/* * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * Copyright (c) 2013 Clément Bœsch <u pkh me> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /** * @file * Simple post processing filter * * This implementation is based on an algorithm described in * "Aria Nosratinia Embedded Post-Processing for * Enhancement of Compressed Images (1999)" * * Originally written by Michael Niedermayer for the MPlayer project, and * ported by Clément Bœsch for FFmpeg. */ #include "libavutil/emms.h" #include "libavutil/imgutils.h" #include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "internal.h" #include "qp_table.h" #include "vf_spp.h" #include "video.h" enum mode { MODE_HARD, MODE_SOFT, NB_MODES }; static const AVClass *child_class_iterate(void **iter) { const AVClass *c = *iter ? NULL : avcodec_dct_get_class(); *iter = (void*)(uintptr_t)c; return c; } static void *child_next(void *obj, void *prev) { SPPContext *s = obj; return prev ? NULL : s->dct; } #define OFFSET(x) offsetof(SPPContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption spp_options[] = { { "quality", "set quality", OFFSET(log2_count), AV_OPT_TYPE_INT, {.i64 = 3}, 0, MAX_LEVEL, TFLAGS }, { "qp", "force a constant quantizer parameter", OFFSET(qp), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 63, FLAGS }, { "mode", "set thresholding mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64 = MODE_HARD}, 0, NB_MODES - 1, FLAGS, "mode" }, { "hard", "hard thresholding", 0, AV_OPT_TYPE_CONST, {.i64 = MODE_HARD}, INT_MIN, INT_MAX, FLAGS, "mode" }, { "soft", "soft thresholding", 0, AV_OPT_TYPE_CONST, {.i64 = MODE_SOFT}, INT_MIN, INT_MAX, FLAGS, "mode" }, { "use_bframe_qp", "use B-frames' QP", OFFSET(use_bframe_qp), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { NULL } }; static const AVClass spp_class = { .class_name = "spp", .item_name = av_default_item_name, .option = spp_options, .version = LIBAVUTIL_VERSION_INT, .category = AV_CLASS_CATEGORY_FILTER, .child_class_iterate = child_class_iterate, .child_next = child_next, }; // XXX: share between filters? DECLARE_ALIGNED(8, static const uint8_t, ldither)[8][8] = { { 0, 48, 12, 60, 3, 51, 15, 63 }, { 32, 16, 44, 28, 35, 19, 47, 31 }, { 8, 56, 4, 52, 11, 59, 7, 55 }, { 40, 24, 36, 20, 43, 27, 39, 23 }, { 2, 50, 14, 62, 1, 49, 13, 61 }, { 34, 18, 46, 30, 33, 17, 45, 29 }, { 10, 58, 6, 54, 9, 57, 5, 53 }, { 42, 26, 38, 22, 41, 25, 37, 21 }, }; static const uint8_t offset[128][2] = { {0,0}, // unused {0,0}, {0,0}, {4,4}, // quality = 1 {0,0}, {2,2}, {6,4}, {4,6}, // quality = 2 {0,0}, {5,1}, {2,2}, {7,3}, {4,4}, {1,5}, {6,6}, {3,7}, // quality = 3 {0,0}, {4,0}, {1,1}, {5,1}, {3,2}, {7,2}, {2,3}, {6,3}, // quality = 4 {0,4}, {4,4}, {1,5}, {5,5}, {3,6}, {7,6}, {2,7}, {6,7}, {0,0}, {0,2}, {0,4}, {0,6}, {1,1}, {1,3}, {1,5}, {1,7}, // quality = 5 {2,0}, {2,2}, {2,4}, {2,6}, {3,1}, {3,3}, {3,5}, {3,7}, {4,0}, {4,2}, {4,4}, {4,6}, {5,1}, {5,3}, {5,5}, {5,7}, {6,0}, {6,2}, {6,4}, {6,6}, {7,1}, {7,3}, {7,5}, {7,7}, {0,0}, {4,4}, {0,4}, {4,0}, {2,2}, {6,6}, {2,6}, {6,2}, // quality = 6 {0,2}, {4,6}, {0,6}, {4,2}, {2,0}, {6,4}, {2,4}, {6,0}, {1,1}, {5,5}, {1,5}, {5,1}, {3,3}, {7,7}, {3,7}, {7,3}, {1,3}, {5,7}, {1,7}, {5,3}, {3,1}, {7,5}, {3,5}, {7,1}, {0,1}, {4,5}, {0,5}, {4,1}, {2,3}, {6,7}, {2,7}, {6,3}, {0,3}, {4,7}, {0,7}, {4,3}, {2,1}, {6,5}, {2,5}, {6,1}, {1,0}, {5,4}, {1,4}, {5,0}, {3,2}, {7,6}, {3,6}, {7,2}, {1,2}, {5,6}, {1,6}, {5,2}, {3,0}, {7,4}, {3,4}, {7,0}, }; static void hardthresh_c(int16_t dst[64], const int16_t src[64], int qp, const uint8_t *permutation) { int i; int bias = 0; // FIXME unsigned threshold1 = qp * ((1<<4) - bias) - 1; unsigned threshold2 = threshold1 << 1; memset(dst, 0, 64 * sizeof(dst[0])); dst[0] = (src[0] + 4) >> 3; for (i = 1; i < 64; i++) { int level = src[i]; if (((unsigned)(level + threshold1)) > threshold2) { const int j = permutation[i]; dst[j] = (level + 4) >> 3; } } } static void softthresh_c(int16_t dst[64], const int16_t src[64], int qp, const uint8_t *permutation) { int i; int bias = 0; //FIXME unsigned threshold1 = qp * ((1<<4) - bias) - 1; unsigned threshold2 = threshold1 << 1; memset(dst, 0, 64 * sizeof(dst[0])); dst[0] = (src[0] + 4) >> 3; for (i = 1; i < 64; i++) { int level = src[i]; if (((unsigned)(level + threshold1)) > threshold2) { const int j = permutation[i]; if (level > 0) dst[j] = (level - threshold1 + 4) >> 3; else dst[j] = (level + threshold1 + 4) >> 3; } } } static void store_slice_c(uint8_t *dst, const int16_t *src, int dst_linesize, int src_linesize, int width, int height, int log2_scale, const uint8_t dither[8][8]) { int y, x; #define STORE(pos) do { \ temp = ((src[x + y*src_linesize + pos] << log2_scale) + d[pos]) >> 6; \ if (temp & 0x100) \ temp = ~(temp >> 31); \ dst[x + y*dst_linesize + pos] = temp; \ } while (0) for (y = 0; y < height; y++) { const uint8_t *d = dither[y]; for (x = 0; x < width; x += 8) { int temp; STORE(0); STORE(1); STORE(2); STORE(3); STORE(4); STORE(5); STORE(6); STORE(7); } } } static void store_slice16_c(uint16_t *dst, const int16_t *src, int dst_linesize, int src_linesize, int width, int height, int log2_scale, const uint8_t dither[8][8], int depth) { int y, x; unsigned int mask = -1<<depth; #define STORE16(pos) do { \ temp = ((src[x + y*src_linesize + pos] << log2_scale) + (d[pos]>>1)) >> 5; \ if (temp & mask ) \ temp = ~(temp >> 31); \ dst[x + y*dst_linesize + pos] = temp; \ } while (0) for (y = 0; y < height; y++) { const uint8_t *d = dither[y]; for (x = 0; x < width; x += 8) { int temp; STORE16(0); STORE16(1); STORE16(2); STORE16(3); STORE16(4); STORE16(5); STORE16(6); STORE16(7); } } } static inline void add_block(uint16_t *dst, int linesize, const int16_t block[64]) { int y; for (y = 0; y < 8; y++) { dst[0 + y*linesize] += block[0 + y*8]; dst[1 + y*linesize] += block[1 + y*8]; dst[2 + y*linesize] += block[2 + y*8]; dst[3 + y*linesize] += block[3 + y*8]; dst[4 + y*linesize] += block[4 + y*8]; dst[5 + y*linesize] += block[5 + y*8]; dst[6 + y*linesize] += block[6 + y*8]; dst[7 + y*linesize] += block[7 + y*8]; } } static void filter(SPPContext *p, uint8_t *dst, uint8_t *src, int dst_linesize, int src_linesize, int width, int height, const uint8_t *qp_table, int qp_stride, int is_luma, int depth) { int x, y, i; const int count = 1 << p->log2_count; const int linesize = is_luma ? p->temp_linesize : FFALIGN(width+16, 16); DECLARE_ALIGNED(16, uint64_t, block_align)[32]; int16_t *block = (int16_t *)block_align; int16_t *block2 = (int16_t *)(block_align + 16); uint16_t *psrc16 = (uint16_t*)p->src; const int sample_bytes = (depth+7) / 8; for (y = 0; y < height; y++) { int index = 8 + 8*linesize + y*linesize; memcpy(p->src + index*sample_bytes, src + y*src_linesize, width*sample_bytes); if (sample_bytes == 1) { for (x = 0; x < 8; x++) { p->src[index - x - 1] = p->src[index + x ]; p->src[index + width + x ] = p->src[index + width - x - 1]; } } else { for (x = 0; x < 8; x++) { psrc16[index - x - 1] = psrc16[index + x ]; psrc16[index + width + x ] = psrc16[index + width - x - 1]; } } } for (y = 0; y < 8; y++) { memcpy(p->src + ( 7-y)*linesize * sample_bytes, p->src + ( y+8)*linesize * sample_bytes, linesize * sample_bytes); memcpy(p->src + (height+8+y)*linesize * sample_bytes, p->src + (height-y+7)*linesize * sample_bytes, linesize * sample_bytes); } for (y = 0; y < height + 8; y += 8) { memset(p->temp + (8 + y) * linesize, 0, 8 * linesize * sizeof(*p->temp)); for (x = 0; x < width + 8; x += 8) { int qp; if (p->qp) { qp = p->qp; } else{ const int qps = 3 + is_luma; qp = qp_table[(FFMIN(x, width - 1) >> qps) + (FFMIN(y, height - 1) >> qps) * qp_stride]; qp = FFMAX(1, ff_norm_qscale(qp, p->qscale_type)); } for (i = 0; i < count; i++) { const int x1 = x + offset[i + count][0]; const int y1 = y + offset[i + count][1]; const int index = x1 + y1*linesize; p->dct->get_pixels_unaligned(block, p->src + sample_bytes*index, sample_bytes*linesize); p->dct->fdct(block); p->requantize(block2, block, qp, p->dct->idct_permutation); p->dct->idct(block2); add_block(p->temp + index, linesize, block2); } } if (y) { if (sample_bytes == 1) { p->store_slice(dst + (y - 8) * dst_linesize, p->temp + 8 + y*linesize, dst_linesize, linesize, width, FFMIN(8, height + 8 - y), MAX_LEVEL - p->log2_count, ldither); } else { store_slice16_c((uint16_t*)(dst + (y - 8) * dst_linesize), p->temp + 8 + y*linesize, dst_linesize/2, linesize, width, FFMIN(8, height + 8 - y), MAX_LEVEL - p->log2_count, ldither, depth); } } } } static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_NONE }; static int config_input(AVFilterLink *inlink) { SPPContext *s = inlink->dst->priv; const int h = FFALIGN(inlink->h + 16, 16); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const int bps = desc->comp[0].depth; s->store_slice = store_slice_c; switch (s->mode) { case MODE_HARD: s->requantize = hardthresh_c; break; case MODE_SOFT: s->requantize = softthresh_c; break; } av_opt_set_int(s->dct, "bits_per_sample", bps, 0); avcodec_dct_init(s->dct); #if ARCH_X86 ff_spp_init_x86(s); #endif s->hsub = desc->log2_chroma_w; s->vsub = desc->log2_chroma_h; s->temp_linesize = FFALIGN(inlink->w + 16, 16); s->temp = av_malloc_array(s->temp_linesize, h * sizeof(*s->temp)); s->src = av_malloc_array(s->temp_linesize, h * sizeof(*s->src) * 2); if (!s->temp || !s->src) return AVERROR(ENOMEM); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; SPPContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out = in; int qp_stride = 0; int8_t *qp_table = NULL; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const