/* * Copyright (c) 2013 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * 3D Lookup table filter */ #include "libavutil/opt.h" #include "libavutil/file.h" #include "libavutil/intreadwrite.h" #include "libavutil/avassert.h" #include "libavutil/pixdesc.h" #include "libavutil/avstring.h" #include "avfilter.h" #include "drawutils.h" #include "dualinput.h" #include "formats.h" #include "internal.h" #include "video.h" #define R 0 #define G 1 #define B 2 #define A 3 enum interp_mode { INTERPOLATE_NEAREST, INTERPOLATE_TRILINEAR, INTERPOLATE_TETRAHEDRAL, NB_INTERP_MODE }; struct rgbvec { float r, g, b; }; /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT * of 512x512 (64x64x64) */ #define MAX_LEVEL 64 typedef struct LUT3DContext { const AVClass *class; enum interp_mode interpolation; char *file; uint8_t rgba_map[4]; int step; avfilter_action_func *interp; struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL]; int lutsize; #if CONFIG_HALDCLUT_FILTER uint8_t clut_rgba_map[4]; int clut_step; int clut_is16bit; int clut_width; FFDualInputContext dinput; #endif } LUT3DContext; typedef struct ThreadData { AVFrame *in, *out; } ThreadData; #define OFFSET(x) offsetof(LUT3DContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define COMMON_OPTIONS \ { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \ { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ { NULL } static inline float lerpf(float v0, float v1, float f) { return v0 + (v1 - v0) * f; } static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f) { struct rgbvec v = { lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f) }; return v; } #define NEAR(x) ((int)((x) + .5)) #define PREV(x) ((int)(x)) #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1)) /** * Get the nearest defined point */ static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s) { return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)]; } /** * Interpolate using the 8 vertices of a cube * @see https://en.wikipedia.org/wiki/Trilinear_interpolation */ static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s) { const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]]; const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]]; const struct rgbvec c00 = lerp(&c000, &c100, d.r); const struct rgbvec c10 = lerp(&c010, &c110, d.r); const struct rgbvec c01 = lerp(&c001, &c101, d.r); const struct rgbvec c11 = lerp(&c011, &c111, d.r); const struct rgbvec c0 = lerp(&c00, &c10, d.g); const struct rgbvec c1 = lerp(&c01, &c11, d.g); const struct rgbvec c = lerp(&c0, &c1, d.b); return c; } /** * Tetrahedral interpolation. Based on code found in Truelight Software Library paper. * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf */ static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s) { const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]]; const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]]; struct rgbvec c; if (d.r > d.g) { if (d.g > d.b) { const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r; c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g; c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b; } else if (d.r > d.b) { const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]]; const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r; c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g; c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b; } else { const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]]; c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r; c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g; c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b; } } else { if (d.b > d.g) { const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]]; const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r; c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g; c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b; } else if (d.b > d.r) { const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]]; c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r; c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g; c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b; } else { const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]]; c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r; c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g; c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b; } } return