/* * Copyright (c) 2013-2014 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * A simple, relatively efficient and slow DCT image denoiser. * * @see http://www.ipol.im/pub/art/2011/ys-dct/ * * The DCT factorization used is based on "Fast and numerically stable * algorithms for discrete cosine transforms" from Gerlind Plonkaa & Manfred * Tasche (DOI: 10.1016/j.laa.2004.07.015). */ #include "libavutil/avassert.h" #include "libavutil/eval.h" #include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "internal.h" #include "video.h" static const char *const var_names[] = { "c", NULL }; enum { VAR_C, VAR_VARS_NB }; #define MAX_THREADS 8 typedef struct DCTdnoizContext { const AVClass *class; /* coefficient factor expression */ char *expr_str; AVExpr *expr[MAX_THREADS]; double var_values[MAX_THREADS][VAR_VARS_NB]; int nb_threads; int pr_width, pr_height; // width and height to process float sigma; // used when no expression are st float th; // threshold (3*sigma) float *cbuf[2][3]; // two planar rgb color buffers float *slices[MAX_THREADS]; // slices buffers (1 slice buffer per thread) float *weights; // dct coeff are cumulated with overlapping; these values are used for averaging int p_linesize; // line sizes for color and weights int overlap; // number of block overlapping pixels int step; // block step increment (blocksize - overlap) int n; // 1<<n is the block size int bsize; // block size, 1<<n void (*filter_freq_func)(struct DCTdnoizContext *s, const float *src, int src_linesize, float *dst, int dst_linesize, int thread_id); void (*color_decorrelation)(float **dst, int dst_linesize, const uint8_t **src, int src_linesize, int w, int h); void (*color_correlation)(uint8_t **dst, int dst_linesize, float **src, int src_linesize, int w, int h); } DCTdnoizContext; #define MIN_NBITS 3 /* blocksize = 1<<3 = 8 */ #define MAX_NBITS 4 /* blocksize = 1<<4 = 16 */ #define DEFAULT_NBITS 3 #define OFFSET(x) offsetof(DCTdnoizContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption dctdnoiz_options[] = { { "sigma", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS }, { "s", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS }, { "overlap", "set number of block overlapping pixels", OFFSET(overlap), AV_OPT_TYPE_INT, {.i64=-1}, -1, (1<<MAX_NBITS)-1, .flags = FLAGS }, { "expr", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "e", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "n", "set the block size, expressed in bits", OFFSET(n), AV_OPT_TYPE_INT, {.i64=DEFAULT_NBITS}, MIN_NBITS, MAX_NBITS, .flags = FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(dctdnoiz); static void av_always_inline fdct8_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb) { int i; for (i = 0; i < 8; i++) { const float x00 = src[0*src_stridea] + src[7*src_stridea]; const float x01 = src[1*src_stridea] + src[6*src_stridea]; const float x02 = src[2*src_stridea] + src[5*src_stridea]; const float x03 = src[3*src_stridea] + src[4*src_stridea]; const float x04 = src[0*src_stridea] - src[7*src_stridea]; const float x05 = src[1*src_stridea] - src[6*src_stridea]; const float x06 = src[2*src_stridea] - src[5*src_stridea]; const float x07 = src[3*src_stridea] - src[4*src_stridea]; const float x08 = x00 + x03; const float x09 = x01 + x02; const float x0a = x00 - x03; const float x0b = x01 - x02; const float x0c = 1.38703984532215f*x04 + 0.275899379282943f*x07; const float x0d = 1.17587560241936f*x05 + 0.785694958387102f*x06; const float x0e = -0.785694958387102f*x05 + 1.17587560241936f*x06; const float x0f = 0.275899379282943f*x04 - 1.38703984532215f*x07; const float x10 = 0.353553390593274f * (x0c - x0d); const float x11 = 0.353553390593274f * (x0e - x0f); dst[0*dst_stridea] = 0.353553390593274f * (x08 + x09); dst[1*dst_stridea] = 0.353553390593274f * (x0c + x0d); dst[2*dst_stridea] = 0.461939766255643f*x0a + 0.191341716182545f*x0b; dst[3*dst_stridea] = 0.707106781186547f * (x10 - x11); dst[4*dst_stridea] = 0.353553390593274f * (x08 - x09); dst[5*dst_stridea] = 0.707106781186547f * (x10 + x11); dst[6*dst_stridea] = 0.191341716182545f*x0a - 0.461939766255643f*x0b; dst[7*dst_stridea] = 0.353553390593274f * (x0e + x0f); dst += dst_strideb; src += src_strideb; } } static void av_always_inline idct8_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb, int add) { int i; for (i = 0; i < 8; i++) { const float x00 = 1.4142135623731f *src[0*src_stridea]; const float x01 = 1.38703984532215f *src[1*src_stridea] + 0.275899379282943f*src[7*src_stridea]; const float x02 = 1.30656296487638f *src[2*src_stridea] + 0.541196100146197f*src[6*src_stridea]; const float x03 = 1.17587560241936f *src[3*src_stridea] + 0.785694958387102f*src[5*src_stridea]; const float x04 = 1.4142135623731f *src[4*src_stridea]; const float x05 = -0.785694958387102f*src[3*src_stridea] + 1.17587560241936f*src[5*src_stridea]; const float x06 = 0.541196100146197f*src[2*src_stridea] - 1.30656296487638f*src[6*src_stridea]; const float x07 = -0.275899379282943f*src[1*src_stridea] + 1.38703984532215f*src[7*src_stridea]; const float x09 = x00 + x04; const float x0a = x01 + x03; const float x0b = 1.4142135623731f*x02; const float x0c = x00 - x04; const float x0d = x01 - x03; const float x0e = 0.353553390593274f * (x09 - x0b); const float x0f = 0.353553390593274f * (x0c + x0d); const float x10 = 0.353553390593274f * (x0c - x0d); const float x11 = 1.4142135623731f*x06; const float x12 = x05 + x07; const float x13 = x05 - x07; const float x14 = 0.353553390593274f * (x11 + x12); const float x15 = 0.353553390593274f * (x11 - x12); const float x16 = 0.5f*x13; dst[0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.25f * (x09 + x0b) + 0.353553390593274f*x0a; dst[1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x0f + x15); dst[2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x0f - x15); dst[3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x0e + x16); dst[4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x0e - x16); dst[5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x10 - x14); dst[6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x10 + x14); dst[7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.25f * (x09 + x0b) - 0.353553390593274f*x0a; dst += dst_strideb; src += src_strideb; } } static void av_always_inline fdct16_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb) { int i; for (i = 0; i < 16; i++) { const float x00 = src[ 0*src_stridea] + src[15*src_stridea]; const float x01 = src[ 1*src_stridea] + src[14*src_stridea]; const float x02 = src[ 2*src_stridea] + src[13*src_stridea]; const float x03 = src[ 3*src_stridea] + src[12*src_stridea]; const float x04 = src[ 4*src_stridea] + src[11*src_stridea]; const float x05 = src[ 5*src_stridea] + src[10*src_stridea]; const float x06 = src[ 6*src_stridea] + src[ 9*src_stridea]; const float x07 = src[ 7*src_stridea] + src[ 8*src_stridea]; const float x08 = src[ 0*src_stridea] - src[15*src_stridea]; const float x09 = src[ 