/* * Copyright (c) 2013 Stefano Sabatini * Copyright (c) 2008 Vitor Sessak * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * rotation filter, partially based on the tests/rotozoom.c program */ #include "libavutil/avstring.h" #include "libavutil/eval.h" #include "libavutil/opt.h" #include "libavutil/intreadwrite.h" #include "libavutil/parseutils.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "internal.h" #include "video.h" #include <float.h> static const char * const var_names[] = { "in_w" , "iw", ///< width of the input video "in_h" , "ih", ///< height of the input video "out_w", "ow", ///< width of the input video "out_h", "oh", ///< height of the input video "hsub", "vsub", "n", ///< number of frame "t", ///< timestamp expressed in seconds NULL }; enum var_name { VAR_IN_W , VAR_IW, VAR_IN_H , VAR_IH, VAR_OUT_W, VAR_OW, VAR_OUT_H, VAR_OH, VAR_HSUB, VAR_VSUB, VAR_N, VAR_T, VAR_VARS_NB }; typedef struct RotContext { const AVClass *class; double angle; char *angle_expr_str; ///< expression for the angle AVExpr *angle_expr; ///< parsed expression for the angle char *outw_expr_str, *outh_expr_str; int outh, outw; uint8_t fillcolor[4]; ///< color expressed either in YUVA or RGBA colorspace for the padding area char *fillcolor_str; int fillcolor_enable; int hsub, vsub; int nb_planes; int use_bilinear; float sinx, cosx; double var_values[VAR_VARS_NB]; FFDrawContext draw; FFDrawColor color; uint8_t *(*interpolate_bilinear)(uint8_t *dst_color, const uint8_t *src, int src_linesize, int src_linestep, int x, int y, int max_x, int max_y); } RotContext; typedef struct ThreadData { AVFrame *in, *out; int inw, inh; int outw, outh; int plane; int xi, yi; int xprime, yprime; int c, s; } ThreadData; #define OFFSET(x) offsetof(RotContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption rotate_options[] = { { "angle", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "a", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "out_w", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "ow", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "out_h", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "oh", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "fillcolor", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "c", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS }, { "bilinear", "use bilinear interpolation", OFFSET(use_bilinear), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(rotate); static av_cold int init(AVFilterContext *ctx) { RotContext *rot = ctx->priv; if (!strcmp(rot->fillcolor_str, "none")) rot->fillcolor_enable = 0; else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0) rot->fillcolor_enable = 1; else return AVERROR(EINVAL); return 0; } static av_cold void uninit(AVFilterContext *ctx) { RotContext *rot = ctx->priv; av_expr_free(rot->angle_expr); rot->angle_expr = NULL; } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0, AV_PIX_FMT_0BGR, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUVA420P10LE, AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUVA444P10LE, AV_PIX_FMT_YUV420P12LE, AV_PIX_FMT_YUV444P12LE, AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUVA444P16LE, AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUVA420P16LE, AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUVA444P9LE, AV_PIX_FMT_YUV420P9LE, AV_PIX_FMT_YUVA420P9LE, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static double get_rotated_w(void *opaque, double angle) { RotContext *rot = opaque; double inw = rot->var_values[VAR_IN_W]; double inh = rot->var_values[VAR_IN_H]; float sinx = sin(angle); float cosx = cos(angle); return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) + FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx); } static double get_rotated_h(void *opaque, double angle) { RotContext *rot = opaque; double inw = rot->var_values[VAR_IN_W]; double inh = rot->var_values[VAR_IN_H]; float sinx = sin(angle); float cosx = cos(angle); return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) + FFMAX(0, inh * cosx) + FFMAX(0, inw * sinx); } static double (* const func1[])(void *, double) = { get_rotated_w, get_rotated_h, NULL }; static const char * const func1_names[] = { "rotw", "roth", NULL }; #define FIXP (1<<16) #define FIXP2 (1<<20) #define INT_PI 3294199 //(M_PI * FIXP2) /** * Compute the sin of a using integer values. * Input is scaled by FIXP2 and output values are scaled by FIXP. */ static int64_t int_sin(int64_t a) { int64_t a2, res = 0; int i; if (a < 0) a = INT_PI-a; // 0..inf a %= 2 * INT_PI; // 0..2PI if (a >= INT_PI*3/2) a -= 2*INT_PI; // -PI/2 .. 