c; } #define DEFINE_INTERP_FUNC(name, nbits) \ static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ int x, y; \ const LUT3DContext *lut3d = ctx->priv; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int step = lut3d->step; \ const uint8_t r = lut3d->rgba_map[R]; \ const uint8_t g = lut3d->rgba_map[G]; \ const uint8_t b = lut3d->rgba_map[B]; \ const uint8_t a = lut3d->rgba_map[A]; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ \ for (y = slice_start; y < slice_end; y++) { \ uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ for (x = 0; x < in->width * step; x += step) { \ const float scale = (1. / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \ const struct rgbvec scaled_rgb = {src[x + r] * scale, \ src[x + g] * scale, \ src[x + b] * scale}; \ struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \ dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \ dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \ if (!direct && step == 4) \ dst[x + a] = src[x + a]; \ } \ dstrow += out->linesize[0]; \ srcrow += in ->linesize[0]; \ } \ return 0; \ } DEFINE_INTERP_FUNC(nearest, 8) DEFINE_INTERP_FUNC(trilinear, 8) DEFINE_INTERP_FUNC(tetrahedral, 8) DEFINE_INTERP_FUNC(nearest, 16) DEFINE_INTERP_FUNC(trilinear, 16) DEFINE_INTERP_FUNC(tetrahedral, 16) #define MAX_LINE_SIZE 512 static int skip_line(const char *p) { while (*p && av_isspace(*p)) p++; return !*p || *p == '#'; } #define NEXT_LINE(loop_cond) do { \ if (!fgets(line, sizeof(line), f)) { \ av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ return AVERROR_INVALIDDATA; \ } \ } while (loop_cond) /* Basically r g and b float values on each line; seems to be generated by * Davinci */ static int parse_dat(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; const int size = lut3d->lutsize; int i, j, k; for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { char line[MAX_LINE_SIZE]; struct rgbvec *vec = &lut3d->lut[k][j][i]; NEXT_LINE(skip_line(line)); sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b); } } } return 0; } /* Iridas format */ static int parse_cube(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; char line[MAX_LINE_SIZE]; float min[3] = {0.0, 0.0, 0.0}; float max[3] = {1.0, 1.0, 1.0}; while (fgets(line, sizeof(line), f)) { if (!strncmp(line, "LUT_3D_SIZE ", 12)) { int i, j, k; const int size = strtol(line + 12, NULL, 0); if (size < 2 || size > MAX_LEVEL) { av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n"); return AVERROR(EINVAL); } lut3d->lutsize = size; for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[i][j][k]; do { NEXT_LINE(0); if (!strncmp(line, "DOMAIN_", 7)) { float *vals = NULL; if (!strncmp(line + 7, "MIN ", 4)) vals = min; else if (!strncmp(line + 7, "MAX ", 4)) vals = max; if (!vals) return AVERROR_INVALIDDATA; sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2); av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n", min[0], min[1], min[2], max[0], max[1], max[2]); continue; } } while (skip_line(line)); if (sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) return AVERROR_INVALIDDATA; vec->r *= max[0] - min[0]; vec->g *= max[1] - min[1]; vec->b *= max[2] - min[2]; } } } break; } } return 0; } /* Assume 17x17x17 LUT with a 16-bit depth * FIXME: it seems there are various 3dl formats */ static int parse_3dl(AVFilterContext *ctx, FILE *f) { char line[MAX_LINE_SIZE]; LUT3DContext *lut3d = ctx->priv; int i, j, k; const int size = 17; const float scale = 16*16*16; lut3d->lutsize = size; NEXT_LINE(skip_line(line)); for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { int r, g, b; struct rgbvec *vec = &lut3d->lut[k][j][i]; NEXT_LINE(skip_line(line)); if (sscanf(line, "%d %d %d", &r, &g, &b) != 3) return AVERROR_INVALIDDATA; vec->r = r / scale; vec->g = g / scale; vec->b = b / scale; } } } return 0; } /* Pandora format */ static int parse_m3d(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; float scale; int i, j, k, size, in = -1, out = -1; char line[MAX_LINE_SIZE]; uint8_t rgb_map[3] = {0, 1, 2}; while (fgets(line, sizeof(line), f)) { if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0); else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0); else if (!strncmp(line, "values", 6)) { const char *p = line + 6; #define SET_COLOR(id) do { \ while (av_isspace(*p)) \ p++; \ switch (*p) { \ case 'r': rgb_map[id] = 0; break; \ case 'g': rgb_map[id] = 1; break; \ case 'b': rgb_map[id] = 2; break; \ } \ while (*p && !av_isspace(*p)) \ p++; \ } while (0) SET_COLOR(0); SET_COLOR(1); SET_COLOR(2); break; } } if (in == -1 || out == -1) { av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n"); return AVERROR_INVALIDDATA; } if (in < 2 || out < 2 || in > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL || out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) { av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out); return AVERROR_INVALIDDATA; } for (size = 1; size*size*size < in; size++); lut3d->lutsize = size; scale = 1. / (out - 1); for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[k][j][i]; float val[3]; NEXT_LINE(0); if (sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3) return AVERROR_INVALIDDATA; vec->r = val[rgb_map[0]] * scale; vec->g = val[rgb_map[1]] * scale; vec->b = val[rgb_map[2]] * scale; } } } return 0; } static void set_identity_matrix(LUT3DContext *lut3d, int size) { int i, j, k; const float c = 1. / (size - 1); lut3d->lutsize = size; for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[k][j][i]; vec->r = k * c; vec->g = j * c; vec->b = i * c; } } } } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_NONE }; ff_set_common_formats(ctx, ff_make_format_list(pix_fmts)); return 0; } static int config_input(AVFilterLink *inlink) { int is16bit = 0; LUT3DContext *lut3d = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); switch (inlink->format) { case AV_PIX_FMT_RGB48: case AV_PIX_FMT_BGR48: case AV_PIX_FMT_RGBA64: case AV_PIX_FMT_BGRA64: is16bit = 1; } ff_fill_rgba_map(lut3d->rgba_map, inlink->format); lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit); #define SET_FUNC(name) do { \ if (is16bit) lut3d->interp = interp_16_##name; \ else lut3d->interp = interp_8_##name; \ } while (0) switch (lut3d->interpolation) { case INTERPOLATE_NEAREST: SET_FUNC(nearest); break; case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break; case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break; default: av_assert0(0); } return 0; } static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LUT3DContext *lut3d = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out; ThreadData td; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return NULL; } av_frame_copy_props(out, in); } td.in = in; td.out = out; ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ctx->graph->nb_threads)); if (out != in) av_frame_free(&in); return out; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out = apply_lut(inlink, in); if (!out) return AVERROR(ENOMEM); return ff_filter_frame(outlink, out); } #if CONFIG_LUT3D_FILTER static const AVOption lut3d_options[] = { { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, COMMON_OPTIONS }; AVFILTER_DEFINE_CLASS(lut3d); static av_cold int lut3d_init(AVFilterContext *ctx) { int ret; FILE *f; const char *ext; LUT3DContext *lut3d = ctx->priv; if (!lut3d->file) { set_identity_matrix(lut3d, 32); return 0; } f = fopen(lut3d->file, "r"); if (!f) { ret = AVERROR(errno); av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret)); return ret; } ext = strrchr(lut3d->file, '.'); if (!ext) { av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n"); ret = AVERROR_INVALIDDATA; goto end; } ext++; if (!av_strcasecmp(ext, "dat")) { lut3d->lutsize = 33; ret = parse_dat(ctx, f); } else if (!av_strcasecmp(ext, "3dl")) { ret = parse_3dl(ctx, f); } else if (!av_strcasecmp(ext, "cube")) { ret = parse_cube(ctx, f); } else if (!av_strcasecmp(ext, "m3d")) { ret = parse_m3d(ctx, f); } else { av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext); ret = AVERROR(EINVAL); } if (!ret && !lut3d->lutsize) { av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n"); ret = AVERROR_INVALIDDATA; } end: fclose(f); return ret; } static const AVFilterPad lut3d_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad lut3d_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_lut3d = { .name = "lut3d", .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."), .priv_size = sizeof(LUT3DContext), .init = lut3d_init, .query_formats = query_formats, .inputs = lut3d_inputs, .outputs = lut3d_outputs, .priv_class = &lut3d_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, }; #endif #if CONFIG_HALDCLUT_FILTER static void update_clut(LUT3DContext *lut3d, const AVFrame *frame) { const uint8_t *data = frame->data[0]; const int linesize = frame->linesize[0]; const int w = lut3d->clut_width; const int step = lut3d->clut_step; const uint8_t *rgba_map = lut3d->clut_rgba_map; const int level = lut3d->lutsize; #define LOAD_CLUT(nbits) do { \ int i, j, k, x = 0, y = 0; \ \ for (k = 0; k < level; k++) { \ for (j = 0; j < level; j++) { \ for (i = 0; i < level; i++) { \ const uint##nbits##_t *src = (const uint##nbits##_t *) \ (data + y*linesize + x*step); \ struct rgbvec *vec = &lut3d->lut[k][j][i]; \ vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ if (++x == w) { \ x = 0; \ y++; \ } \ } \ } \ } \ } while (0) if (!lut3d->clut_is16bit) LOAD_CLUT(8); else LOAD_CLUT(16); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; LUT3DContext *lut3d = ctx->priv; int ret; outlink->w = ctx->inputs[0]->w; outlink->h = ctx->inputs[0]->h; outlink->time_base = ctx->inputs[0]->time_base; if ((ret = ff_dualinput_init(ctx, &lut3d->dinput)) < 0) return ret; return 0; } static int filter_frame_hald(AVFilterLink *inlink, AVFrame *inpicref) { LUT3DContext *s = inlink->dst->priv; return ff_dualinput_filter_frame(&s->dinput, inlink, inpicref); } static int request_frame(AVFilterLink *outlink) { LUT3DContext *s = outlink->src->priv; return ff_dualinput_request_frame(&s->dinput, outlink); } static int config_clut(AVFilterLink *inlink) { int size, level, w, h; AVFilterContext *ctx = inlink->dst; LUT3DContext *lut3d = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); lut3d->clut_is16bit = 0; switch (inlink->format) { case AV_PIX_FMT_RGB48: case AV_PIX_FMT_BGR48: case AV_PIX_FMT_RGBA64: case AV_PIX_FMT_BGRA64: lut3d->clut_is16bit = 1; } lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3; ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format); if (inlink->w > inlink->h) av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the " "Hald CLUT will be ignored\n", inlink->w - inlink->h); else if (inlink->w < inlink->h) av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the " "Hald CLUT will be ignored\n", inlink->h - inlink->w); lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h); for (level = 1; level*level*level < w; level++); size = level*level*level; if (size != w) { av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n"); return AVERROR_INVALIDDATA; } av_assert0(w == h && w == size); level *= level; if (level > MAX_LEVEL) { const int max_clut_level = sqrt(MAX_LEVEL); const int max_clut_size = max_clut_level*max_clut_level*max_clut_level; av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT " "(maximum level is %d, or %dx%d CLUT)\n", max_clut_level, max_clut_size, max_clut_size); return AVERROR(EINVAL); } lut3d->lutsize = level; return 0; } static AVFrame *update_apply_clut(AVFilterContext *ctx, AVFrame *main, const AVFrame *second) { AVFilterLink *inlink = ctx->inputs[0]; update_clut(ctx->priv, second); return apply_lut(inlink, main); } static av_cold int haldclut_init(AVFilterContext *ctx) { LUT3DContext *lut3d = ctx->priv; lut3d->dinput.process = update_apply_clut; return 0; } static av_cold void haldclut_uninit(AVFilterContext *ctx) { LUT3DContext *lut3d = ctx->priv; ff_dualinput_uninit(&lut3d->dinput); } static const AVOption haldclut_options[] = { { "shortest", "force termination when the shortest input terminates", OFFSET(dinput.shortest), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS }, { "repeatlast", "continue applying the last clut after eos", OFFSET(dinput.repeatlast), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS }, COMMON_OPTIONS }; AVFILTER_DEFINE_CLASS(haldclut); static const AVFilterPad haldclut_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame_hald, .config_props = config_input, },{ .name = "clut", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame_hald, .config_props = config_clut, }, { NULL } }; static const AVFilterPad haldclut_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = request_frame, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_haldclut = { .name = "haldclut", .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."), .priv_size = sizeof(LUT3DContext), .init = haldclut_init, .uninit = haldclut_uninit, .query_formats = query_formats, .inputs = haldclut_inputs, .outputs = haldclut_outputs, .priv_class = &haldclut_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, }; #endif