/* * Copyright (c) Stefano Sabatini 2010 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * life video source, based on John Conways' Life Game */ /* #define DEBUG */ #include "libavutil/file.h" #include "libavutil/internal.h" #include "libavutil/intreadwrite.h" #include "libavutil/lfg.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "libavutil/random_seed.h" #include "libavutil/avstring.h" #include "avfilter.h" #include "internal.h" #include "formats.h" #include "video.h" typedef struct { const AVClass *class; int w, h; char *filename; char *rule_str; uint8_t *file_buf; size_t file_bufsize; /** * The two grid state buffers. * * A 0xFF (ALIVE_CELL) value means the cell is alive (or new born), while * the decreasing values from 0xFE to 0 means the cell is dead; the range * of values is used for the slow death effect, or mold (0xFE means dead, * 0xFD means very dead, 0xFC means very very dead... and 0x00 means * definitely dead/mold). */ uint8_t *buf[2]; uint8_t buf_idx; uint16_t stay_rule; ///< encode the behavior for filled cells uint16_t born_rule; ///< encode the behavior for empty cells uint64_t pts; AVRational frame_rate; double random_fill_ratio; uint32_t random_seed; int stitch; int mold; uint8_t life_color[4]; uint8_t death_color[4]; uint8_t mold_color[4]; AVLFG lfg; void (*draw)(AVFilterContext*, AVFrame*); } LifeContext; #define ALIVE_CELL 0xFF #define OFFSET(x) offsetof(LifeContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption life_options[] = { { "filename", "set source file", OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS }, { "f", "set source file", OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS }, { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS }, { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS }, { "r", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS }, { "rule", "set rule", OFFSET(rule_str), AV_OPT_TYPE_STRING, {.str = "B3/S23"}, CHAR_MIN, CHAR_MAX, FLAGS }, { "random_fill_ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS }, { "ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS }, { "random_seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT, {.i64=-1}, -1, UINT32_MAX, FLAGS }, { "seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT, {.i64=-1}, -1, UINT32_MAX, FLAGS }, { "stitch", "stitch boundaries", OFFSET(stitch), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS }, { "mold", "set mold speed for dead cells", OFFSET(mold), AV_OPT_TYPE_INT, {.i64=0}, 0, 0xFF, FLAGS }, { "life_color", "set life color", OFFSET( life_color), AV_OPT_TYPE_COLOR, {.str="white"}, CHAR_MIN, CHAR_MAX, FLAGS }, { "death_color", "set death color", OFFSET(death_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS }, { "mold_color", "set mold color", OFFSET( mold_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(life); static int parse_rule(uint16_t *born_rule, uint16_t *stay_rule, const char *rule_str, void *log_ctx) { char *tail; const char *p = rule_str; *born_rule = 0; *stay_rule = 0; if (strchr("bBsS", *p)) { /* parse rule as a Born / Stay Alive code, see * http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life */ do { uint16_t *rule = (*p == 'b' || *p == 'B') ? born_rule : stay_rule; p++; while (*p >= '0' && *p <= '8') { *rule += 1<<(*p - '0'); p++; } if (*p != '/') break; p++; } while (strchr("bBsS", *p)); if (*p) goto error; } else { /* parse rule as a number, expressed in the form STAY|(BORN<<9), * where STAY and BORN encode the corresponding 9-bits rule */ long int rule = strtol(rule_str, &tail, 10); if (*tail) goto error; *born_rule = ((1<<9)-1) & rule; *stay_rule = rule >> 9; } return 0; error: av_log(log_ctx, AV_LOG_ERROR, "Invalid rule code '%s' provided\n", rule_str); return AVERROR(EINVAL); } #ifdef DEBUG static void show_life_grid(AVFilterContext *ctx) { LifeContext *life = ctx->priv; int i, j; char *line = av_malloc(life->w + 1); if (!line) return; for (i = 0; i < life->h; i++) { for (j = 0; j < life->w; j++) line[j] = life->buf[life->buf_idx][i*life->w + j] == ALIVE_CELL ? '@' : ' '; line[j] = 0; av_log(ctx, AV_LOG_DEBUG, "%3d: %s\n", i, line); } av_free(line); } #endif static int init_pattern_from_file(AVFilterContext *ctx) { LifeContext *life = ctx->priv; char *p; int ret, i, i0, j, h = 0, w, max_w = 0; if ((ret = av_file_map(life->filename, &life->file_buf, &life->file_bufsize, 0, ctx)) < 0) return ret; av_freep(&life->filename); /* prescan file to get the number of lines and the maximum width */ w = 0; for (i = 0; i < life->file_bufsize; i++) { if (life->file_buf[i] == '\n') { h++; max_w = FFMAX(w, max_w); w = 0; } else { w++; } } av_log(ctx, AV_LOG_DEBUG, "h:%d max_w:%d\n", h, max_w); if (life->w) { if (max_w > life->w || h > life->h) { av_log(ctx, AV_LOG_ERROR, "The specified size is %dx%d which cannot contain the provided file size of %dx%d\n", life->w, life->h, max_w, h); return AVERROR(EINVAL); } } else { /* size was not specified, set it to size of the grid */ life->w = max_w; life->h = h; } if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) || !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) { av_freep(&life->buf[0]); av_freep(&life->buf[1]); return AVERROR(ENOMEM); } /* fill buf[0] */ p = life->file_buf; for (i0 = 0, i = (life->h - h)/2; i0 < h; i0++, i++) { for (j = (life->w - max_w)/2;; j++) { av_log(ctx, AV_LOG_DEBUG, "%d:%d %c\n", i, j, *p == '\n' ? 'N' : *p); if (*p == '\n') { p++; break; } else life->buf[0][i*life->w + j] = av_isgraph(*(p++)) ? ALIVE_CELL : 0; } } life->buf_idx = 0; return 0; } static av_cold int init(AVFilterContext *ctx) { LifeContext *life = ctx->priv; int ret; if (!life->w && !life->filename) av_opt_set(life, "size", "320x240", 0); if ((ret = parse_rule(&life->born_rule, &life->stay_rule, life->rule_str, ctx)) < 0) return ret; if (!life->mold && memcmp(life->mold_color, "\x00\x00\x00", 3)) av_log(ctx, AV_LOG_WARNING, "Mold color is set while mold isn't, ignoring the color.\n"); if (!life->filename) { /* fill the grid randomly */ int i; if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) || !