3PI/2 if (a >= INT_PI/2 ) a = INT_PI - a; // -PI/2 .. PI/2 /* compute sin using Taylor series approximated to the fifth term */ a2 = (a*a)/(FIXP2); for (i = 2; i < 11; i += 2) { res += a; a = -a*a2 / (FIXP2*i*(i+1)); } return (res + 8)>>4; } /** * Interpolate the color in src at position x and y using bilinear * interpolation. */ static uint8_t *interpolate_bilinear8(uint8_t *dst_color, const uint8_t *src, int src_linesize, int src_linestep, int x, int y, int max_x, int max_y) { int int_x = av_clip(x>>16, 0, max_x); int int_y = av_clip(y>>16, 0, max_y); int frac_x = x&0xFFFF; int frac_y = y&0xFFFF; int i; int int_x1 = FFMIN(int_x+1, max_x); int int_y1 = FFMIN(int_y+1, max_y); for (i = 0; i < src_linestep; i++) { int s00 = src[src_linestep * int_x + i + src_linesize * int_y ]; int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ]; int s10 = src[src_linestep * int_x + i + src_linesize * int_y1]; int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1]; int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01); int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11); dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32; } return dst_color; } /** * Interpolate the color in src at position x and y using bilinear * interpolation. */ static uint8_t *interpolate_bilinear16(uint8_t *dst_color, const uint8_t *src, int src_linesize, int src_linestep, int x, int y, int max_x, int max_y) { int int_x = av_clip(x>>16, 0, max_x); int int_y = av_clip(y>>16, 0, max_y); int frac_x = x&0xFFFF; int frac_y = y&0xFFFF; int i; int int_x1 = FFMIN(int_x+1, max_x); int int_y1 = FFMIN(int_y+1, max_y); for (i = 0; i < src_linestep; i+=2) { int s00 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y ]); int s01 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y ]); int s10 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y1]); int s11 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y1]); int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01); int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11); AV_WL16(&dst_color[i], ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32); } return dst_color; } static int config_props(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; RotContext *rot = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format); int ret; double res; char *expr; ff_draw_init(&rot->draw, inlink->format, 0); ff_draw_color(&rot->draw, &rot->color, rot->fillcolor); rot->hsub = pixdesc->log2_chroma_w; rot->vsub = pixdesc->log2_chroma_h; if (pixdesc->comp[0].depth == 8) rot->interpolate_bilinear = interpolate_bilinear8; else rot->interpolate_bilinear = interpolate_bilinear16; rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w; rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h; rot->var_values[VAR_HSUB] = 1<<rot->hsub; rot->var_values[VAR_VSUB] = 1<<rot->vsub; rot->var_values[VAR_N] = NAN; rot->var_values[VAR_T] = NAN; rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN; rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN; av_expr_free(rot->angle_expr); rot->angle_expr = NULL; if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names, func1_names, func1, NULL, NULL, 0, ctx)) < 0) { av_log(ctx, AV_LOG_ERROR, "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str); return ret; } #define SET_SIZE_EXPR(name, opt_name) do { \ ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \ var_names, rot->var_values, \ func1_names, func1, NULL, NULL, rot, 0, ctx); \ if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \ av_log(ctx, AV_LOG_ERROR, \ "Error parsing or evaluating expression for option %s: " \ "invalid expression '%s' or non-positive or indefinite value %f\n", \ opt_name, expr, res); \ return ret; \ } \ } while (0) /* evaluate width and height */ av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values, func1_names, func1, NULL, NULL, rot, 0, ctx); rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res; rot->outw = res + 0.5; SET_SIZE_EXPR(outh, "out_h"); rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res; rot->outh = res + 0.5; /* evaluate the width again, as it may depend on the evaluated output height */ SET_SIZE_EXPR(outw, "out_w"); rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res; rot->outw = res + 0.5; /* compute number of planes */ rot->nb_planes = av_pix_fmt_count_planes(inlink->format); outlink->w = rot->outw; outlink->h = rot->outh; return 0; } static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size) { int v; switch (elem_size) { case 1: *pout = *pin; break; case 2: *((uint16_t *)pout) = *((uint16_t *)pin); break; case 3: v = AV_RB24(pin); AV_WB24(pout, v); break; case 4: *((uint32_t *)pout) = *((uint32_t *)pin); break; default: memcpy(pout, pin, elem_size); break; } } static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len) { int i; switch(angle) { case 0: memcpy(dst, src, elem_size * len); break; case 1: for (i = 0; i<len; i++) copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size); break; case 2: for (i = 0; i<len; i++) copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size); break; case 3: for (i = 0; i<len; i++) copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size); break; } } static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len) { switch(elem_size) { case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break; case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break; case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break; case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break; default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break; } } #define TS2T(ts, tb) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts)*av_q2d(tb)) static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs) { ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; RotContext *rot = ctx->priv; const int outw = td->outw, outh = td->outh; const int inw = td->inw, inh = td->inh; const int plane = td->plane; const int xi = td->xi, yi = td->yi; const int c = td->c, s = td->s; const int start = (outh * job ) / nb_jobs; const int end = (outh * (job+1)) / nb_jobs; int xprime = td->xprime + start * s; int yprime = td->yprime + start * c; int i, j, x, y; for (j = start; j < end; j++) { x = xprime + xi + FIXP*(inw-1)/2; y = yprime + yi + FIXP*(inh-1)/2; if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) { simple_rotate(out->data[plane] + j * out->linesize[plane], in->data[plane] + j * in->linesize[plane], in->linesize[plane], 0, rot->draw.pixelstep[plane], outw); } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) { simple_rotate(out->data[plane] + j * out->linesize[plane], in->data[plane] + j * rot->draw.pixelstep[plane], in->linesize[plane], 1, rot->draw.pixelstep[plane], outw); } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) { simple_rotate(out->data[plane] + j * out->linesize[plane], in->data[plane] + (outh-j-1) * in->linesize[plane], in->linesize[plane], 2, rot->draw.pixelstep[plane], outw); } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) { simple_rotate(out->data[plane] + j * out->linesize[plane], in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane], in->linesize[plane], 3, rot->draw.pixelstep[plane], outw); } else { for (i = 0; i < outw; i++) { int32_t v; int x1, y1; uint8_t *pin, *pout; x1 = x>>16; y1 = y>>16; /* the out-of-range values avoid border artifacts */ if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) { uint8_t inp_inv[4]; /* interpolated input value */ pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane]; if (rot->use_bilinear) { pin = rot->interpolate_bilinear(inp_inv, in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane], x, y, inw-1, inh-1); } else { int x2 = av_clip(x1, 0, inw-1); int y2 = av_clip(y1, 0, inh-1); pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane]; } switch (rot->draw.pixelstep[plane]) { case 1: *pout = *pin; break; case 2: v = AV_RL16(pin); AV_WL16(pout, v); break; case 3: v = AV_RB24(pin); AV_WB24(pout, v); break; case 4: *((uint32_t *)pout) = *((uint32_t *)pin); break; default: memcpy(pout, pin, rot->draw.pixelstep[plane]); break; } } x += c; y -= s; } } xprime += s; yprime += c; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; RotContext *rot = ctx->priv; int angle_int, s, c, plane; double res; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); rot->var_values[VAR_N] = inlink->frame_count_out; rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base); rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot); av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n", rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI); angle_int = res * FIXP * 16; s = int_sin(angle_int); c = int_sin(angle_int + INT_PI/2); /* fill background */ if (rot->fillcolor_enable) ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize, 0, 0, outlink->w, outlink->h); for (plane = 0; plane < rot->nb_planes; plane++) { int hsub = plane == 1 || plane == 2 ? rot->hsub : 0; int vsub = plane == 1 || plane == 2 ? rot->vsub : 0; const int outw = AV_CEIL_RSHIFT(outlink->w, hsub); const int outh = AV_CEIL_RSHIFT(outlink->h, vsub); ThreadData td = { .in = in, .out = out, .inw = AV_CEIL_RSHIFT(inlink->w, hsub), .inh = AV_CEIL_RSHIFT(inlink->h, vsub), .outh = outh, .outw = outw, .xi = -(outw-1) * c / 2, .yi = (outw-1) * s / 2, .xprime = -(outh-1) * s / 2, .yprime = -(outh-1) * c / 2, .plane = plane, .c = c, .s = s }; ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outh, ff_filter_get_nb_threads(ctx))); } av_frame_free(&in); return ff_filter_frame(outlink, out); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { RotContext *rot = ctx->priv; int ret; if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) { AVExpr *old = rot->angle_expr; ret = av_expr_parse(&rot->angle_expr, args, var_names, NULL, NULL, NULL, NULL, 0, ctx); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Error when parsing the expression '%s' for angle command\n", args); rot->angle_expr = old; return ret; } av_expr_free(old); } else ret = AVERROR(ENOSYS); return ret; } static const AVFilterPad rotate_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad rotate_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_props, }, { NULL } }; AVFilter ff_vf_rotate = { .name = "rotate", .description = NULL_IF_CONFIG_SMALL("Rotate the input image."), .priv_size = sizeof(RotContext), .init = init, .uninit = uninit, .query_formats = query_formats, .process_command = process_command, .inputs = rotate_inputs, .outputs = rotate_outputs, .priv_class = &rotate_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };