/* * Copyright (c) 2015 Stupeflix * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Generate one palette for a whole video stream. */ #include "libavutil/avassert.h" #include "libavutil/internal.h" #include "libavutil/opt.h" #include "libavutil/qsort.h" #include "avfilter.h" #include "internal.h" /* Reference a color and how much it's used */ struct color_ref { uint32_t color; uint64_t count; }; /* Store a range of colors */ struct range_box { uint32_t color; // average color int64_t variance; // overall variance of the box (how much the colors are spread) int start; // index in PaletteGenContext->refs int len; // number of referenced colors int sorted_by; // whether range of colors is sorted by red (0), green (1) or blue (2) }; struct hist_node { struct color_ref *entries; int nb_entries; }; enum { STATS_MODE_ALL_FRAMES, STATS_MODE_DIFF_FRAMES, NB_STATS_MODE }; #define NBITS 5 #define HIST_SIZE (1<<(3*NBITS)) typedef struct { const AVClass *class; int max_colors; int reserve_transparent; int stats_mode; AVFrame *prev_frame; // previous frame used for the diff stats_mode struct hist_node histogram[HIST_SIZE]; // histogram/hashtable of the colors struct color_ref **refs; // references of all the colors used in the stream int nb_refs; // number of color references (or number of different colors) struct range_box boxes[256]; // define the segmentation of the colorspace (the final palette) int nb_boxes; // number of boxes (increase will segmenting them) int palette_pushed; // if the palette frame is pushed into the outlink or not } PaletteGenContext; #define OFFSET(x) offsetof(PaletteGenContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption palettegen_options[] = { { "max_colors", "set the maximum number of colors to use in the palette", OFFSET(max_colors), AV_OPT_TYPE_INT, {.i64=256}, 4, 256, FLAGS }, { "reserve_transparent", "reserve a palette entry for transparency", OFFSET(reserve_transparent), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS }, { "stats_mode", "set statistics mode", OFFSET(stats_mode), AV_OPT_TYPE_INT, {.i64=STATS_MODE_ALL_FRAMES}, 0, NB_STATS_MODE, FLAGS, "mode" }, { "full", "compute full frame histograms", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_ALL_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" }, { "diff", "compute histograms only for the part that differs from previous frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_DIFF_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" }, { NULL } }; AVFILTER_DEFINE_CLASS(palettegen); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; int ret; AVFilterFormats *in = ff_make_format_list(in_fmts); AVFilterFormats *out = ff_make_format_list(out_fmts); if (!in || !out) { av_freep(&in); av_freep(&out); return AVERROR(ENOMEM); } if ((ret = ff_formats_ref(in , &ctx->inputs[0]->out_formats)) < 0 || (ret = ff_formats_ref(out, &ctx->outputs[0]->in_formats)) < 0) return ret; return 0; } typedef int (*cmp_func)(const void *, const void *); #define DECLARE_CMP_FUNC(name, pos) \ static int cmp_##name(const void *pa, const void *pb) \ { \ const struct color_ref * const *a = pa; \ const struct color_ref * const *b = pb; \ return ((*a)->color >> (8 * (2 - (pos))) & 0xff) \ - ((*b)->color >> (8 * (2 - (pos))) & 0xff); \ } DECLARE_CMP_FUNC(r, 0) DECLARE_CMP_FUNC(g, 1) DECLARE_CMP_FUNC(b, 2) static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b}; /** * Simple color comparison for sorting the final palette */ static int cmp_color(const void *a, const void *b) { const struct range_box *box1 = a; const struct range_box *box2 = b; return FFDIFFSIGN(box1->color , box2->color); } static av_always_inline int diff(const uint32_t a, const uint32_t b) { const uint8_t c1[] = {a >> 16 & 0xff, a >> 8 & 0xff, a & 0xff}; const uint8_t c2[] = {b >> 16 & 0xff, b >> 8 & 0xff, b & 0xff}; const int dr = c1[0] - c2[0]; const int dg = c1[1] - c2[1]; const int db = c1[2] - c2[2]; return dr*dr + dg*dg + db*db; } /** * Find the next box to split: pick the one with the highest variance */ static int get_next_box_id_to_split(PaletteGenContext *s) { int box_id, i, best_box_id = -1; int64_t max_variance = -1; if (s->nb_boxes == s->max_colors - s->reserve_transparent) return -1; for (box_id = 0; box_id < s->nb_boxes; box_id++) { struct range_box *box = &s->boxes[box_id]; if (s->boxes[box_id].len >= 2) { if (box->variance == -1) { int64_t variance = 0; for (i = 0; i < box->len; i++) { const struct color_ref *ref = s->refs[box->start + i]; variance += diff(ref->color, box->color) * ref->count; } box->variance = variance; } if (box->variance > max_variance) { best_box_id = box_id; max_variance = box->variance; } } else { box->variance = -1; } } return best_box_id; } /** * Get the 32-bit average color for the range of RGB colors enclosed in the * specified box. Takes into account the weight of each color. */ static uint32_t get_avg_color(struct color_ref * const *refs, const struct range_box *box) { int i; const int n = box->len; uint64_t r = 0, g = 0, b = 0, div = 0; for (i = 0; i < n; i++) { const struct color_ref *ref = refs[box->start + i]; r += (ref->color >> 16 & 0xff) * ref->count; g += (ref->color >> 8 & 0xff) * ref->count; b += (ref->color & 0xff) * ref->count; div += ref->count; } r = r / div; g = g / div; b = b / div; return 0xffU<<24 | r<<16 | g<<8 | b; } /** * Split given box in two at position n. The original box becomes the left part * of the split, and the new index box is the right part. */ static void split_box(PaletteGenContext *s, struct range_box *box, int n) { struct range_box *new_box = &s->boxes[s->nb_boxes++]; new_box->start = n + 1; new_box->len = box->start + box->len - new_box->start; new_box->sorted_by = box->sorted_by; box->len -= new_box->len; av_assert0(box->len >= 1); av_assert0(new_box->len >= 1); box->color = get_avg_color(s->refs, box); new_box->color = get_avg_color(s->refs, new_box); box->variance = -1; new_box->variance = -1; } /** * Write the palette into the output frame. */ static void write_palette(AVFilterContext *ctx, AVFrame *out) { const PaletteGenContext *s = ctx->priv; int x, y, box_id = 0; uint32_t *pal = (uint32_t *)out->data[0]; const int pal_linesize = out->linesize[0] >> 2; uint32_t last_color = 0; for (y = 0; y < out->height; y++) { for (x = 0; x < out->width; x++) { if (box_id < s->nb_boxes) { pal[x] = s->boxes[box_id++].color; if ((x || y) && pal[x] == last_color) av_log(ctx, AV_LOG_WARNING, "Dupped color: %08X\n", pal[x]); last_color = pal[x]; } else { pal[x] = 0xff000000; // pad with black } } pal += pal_linesize; } if (s->reserve_transparent) { av_assert0(s->nb_boxes < 256); pal[out->width - pal_linesize - 1] = 0x0000ff00; // add a green transparent color } } /** * Crawl the histogram to get all the defined colors, and create a linear list * of them (each color reference entry is a pointer to the value in the * histogram/hash table). */ static struct color_ref **load_color_refs(const struct hist_node *hist, int nb_refs) { int i, j, k = 0; struct color_ref **refs = av_malloc_array(nb_refs, sizeof(*refs)); if (!refs) return NULL; for (j = 0; j < HIST_SIZE; j++) { const struct hist_node *node = &hist[j]; for (i = 0; i < node->nb_entries; i++) refs[k++] = &node->entries[i]; } return refs; } static double set_colorquant_ratio_meta(AVFrame *out, int nb_out, int nb_in) { char buf[32]; const double ratio = (double)nb_out / nb_in; snprintf(buf, sizeof(buf), "%f", ratio); av_dict_set(&out->metadata, "lavfi.color_quant_ratio", buf, 0); return ratio; } /** * Main function implementing the Median Cut Algorithm defined by Paul Heckbert * in Color Image Quantization for Frame Buffer Display (1982) */ static AVFrame *get_palette_frame(AVFilterContext *ctx) { AVFrame *out; PaletteGenContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; double ratio; int box_id = 0; struct range_box *box; /* reference only the used colors from histogram */ s->refs = load_color_refs(s->histogram, s->nb_refs); if (!s->refs) { av_log(ctx, AV_LOG_ERROR, "Unable to allocate references for %d different colors\n", s->nb_refs); return NULL; } /* create the palette frame */ out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) return NULL; out->pts = 0; /* set first box for 0..nb_refs */ box = &s->boxes[box_id]; box->len = s->nb_refs; box->sorted_by = -1; box->color = get_avg_color(s->refs, box); box->variance = -1; s->nb_boxes = 1; while (box && box->len > 1) { int i, rr, gr, br, longest; uint64_t median, box_weight = 0; /* compute the box weight (sum all the weights of the colors in the * range) and its boundings */ uint8_t min[3] = {0xff, 0xff, 0xff}; uint8_t max[3] = {0x00, 0x00, 0x00}; for (i = box->start; i < box->start + box->len; i++) { const struct color_ref *ref = s->refs[i]; const uint32_t rgb = ref->color; const uint8_t r = rgb >> 16 & 0xff, g = rgb >> 8 & 0xff, b = rgb & 0xff; min[0] = FFMIN(r, min[0]), max[0] = FFMAX(r, max[0]); min[1] = FFMIN(g, min[1]), max[1] = FFMAX(g, max[1]); min[2] = FFMIN(b, min[2]), max[2] = FFMAX(b, max[2]); box_weight += ref->count; } /* define the axis to sort by according to the widest range of colors */ rr = max[0] - min[0]; gr = max[1] - min[1]; br = max[2] - min[2]; longest = 1; // pick green by default (the color the eye is the most sensitive to) if (br >= rr && br >= gr) longest = 2; if (rr >= gr && rr >= br) longest = 0; if (gr >= rr && gr >= br) longest = 1; // prefer green again ff_dlog(ctx, "box #%02X [%6d..%-6d] (%6d) w:%-6"PRIu64" ranges:[%2x %2x %2x] sort by %c (already sorted:%c) ", box_id, box->start, box->start + box->len - 1, box->len, box_weight, rr, gr, br, "rgb"[longest], box->sorted_by == longest ? 'y':'n'); /* sort the range by its longest axis if it's not already sorted */ if (box->sorted_by != longest) { cmp_func cmpf = cmp_funcs[longest]; AV_QSORT(&s->refs[box->start], box->len, const struct color_ref *, cmpf); box->sorted_by = longest; } /* locate the median where to split */ median = (box_weight + 1) >> 1; box_weight = 0; /* if you have 2 boxes, the maximum is actually #0: you must have at * least 1 color on each side of the split, hence the -2 */ for (i = box->start; i < box->start + box->len - 2; i++) { box_weight += s->refs[i]->count; if (box_weight > median) break; } ff_dlog(ctx, "split @ i=%-6d with w=%-6"PRIu64" (target=%6"PRIu64")\n", i, box_weight, median); split_box(s, box, i); box_id = get_next_box_id_to_split(s); box = box_id >= 0 ? &s->boxes[box_id] : NULL; } ratio = set_colorquant_ratio_meta(out, s->nb_boxes, s->nb_refs); av_log(ctx, AV_LOG_INFO, "%d%s colors generated out of %d colors; ratio=%f\n", s->nb_boxes, s->reserve_transparent ? "(+1)" : "", s->nb_refs, ratio); qsort(s->boxes, s->nb_boxes, sizeof(*s->boxes), cmp_color); write_palette(ctx, out); return out; } /** * Hashing function for the color. * It keeps the NBITS least significant bit of each component to make it * "random" even if the scene doesn't have much different colors. */ static inline unsigned color_hash(uint32_t color) { const uint8_t r = color >> 16 & ((1<<NBITS)-1); const uint8_t g = color >> 8 & ((1<<NBITS)-1); const uint8_t b = color & ((1<<NBITS)-1); return r<<(NBITS*2) | g<<NBITS | b; } /** * Locate the color in the hash table and increment its counter. */ static int color_inc(struct hist_node *hist, uint32_t color) { int i; const unsigned hash = color_hash(color); struct hist_node *node = &hist[hash]; struct color_ref *e; for (i = 0; i < node->nb_entries; i++) { e = &node->entries[i]; if (e->color == color) { e->count++; return 0; } } e = av_dynarray2_add((void**)&node->entries, &node->nb_entries, sizeof(*node->entries), NULL); if (!e) return AVERROR(ENOMEM); e->color = color; e->count = 1; return 1; } /** * Update histogram when pixels differ from previous frame. */ static int update_histogram_diff(struct hist_node *hist, const AVFrame *f1, const AVFrame *f2) { int x, y, ret, nb_diff_colors = 0; for (y = 0; y < f1->height; y++) { const uint32_t *p = (const uint32_t *)(f1->data[0] + y*f1->linesize[0]); const uint32_t *q = (const uint32_t *)(f2->data[0] + y*f2->linesize[0]); for (x = 0; x < f1->width; x++) { if (p[x] == q[x]) continue; ret = color_inc(hist, p[x]); if (ret < 0) return ret; nb_diff_colors += ret; } } return nb_diff_colors; } /** * Simple histogram of the frame. */ static int update_histogram_frame(struct hist_node *hist, const AVFrame *f) { int x, y, ret, nb_diff_colors = 0; for (y = 0; y < f->height; y++) { const uint32_t *p = (const uint32_t *)(f->data[0] + y*f->linesize[0]); for (x = 0; x < f->width; x++) { ret = color_inc(hist, p[x]); if (ret < 0) return ret; nb_diff_colors += ret; } } return nb_diff_colors; } /** * Update the histogram for each passing frame. No frame will be pushed here. */ static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; PaletteGenContext *s = ctx->priv; const int ret = s->prev_frame ? update_histogram_diff(s->histogram, s->prev_frame, in) : update_histogram_frame(s->histogram, in); if (ret > 0) s->nb_refs += ret; if (s->stats_mode == STATS_MODE_DIFF_FRAMES) { av_frame_free(&s->prev_frame); s->prev_frame = in; } else { av_frame_free(&in); } return ret; } /** * Returns only one frame at the end containing the full palette. */ static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; PaletteGenContext *s = ctx->priv; int r; r = ff_request_frame(inlink); if (r == AVERROR_EOF && !s->palette_pushed && s->nb_refs) { r = ff_filter_frame(outlink, get_palette_frame(ctx)); s->palette_pushed = 1; return r; } return r; } /** * The output is one simple 16x16 squared-pixels palette. */ static int config_output(AVFilterLink *outlink) { outlink->w = outlink->h = 16; outlink->sample_aspect_ratio = av_make_q(1, 1); return 0; } static av_cold void uninit(AVFilterContext *ctx) { int i; PaletteGenContext *s = ctx->priv; for (i = 0; i < HIST_SIZE; i++) av_freep(&s->histogram[i].entries); av_freep(&s->refs); av_frame_free(&s->prev_frame); } static const AVFilterPad palettegen_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad palettegen_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter ff_vf_palettegen = { .name = "palettegen", .description = NULL_IF_CONFIG_SMALL("Find the optimal palette for a given stream."), .priv_size = sizeof(PaletteGenContext), .uninit = uninit, .query_formats = query_formats, .inputs = palettegen_inputs, .outputs = palettegen_outputs, .priv_class = &palettegen_class, };