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) { av_freep(&life->buf[0]); av_freep(&life->buf[1]); return AVERROR(ENOMEM); } if (life->random_seed == -1) life->random_seed = av_get_random_seed(); av_lfg_init(&life->lfg, life->random_seed); for (i = 0; i < life->w * life->h; i++) { double r = (double)av_lfg_get(&life->lfg) / UINT32_MAX; if (r <= life->random_fill_ratio) life->buf[0][i] = ALIVE_CELL; } life->buf_idx = 0; } else { if ((ret = init_pattern_from_file(ctx)) < 0) return ret; } av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d r:%d/%d rule:%s stay_rule:%d born_rule:%d stitch:%d seed:%"PRIu32"\n", life->w, life->h, life->frame_rate.num, life->frame_rate.den, life->rule_str, life->stay_rule, life->born_rule, life->stitch, life->random_seed); return 0; } static av_cold void uninit(AVFilterContext *ctx) { LifeContext *life = ctx->priv; av_file_unmap(life->file_buf, life->file_bufsize); av_freep(&life->rule_str); av_freep(&life->buf[0]); av_freep(&life->buf[1]); } static int config_props(AVFilterLink *outlink) { LifeContext *life = outlink->src->priv; outlink->w = life->w; outlink->h = life->h; outlink->time_base = av_inv_q(life->frame_rate); return 0; } static void evolve(AVFilterContext *ctx) { LifeContext *life = ctx->priv; int i, j; uint8_t *oldbuf = life->buf[ life->buf_idx]; uint8_t *newbuf = life->buf[!life->buf_idx]; enum { NW, N, NE, W, E, SW, S, SE }; /* evolve the grid */ for (i = 0; i < life->h; i++) { for (j = 0; j < life->w; j++) { int pos[8][2], n, alive, cell; if (life->stitch) { pos[NW][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NW][1] = (j-1) < 0 ? life->w-1 : j-1; pos[N ][0] = (i-1) < 0 ? life->h-1 : i-1; pos[N ][1] = j ; pos[NE][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NE][1] = (j+1) == life->w ? 0 : j+1; pos[W ][0] = i ; pos[W ][1] = (j-1) < 0 ? life->w-1 : j-1; pos[E ][0] = i ; pos[E ][1] = (j+1) == life->w ? 0 : j+1; pos[SW][0] = (i+1) == life->h ? 0 : i+1; pos[SW][1] = (j-1) < 0 ? life->w-1 : j-1; pos[S ][0] = (i+1) == life->h ? 0 : i+1; pos[S ][1] = j ; pos[SE][0] = (i+1) == life->h ? 0 : i+1; pos[SE][1] = (j+1) == life->w ? 0 : j+1; } else { pos[NW][0] = (i-1) < 0 ? -1 : i-1; pos[NW][1] = (j-1) < 0 ? -1 : j-1; pos[N ][0] = (i-1) < 0 ? -1 : i-1; pos[N ][1] = j ; pos[NE][0] = (i-1) < 0 ? -1 : i-1; pos[NE][1] = (j+1) == life->w ? -1 : j+1; pos[W ][0] = i ; pos[W ][1] = (j-1) < 0 ? -1 : j-1; pos[E ][0] = i ; pos[E ][1] = (j+1) == life->w ? -1 : j+1; pos[SW][0] = (i+1) == life->h ? -1 : i+1; pos[SW][1] = (j-1) < 0 ? -1 : j-1; pos[S ][0] = (i+1) == life->h ? -1 : i+1; pos[S ][1] = j ; pos[SE][0] = (i+1) == life->h ? -1 : i+1; pos[SE][1] = (j+1) == life->w ? -1 : j+1; } /* compute the number of live neighbor cells */ n = (pos[NW][0] == -1 || pos[NW][1] == -1 ? 0 : oldbuf[pos[NW][0]*life->w + pos[NW][1]] == ALIVE_CELL) + (pos[N ][0] == -1 || pos[N ][1] == -1 ? 0 : oldbuf[pos[N ][0]*life->w + pos[N ][1]] == ALIVE_CELL) + (pos[NE][0] == -1 || pos[NE][1] == -1 ? 0 : oldbuf[pos[NE][0]*life->w + pos[NE][1]] == ALIVE_CELL) + (pos[W ][0] == -1 || pos[W ][1] == -1 ? 0 : oldbuf[pos[W ][0]*life->w + pos[W ][1]] == ALIVE_CELL) + (pos[E ][0] == -1 || pos[E ][1] == -1 ? 0 : oldbuf[pos[E ][0]*life->w + pos[E ][1]] == ALIVE_CELL) + (pos[SW][0] == -1 || pos[SW][1] == -1 ? 0 : oldbuf[pos[SW][0]*life->w + pos[SW][1]] == ALIVE_CELL) + (pos[S ][0] == -1 || pos[S ][1] == -1 ? 0 : oldbuf[pos[S ][0]*life->w + pos[S ][1]] == ALIVE_CELL) + (pos[SE][0] == -1 || pos[SE][1] == -1 ? 0 : oldbuf[pos[SE][0]*life->w + pos[SE][1]] == ALIVE_CELL); cell = oldbuf[i*life->w + j]; alive = 1<<n & (cell == ALIVE_CELL ? life->stay_rule : life->born_rule); if (alive) *newbuf = ALIVE_CELL; // new cell is alive else if (cell) *newbuf = cell - 1; // new cell is dead and in the process of mold else *newbuf = 0; // new cell is definitely dead ff_dlog(ctx, "i:%d j:%d live_neighbors:%d cell:%d -> cell:%d\n", i, j, n, cell, *newbuf); newbuf++; } } life->buf_idx = !life->buf_idx; } static void fill_picture_monoblack(AVFilterContext *ctx, AVFrame *picref) { LifeContext *life = ctx->priv; uint8_t *buf = life->buf[life->buf_idx]; int i, j, k; /* fill the output picture with the old grid buffer */ for (i = 0; i < life->h; i++) { uint8_t byte = 0; uint8_t *p = picref->data[0] + i * picref->linesize[0]; for (k = 0, j = 0; j < life->w; j++) { byte |= (buf[i*life->w+j] == ALIVE_CELL)<<(7-k++); if (k==8 || j == life->w-1) { k = 0; *p++ = byte; byte = 0; } } } } // divide by 255 and round to nearest // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16) static void fill_picture_rgb(AVFilterContext *ctx, AVFrame *picref) { LifeContext *life = ctx->priv; uint8_t *buf = life->buf[life->buf_idx]; int i, j; /* fill the output picture with the old grid buffer */ for (i = 0; i < life->h; i++) { uint8_t *p = picref->data[0] + i * picref->linesize[0]; for (j = 0; j < life->w; j++) { uint8_t v = buf[i*life->w + j]; if (life->mold && v != ALIVE_CELL) { const uint8_t *c1 = life-> mold_color; const uint8_t *c2 = life->death_color; int death_age = FFMIN((0xff - v) * life->mold, 0xff); *p++ = FAST_DIV255((c2[0] << 8) + ((int)c1[0] - (int)c2[0]) * death_age); *p++ = FAST_DIV255((c2[1] << 8) + ((int)c1[1] - (int)c2[1]) * death_age); *p++ = FAST_DIV255((c2[2] << 8) + ((int)c1[2] - (int)c2[2]) * death_age); } else { const uint8_t *c = v == ALIVE_CELL ? life->life_color : life->death_color; AV_WB24(p, c[0]<<16 | c[1]<<8 | c[2]); p += 3; } } } } static int request_frame(AVFilterLink *outlink) { LifeContext *life = outlink->src->priv; AVFrame *picref = ff_get_video_buffer(outlink, life->w, life->h); if (!picref) return AVERROR(ENOMEM); picref->sample_aspect_ratio = (AVRational) {1, 1}; picref->pts = life->pts++; life->draw(outlink->src, picref); evolve(outlink->src); #ifdef DEBUG show_life_grid(outlink->src); #endif return ff_filter_frame(outlink, picref); } static int query_formats(AVFilterContext *ctx) { LifeContext *life = ctx->priv; enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_NONE, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list; if (life->mold || memcmp(life-> life_color, "\xff\xff\xff", 3) || memcmp(life->death_color, "\x00\x00\x00", 3)) { pix_fmts[0] = AV_PIX_FMT_RGB24; life->draw = fill_picture_rgb; } else { pix_fmts[0] = AV_PIX_FMT_MONOBLACK; life->draw = fill_picture_monoblack; } fmts_list = ff_make_format_list(pix_fmts); return ff_set_common_formats(ctx, fmts_list); } static const AVFilterPad life_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = request_frame, .config_props = config_props, }, { NULL} }; AVFilter ff_vsrc_life = { .name = "life", .description = NULL_IF_CONFIG_SMALL("Create life."), .priv_size = sizeof(LifeContext), .priv_class = &life_class, .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = NULL, .outputs = life_outputs, };