_join(s->circular_buffer_thread, NULL); if (ret != 0) av_log(h, AV_LOG_ERROR, "pthread_join(): %s\n", strerror(ret)); pthread_mutex_destroy(&s->mutex); pthread_cond_destroy(&s->cond); } #endif av_fifo_freep(&s->fifo); return 0; } const URLProtocol ff_udp_protocol = { .name = "udp", .url_open = udp_open, .url_read = udp_read, .url_write = udp_write, .url_close = udp_close, .url_get_file_handle = udp_get_file_handle, .priv_data_size = sizeof(UDPContext), .priv_data_class = &udp_class, .flags = URL_PROTOCOL_FLAG_NETWORK, }; const URLProtocol ff_udplite_protocol = { .name = "udplite", .url_open = udplite_open, .url_read = udp_read, .url_write = udp_write, .url_close = udp_close, .url_get_file_handle = udp_get_file_handle, .priv_data_size = sizeof(UDPContext), .priv_data_class = &udplite_context_class, .flags = URL_PROTOCOL_FLAG_NETWORK, };