int depth = desc->comp[0].depth; int ret = 0; /* if we are not in a constant user quantizer mode and we don't want to use * the quantizers from the B-frames (B-frames often have a higher QP), we * need to save the qp table from the last non B-frame; this is what the * following code block does */ if (!s->qp && (s->use_bframe_qp || in->pict_type != AV_PICTURE_TYPE_B)) { ret = ff_qp_table_extract(in, &qp_table, &qp_stride, NULL, &s->qscale_type); if (ret < 0) { av_frame_free(&in); return ret; } if (!s->use_bframe_qp && in->pict_type != AV_PICTURE_TYPE_B) { av_freep(&s->non_b_qp_table); s->non_b_qp_table = qp_table; s->non_b_qp_stride = qp_stride; } } if (s->log2_count && !ctx->is_disabled) { if (!s->use_bframe_qp && s->non_b_qp_table) { qp_table = s->non_b_qp_table; qp_stride = s->non_b_qp_stride; } if (qp_table || s->qp) { const int cw = AV_CEIL_RSHIFT(inlink->w, s->hsub); const int ch = AV_CEIL_RSHIFT(inlink->h, s->vsub); /* get a new frame if in-place is not possible or if the dimensions * are not multiple of 8 */ if (!av_frame_is_writable(in) || (inlink->w & 7) || (inlink->h & 7)) { const int aligned_w = FFALIGN(inlink->w, 8); const int aligned_h = FFALIGN(inlink->h, 8); out = ff_get_video_buffer(outlink, aligned_w, aligned_h); if (!out) { av_frame_free(&in); ret = AVERROR(ENOMEM); goto finish; } av_frame_copy_props(out, in); out->width = in->width; out->height = in->height; } filter(s, out->data[0], in->data[0], out->linesize[0], in->linesize[0], inlink->w, inlink->h, qp_table, qp_stride, 1, depth); if (out->data[2]) { filter(s, out->data[1], in->data[1], out->linesize[1], in->linesize[1], cw, ch, qp_table, qp_stride, 0, depth); filter(s, out->data[2], in->data[2], out->linesize[2], in->linesize[2], cw, ch, qp_table, qp_stride, 0, depth); } emms_c(); } } if (in != out) { if (in->data[3]) av_image_copy_plane(out->data[3], out->linesize[3], in ->data[3], in ->linesize[3], inlink->w, inlink->h); av_frame_free(&in); } ret = ff_filter_frame(outlink, out); finish: if (qp_table != s->non_b_qp_table) av_freep(&qp_table); return ret; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { SPPContext *s = ctx->priv; if (!strcmp(cmd, "level") || !strcmp(cmd, "quality")) { if (!strcmp(args, "max")) s->log2_count = MAX_LEVEL; else s->log2_count = av_clip(strtol(args, NULL, 10), 0, MAX_LEVEL); return 0; } return AVERROR(ENOSYS); } static av_cold int preinit(AVFilterContext *ctx) { SPPContext *s = ctx->priv; s->dct = avcodec_dct_alloc(); if (!s->dct) return AVERROR(ENOMEM); return 0; } static av_cold void uninit(AVFilterContext *ctx) { SPPContext *s = ctx->priv; av_freep(&s->temp); av_freep(&s->src); av_freep(&s->dct); av_freep(&s->non_b_qp_table); } static const AVFilterPad spp_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, }; const AVFilter ff_vf_spp = { .name = "spp", .description = NULL_IF_CONFIG_SMALL("Apply a simple post processing filter."), .priv_size = sizeof(SPPContext), .preinit = preinit, .uninit = uninit, FILTER_INPUTS(spp_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS_ARRAY(pix_fmts), .process_command = process_command, .priv_class = &spp_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, };