1*src_stridea] - src[14*src_stridea]; const float x0a = src[ 2*src_stridea] - src[13*src_stridea]; const float x0b = src[ 3*src_stridea] - src[12*src_stridea]; const float x0c = src[ 4*src_stridea] - src[11*src_stridea]; const float x0d = src[ 5*src_stridea] - src[10*src_stridea]; const float x0e = src[ 6*src_stridea] - src[ 9*src_stridea]; const float x0f = src[ 7*src_stridea] - src[ 8*src_stridea]; const float x10 = x00 + x07; const float x11 = x01 + x06; const float x12 = x02 + x05; const float x13 = x03 + x04; const float x14 = x00 - x07; const float x15 = x01 - x06; const float x16 = x02 - x05; const float x17 = x03 - x04; const float x18 = x10 + x13; const float x19 = x11 + x12; const float x1a = x10 - x13; const float x1b = x11 - x12; const float x1c = 1.38703984532215f*x14 + 0.275899379282943f*x17; const float x1d = 1.17587560241936f*x15 + 0.785694958387102f*x16; const float x1e = -0.785694958387102f*x15 + 1.17587560241936f *x16; const float x1f = 0.275899379282943f*x14 - 1.38703984532215f *x17; const float x20 = 0.25f * (x1c - x1d); const float x21 = 0.25f * (x1e - x1f); const float x22 = 1.40740373752638f *x08 + 0.138617169199091f*x0f; const float x23 = 1.35331800117435f *x09 + 0.410524527522357f*x0e; const float x24 = 1.24722501298667f *x0a + 0.666655658477747f*x0d; const float x25 = 1.09320186700176f *x0b + 0.897167586342636f*x0c; const float x26 = -0.897167586342636f*x0b + 1.09320186700176f *x0c; const float x27 = 0.666655658477747f*x0a - 1.24722501298667f *x0d; const float x28 = -0.410524527522357f*x09 + 1.35331800117435f *x0e; const float x29 = 0.138617169199091f*x08 - 1.40740373752638f *x0f; const float x2a = x22 + x25; const float x2b = x23 + x24; const float x2c = x22 - x25; const float x2d = x23 - x24; const float x2e = 0.25f * (x2a - x2b); const float x2f = 0.326640741219094f*x2c + 0.135299025036549f*x2d; const float x30 = 0.135299025036549f*x2c - 0.326640741219094f*x2d; const float x31 = x26 + x29; const float x32 = x27 + x28; const float x33 = x26 - x29; const float x34 = x27 - x28; const float x35 = 0.25f * (x31 - x32); const float x36 = 0.326640741219094f*x33 + 0.135299025036549f*x34; const float x37 = 0.135299025036549f*x33 - 0.326640741219094f*x34; dst[ 0*dst_stridea] = 0.25f * (x18 + x19); dst[ 1*dst_stridea] = 0.25f * (x2a + x2b); dst[ 2*dst_stridea] = 0.25f * (x1c + x1d); dst[ 3*dst_stridea] = 0.707106781186547f * (x2f - x37); dst[ 4*dst_stridea] = 0.326640741219094f*x1a + 0.135299025036549f*x1b; dst[ 5*dst_stridea] = 0.707106781186547f * (x2f + x37); dst[ 6*dst_stridea] = 0.707106781186547f * (x20 - x21); dst[ 7*dst_stridea] = 0.707106781186547f * (x2e + x35); dst[ 8*dst_stridea] = 0.25f * (x18 - x19); dst[ 9*dst_stridea] = 0.707106781186547f * (x2e - x35); dst[10*dst_stridea] = 0.707106781186547f * (x20 + x21); dst[11*dst_stridea] = 0.707106781186547f * (x30 - x36); dst[12*dst_stridea] = 0.135299025036549f*x1a - 0.326640741219094f*x1b; dst[13*dst_stridea] = 0.707106781186547f * (x30 + x36); dst[14*dst_stridea] = 0.25f * (x1e + x1f); dst[15*dst_stridea] = 0.25f * (x31 + x32); dst += dst_strideb; src += src_strideb; } } static void av_always_inline idct16_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb, int add) { int i; for (i = 0; i < 16; i++) { const float x00 = 1.4142135623731f *src[ 0*src_stridea]; const float x01 = 1.40740373752638f *src[ 1*src_stridea] + 0.138617169199091f*src[15*src_stridea]; const float x02 = 1.38703984532215f *src[ 2*src_stridea] + 0.275899379282943f*src[14*src_stridea]; const float x03 = 1.35331800117435f *src[ 3*src_stridea] + 0.410524527522357f*src[13*src_stridea]; const float x04 = 1.30656296487638f *src[ 4*src_stridea] + 0.541196100146197f*src[12*src_stridea]; const float x05 = 1.24722501298667f *src[ 5*src_stridea] + 0.666655658477747f*src[11*src_stridea]; const float x06 = 1.17587560241936f *src[ 6*src_stridea] + 0.785694958387102f*src[10*src_stridea]; const float x07 = 1.09320186700176f *src[ 7*src_stridea] + 0.897167586342636f*src[ 9*src_stridea]; const float x08 = 1.4142135623731f *src[ 8*src_stridea]; const float x09 = -0.897167586342636f*src[ 7*src_stridea] + 1.09320186700176f*src[ 9*src_stridea]; const float x0a = 0.785694958387102f*src[ 6*src_stridea] - 1.17587560241936f*src[10*src_stridea]; const float x0b = -0.666655658477747f*src[ 5*src_stridea] + 1.24722501298667f*src[11*src_stridea]; const float x0c = 0.541196100146197f*src[ 4*src_stridea] - 1.30656296487638f*src[12*src_stridea]; const float x0d = -0.410524527522357f*src[ 3*src_stridea] + 1.35331800117435f*src[13*src_stridea]; const float x0e = 0.275899379282943f*src[ 2*src_stridea] - 1.38703984532215f*src[14*src_stridea]; const float x0f = -0.138617169199091f*src[ 1*src_stridea] + 1.40740373752638f*src[15*src_stridea]; const float x12 = x00 + x08; const float x13 = x01 + x07; const float x14 = x02 + x06; const float x15 = x03 + x05; const float x16 = 1.4142135623731f*x04; const float x17 = x00 - x08; const float x18 = x01 - x07; const float x19 = x02 - x06; const float x1a = x03 - x05; const float x1d = x12 + x16; const float x1e = x13 + x15; const float x1f = 1.4142135623731f*x14; const float x20 = x12 - x16; const float x21 = x13 - x15; const float x22 = 0.25f * (x1d - x1f); const float x23 = 0.25f * (x20 + x21); const float x24 = 0.25f * (x20 - x21); const float x25 = 1.4142135623731f*x17; const float x26 = 1.30656296487638f*x18 + 0.541196100146197f*x1a; const float x27 = 1.4142135623731f*x19; const float x28 = -0.541196100146197f*x18 + 1.30656296487638f*x1a; const float x29 = 0.176776695296637f * (x25 + x27) + 0.25f*x26; const float x2a = 0.25f * (x25 - x27); const float x2b = 0.176776695296637f * (x25 + x27) - 0.25f*x26; const float x2c = 0.353553390593274f*x28; const float x1b = 0.707106781186547f * (x2a - x2c); const float x1c = 0.707106781186547f * (x2a + x2c); const float x2d = 1.4142135623731f*x0c; const float x2e = x0b + x0d; const float x2f = x0a + x0e; const float x30 = x09 + x0f; const float x31 = x09 - x0f; const float x32 = x0a - x0e; const float x33 = x0b - x0d; const float x37 = 1.4142135623731f*x2d; const float x38 = 1.30656296487638f*x2e + 0.541196100146197f*x30; const float x39 = 1.4142135623731f*x2f; const float x3a = -0.541196100146197f*x2e + 1.30656296487638f*x30; const float x3b = 0.176776695296637f * (x37 + x39) + 0.25f*x38; const float x3c = 0.25f * (x37 - x39); const float x3d = 0.176776695296637f * (x37 + x39) - 0.25f*x38; const float x3e = 0.353553390593274f*x3a; const float x34 = 0.707106781186547f * (x3c - x3e); const float x35 = 0.707106781186547f * (x3c + x3e); const float x3f = 1.4142135623731f*x32; const float x40 = x31 + x33; const float x41 = x31 - x33; const float x42 = 0.25f * (x3f + x40); const float x43 = 0.25f * (x3f - x40); const float x44 = 0.353553390593274f*x41; dst[ 0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) + 0.25f*x1e; dst[ 1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x29 + x3d); dst[ 2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x29 - x3d); dst[ 3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x23 - x43); dst[ 4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x23 + x43); dst[ 5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x1b - x35); dst[ 6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x1b + x35); dst[ 7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.707106781186547f * (x22 + x44); dst[ 8*dst_stridea] = (add ? dst[ 8*dst_stridea] : 0) + 0.707106781186547f * (x22 - x44); dst[ 9*dst_stridea] = (add ? dst[ 9*dst_stridea] : 0) + 0.707106781186547f * (x1c + x34); dst[10*dst_stridea] = (add ? dst[10*dst_stridea] : 0) + 0.707106781186547f * (x1c - x34); dst[11*dst_stridea] = (add ? dst[11*dst_stridea] : 0) + 0.707106781186547f * (x24 + x42); dst[12*dst_stridea] = (add ? dst[12*dst_stridea] : 0) + 0.707106781186547f * (x24 - x42); dst[13*dst_stridea] = (add ? dst[13*dst_stridea] : 0) + 0.707106781186547f * (x2b - x3b); dst[14*dst_stridea] = (add ? dst[14*dst_stridea] : 0) + 0.707106781186547f * (x2b + x3b); dst[15*dst_stridea] = (add ? dst[15*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) - 0.25f*x1e; dst += dst_strideb; src += src_strideb; } } #define DEF_FILTER_FREQ_FUNCS(bsize) \ static av_always_inline void filter_freq_##bsize(const float *src, int src_linesize, \ float *dst, int dst_linesize, \ AVExpr *expr, double *var_values, \ int sigma_th) \ { \ unsigned i; \ DECLARE_ALIGNED(32, float, tmp_block1)[bsize * bsize]; \ DECLARE_ALIGNED(32, float, tmp_block2)[bsize * bsize]; \ \ /* forward DCT */ \ fdct##bsize##_1d(tmp_block1, src, 1, bsize, 1, src_linesize); \ fdct##bsize##_1d(tmp_block2, tmp_block1, bsize, 1, bsize, 1); \ \ for (i = 0; i < bsize*bsize; i++) { \ float *b = &tmp_block2[i]; \ /* frequency filtering */ \ if (expr) { \ var_values[VAR_C] = fabsf(*b); \ *b *= av_expr_eval(expr, var_values, NULL); \ } else { \ if (fabsf(*b) < sigma_th) \ *b = 0; \ } \ } \ \ /* inverse DCT */ \ idct##bsize##_1d(tmp_block1, tmp_block2, 1, bsize, 1, bsize, 0); \ idct##bsize##_1d(dst, tmp_block1, dst_linesize, 1, bsize, 1, 1); \ } \ \ static void filter_freq_sigma_##bsize(DCTdnoizContext *s, \ const float *src, int src_linesize, \ float *dst, int dst_linesize, int thread_id) \ { \ filter_freq_##bsize(src, src_linesize, dst, dst_linesize, NULL, NULL, s->th); \ } \ \ static void filter_freq_expr_##bsize(DCTdnoizContext *s, \ const float *src, int src_linesize, \ float *dst, int dst_linesize, int thread_id) \ { \ filter_freq_##bsize(src, src_linesize, dst, dst_linesize, \ s->expr[thread_id], s->var_values[thread_id], 0); \ } DEF_FILTER_FREQ_FUNCS(8) DEF_FILTER_FREQ_FUNCS(16) #define DCT3X3_0_0 0.5773502691896258f /* 1/sqrt(3) */ #define DCT3X3_0_1 0.5773502691896258f /* 1/sqrt(3) */ #define DCT3X3_0_2 0.5773502691896258f /* 1/sqrt(3) */ #define DCT3X3_1_0 0.7071067811865475f /* 1/sqrt(2) */ #define DCT3X3_1_2 -0.7071067811865475f /* -1/sqrt(2) */ #define DCT3X3_2_0 0.4082482904638631f /* 1/sqrt(6) */ #define DCT3X3_2_1 -0.8164965809277261f /* -2/sqrt(6) */ #define DCT3X3_2_2 0.4082482904638631f /* 1/sqrt(6) */ static av_always_inline void color_decorrelation(float **dst, int dst_linesize, const uint8_t **src, int src_linesize, int w, int h, int r, int g, int b) { int x, y; float *dstp_r = dst[0]; float *dstp_g = dst[1]; float *dstp_b = dst[2]; const uint8_t *srcp = src[0]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { dstp_r[x] = srcp[r] * DCT3X3_0_0 + srcp[g] * DCT3X3_0_1 + srcp[b] * DCT3X3_0_2; dstp_g[x] = srcp[r] * DCT3X3_1_0 + srcp[b] * DCT3X3_1_2; dstp_b[x] = srcp[r] * DCT3X3_2_0 + srcp[g] * DCT3X3_2_1 + srcp[b] * DCT3X3_2_2; srcp += 3; } srcp += src_linesize - w * 3; dstp_r += dst_linesize; dstp_g += dst_linesize; dstp_b += dst_linesize; } } static av_always_inline void color_correlation(uint8_t **dst, int dst_linesize, float **src, int src_linesize, int w, int h, int r, int g, int b) { int x, y; const float *src_r = src[0]; const float *src_g = src[1]; const float *src_b = src[2]; uint8_t *dstp = dst[0]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { dstp[r] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0); dstp[g] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1); dstp[b] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2); dstp += 3; } dstp += dst_linesize - w * 3; src_r += src_linesize; src_g += src_linesize; src_b += src_linesize; } } #define DECLARE_COLOR_FUNCS(name, r, g, b) \ static void color_decorrelation_##name(float **dst, int dst_linesize, \ const uint8_t **src, int src_linesize, \ int w, int h) \ { \ color_decorrelation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \ } \ \ static void color_correlation_##name(uint8_t **dst, int dst_linesize, \ float **src, int src_linesize, \ int w, int h) \ { \ color_correlation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \ } DECLARE_COLOR_FUNCS(rgb, 0, 1, 2) DECLARE_COLOR_FUNCS(bgr, 2, 1, 0) static av_always_inline void color_decorrelation_gbrp(float **dst, int dst_linesize, const uint8_t **src, int src_linesize, int w, int h) { int x, y; float *dstp_r = dst[0]; float *dstp_g = dst[1]; float *dstp_b = dst[2]; const uint8_t *srcp_r = src[2]; const uint8_t *srcp_g = src[0]; const uint8_t *srcp_b = src[1]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { dstp_r[x] = srcp_r[x] * DCT3X3_0_0 + srcp_g[x] * DCT3X3_0_1 + srcp_b[x] * DCT3X3_0_2; dstp_g[x] = srcp_r[x] * DCT3X3_1_0 + srcp_b[x] * DCT3X3_1_2; dstp_b[x] = srcp_r[x] * DCT3X3_2_0 + srcp_g[x] * DCT3X3_2_1 + srcp_b[x] * DCT3X3_2_2; } srcp_r += src_linesize; srcp_g += src_linesize; srcp_b += src_linesize; dstp_r += dst_linesize; dstp_g += dst_linesize; dstp_b += dst_linesize; } } static av_always_inline void color_correlation_gbrp(uint8_t **dst, int dst_linesize, float **src, int src_linesize, int w, int h) { int x, y; const float *src_r = src[0]; const float *src_g = src[1]; const float *src_b = src[2]; uint8_t *dstp_r = dst[2]; uint8_t *dstp_g = dst[0]; uint8_t *dstp_b = dst[1]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { dstp_r[x] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0); dstp_g[x] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1); dstp_b[x] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2); } dstp_r += dst_linesize; dstp_g += dst_linesize; dstp_b += dst_linesize; src_r += src_linesize; src_g += src_linesize; src_b += src_linesize; } } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; DCTdnoizContext *s = ctx->priv; int i, x, y, bx, by, linesize, *iweights, max_slice_h, slice_h; const int bsize = 1 << s->n; switch (inlink->format) { case AV_PIX_FMT_BGR24: s->color_decorrelation = color_decorrelation_bgr; s->color_correlation = color_correlation_bgr; break; case AV_PIX_FMT_RGB24: s->color_decorrelation = color_decorrelation_rgb; s->color_correlation = color_correlation_rgb; break; case AV_PIX_FMT_GBRP: s->color_decorrelation = color_decorrelation_gbrp; s->color_correlation = color_correlation_gbrp; break; default: av_assert0(0); } s->pr_width = inlink->w - (inlink->w - bsize) % s->step; s->pr_height = inlink->h - (inlink->h - bsize) % s->step; if (s->pr_width != inlink->w) av_log(ctx, AV_LOG_WARNING, "The last %d horizontal pixels won't be denoised\n", inlink->w - s->pr_width); if (s->pr_height != inlink->h) av_log(ctx, AV_LOG_WARNING, "The last %d vertical pixels won't be denoised\n", inlink->h - s->pr_height); max_slice_h = s->pr_height / ((s->bsize - 1) * 2); if (max_slice_h == 0) return AVERROR(EINVAL); s->nb_threads = FFMIN3(MAX_THREADS, ff_filter_get_nb_threads(ctx), max_slice_h); av_log(ctx, AV_LOG_DEBUG, "threads: [max=%d hmax=%d user=%d] => %d\n", MAX_THREADS, max_slice_h, ff_filter_get_nb_threads(ctx), s->nb_threads); s->p_linesize = linesize = FFALIGN(s->pr_width, 32); for (i = 0; i < 2; i++) { s->cbuf[i][0] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][0])); s->cbuf[i][1] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][1])); s->cbuf[i][2] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][2])); if (!s->cbuf[i][0] || !s->cbuf[i][1] || !s->cbuf[i][2]) return AVERROR(ENOMEM); } /* eval expressions are probably not thread safe when the eval internal * state can be changed (typically through load & store operations) */ if (s->expr_str) { for (i = 0; i < s->nb_threads; i++) { int ret = av_expr_parse(&s->expr[i], s->expr_str, var_names, NULL, NULL, NULL, NULL, 0, ctx); if (ret < 0) return ret; } } /* each slice will need to (pre & re)process the top and bottom block of * the previous one in in addition to its processing area. This is because * each pixel is averaged by all the surrounding blocks */ slice_h = (int)ceilf(s->pr_height / (float)s->nb_threads) + (s->bsize - 1) * 2; for (i = 0; i < s->nb_threads; i++) { s->slices[i] = av_malloc_array(linesize, slice_h * sizeof(*s->slices[i])); if (!s->slices[i]) return AVERROR(ENOMEM); } s->weights = av_malloc(s->pr_height * linesize * sizeof(*s->weights)); if (!s->weights) return AVERROR(ENOMEM); iweights = av_calloc(s->pr_height, linesize * sizeof(*iweights)); if (!iweights) return AVERROR(ENOMEM); for (y = 0; y < s->pr_height - bsize + 1; y += s->step) for (x = 0; x < s->pr_width - bsize + 1; x += s->step) for (by = 0; by < bsize; by++) for (bx = 0; bx < bsize; bx++) iweights[(y + by)*linesize + x + bx]++; for (y = 0; y < s->pr_height; y++) for (x = 0; x < s->pr_width; x++) s->weights[y*linesize + x] = 1. / iweights[y*linesize + x]; av_free(iweights); return 0; } static av_cold int init(AVFilterContext *ctx) { DCTdnoizContext *s = ctx->priv; s->bsize = 1 << s->n; if (s->overlap == -1) s->overlap = s->bsize - 1; if (s->overlap > s->bsize - 1) { av_log(s, AV_LOG_ERROR, "Overlap value can not except %d " "with a block size of %dx%d\n", s->bsize - 1, s->bsize, s->bsize); return AVERROR(EINVAL); } if (s->expr_str) { switch (s->n) { case 3: s->filter_freq_func = filter_freq_expr_8; break; case 4: s->filter_freq_func = filter_freq_expr_16; break; default: av_assert0(0); } } else { switch (s->n) { case 3: s->filter_freq_func = filter_freq_sigma_8; break; case 4: s->filter_freq_func = filter_freq_sigma_16; break; default: av_assert0(0); } } s->th = s->sigma * 3.; s->step = s->bsize - s->overlap; return 0; } static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_BGR24, AV_PIX_FMT_RGB24, AV_PIX_FMT_GBRP, AV_PIX_FMT_NONE }; typedef struct ThreadData { float *src, *dst; } ThreadData; static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { int x, y; DCTdnoizContext *s = ctx->priv; const ThreadData *td = arg; const int w = s->pr_width; const int h = s->pr_height; const int slice_start = (h * jobnr ) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; const int slice_start_ctx = FFMAX(slice_start - s->bsize + 1, 0); const int slice_end_ctx = FFMIN(slice_end, h - s->bsize + 1); const int slice_h = slice_end_ctx - slice_start_ctx; const int src_linesize = s->p_linesize; const int dst_linesize = s->p_linesize; const int slice_linesize = s->p_linesize; float *dst; const float *src = td->src + slice_start_ctx * src_linesize; const float *weights = s->weights + slice_start * dst_linesize; float *slice = s->slices[jobnr]; // reset block sums memset(slice, 0, (slice_h + s->bsize - 1) * dst_linesize * sizeof(*slice)); // block dct sums for (y = 0; y < slice_h; y += s->step) { for (x = 0; x < w - s->bsize + 1; x += s->step) s->filter_freq_func(s, src + x, src_linesize, slice + x, slice_linesize, jobnr); src += s->step * src_linesize; slice += s->step * slice_linesize; } // average blocks slice = s->slices[jobnr] + (slice_start - slice_start_ctx) * slice_linesize; dst = td->dst + slice_start * dst_linesize; for (y = slice_start; y < slice_end; y++) { for (x = 0; x < w; x++) dst[x] = slice[x] * weights[x]; slice += slice_linesize; dst += dst_linesize; weights += dst_linesize; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; DCTdnoizContext *s = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; int direct, plane; AVFrame *out; if (av_frame_is_writable(in)) { direct = 1; out = in; } else { direct = 0; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } s->color_decorrelation(s->cbuf[0], s->p_linesize, (const uint8_t **)in->data, in->linesize[0], s->pr_width, s->pr_height); for (plane = 0; plane < 3; plane++) { ThreadData td = { .src = s->cbuf[0][plane], .dst = s->cbuf[1][plane], }; ff_filter_execute(ctx, filter_slice, &td, NULL, s->nb_threads); } s->color_correlation(out->data, out->linesize[0], s->cbuf[1], s->p_linesize, s->pr_width, s->pr_height); if (!direct) { int y; uint8_t *dst = out->data[0]; const uint8_t *src = in->data[0]; const int dst_linesize = out->linesize[0]; const int src_linesize = in->linesize[0]; const int hpad = (inlink->w - s->pr_width) * 3; const int vpad = (inlink->h - s->pr_height); if (hpad) { uint8_t *dstp = dst + s->pr_width * 3; const uint8_t *srcp = src + s->pr_width * 3; for (y = 0; y < s->pr_height; y++) { memcpy(dstp, srcp, hpad); dstp += dst_linesize; srcp += src_linesize; } } if (vpad) { uint8_t *dstp = dst + s->pr_height * dst_linesize; const uint8_t *srcp = src + s->pr_height * src_linesize; for (y = 0; y < vpad; y++) { memcpy(dstp, srcp, inlink->w * 3); dstp += dst_linesize; srcp += src_linesize; } } av_frame_free(&in); } return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { int i; DCTdnoizContext *s = ctx->priv; av_freep(&s->weights); for (i = 0; i < 2; i++) { av_freep(&s->cbuf[i][0]); av_freep(&s->cbuf[i][1]); av_freep(&s->cbuf[i][2]); } for (i = 0; i < s->nb_threads; i++) { av_freep(&s->slices[i]); av_expr_free(s->expr[i]); } } static const AVFilterPad dctdnoiz_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, }; const AVFilter ff_vf_dctdnoiz = { .name = "dctdnoiz", .description = NULL_IF_CONFIG_SMALL("Denoise frames using 2D DCT."), .priv_size = sizeof(DCTdnoizContext), .init = init, .uninit = uninit, FILTER_INPUTS(dctdnoiz_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS_ARRAY(pix_fmts), .priv_class = &dctdnoiz_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };