/* * Copyright (c) 2013 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/opt.h" #include "libavutil/bprint.h" #include "libavutil/eval.h" #include "libavutil/file.h" #include "libavutil/file_open.h" #include "libavutil/intreadwrite.h" #include "libavutil/avassert.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "internal.h" #include "video.h" #define R 0 #define G 1 #define B 2 #define A 3 struct keypoint { double x, y; struct keypoint *next; }; #define NB_COMP 3 enum preset { PRESET_NONE, PRESET_COLOR_NEGATIVE, PRESET_CROSS_PROCESS, PRESET_DARKER, PRESET_INCREASE_CONTRAST, PRESET_LIGHTER, PRESET_LINEAR_CONTRAST, PRESET_MEDIUM_CONTRAST, PRESET_NEGATIVE, PRESET_STRONG_CONTRAST, PRESET_VINTAGE, NB_PRESETS, }; enum interp { INTERP_NATURAL, INTERP_PCHIP, NB_INTERPS, }; typedef struct CurvesContext { const AVClass *class; int preset; char *comp_points_str[NB_COMP + 1]; char *comp_points_str_all; uint16_t *graph[NB_COMP + 1]; int lut_size; char *psfile; uint8_t rgba_map[4]; int step; char *plot_filename; int saved_plot; int is_16bit; int depth; int parsed_psfile; int interp; int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } CurvesContext; typedef struct ThreadData { AVFrame *in, *out; } ThreadData; #define OFFSET(x) offsetof(CurvesContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption curves_options[] = { { "preset", "select a color curves preset", OFFSET(preset), AV_OPT_TYPE_INT, {.i64=PRESET_NONE}, PRESET_NONE, NB_PRESETS-1, FLAGS, "preset_name" }, { "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NONE}, 0, 0, FLAGS, "preset_name" }, { "color_negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_COLOR_NEGATIVE}, 0, 0, FLAGS, "preset_name" }, { "cross_process", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_CROSS_PROCESS}, 0, 0, FLAGS, "preset_name" }, { "darker", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_DARKER}, 0, 0, FLAGS, "preset_name" }, { "increase_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_INCREASE_CONTRAST}, 0, 0, FLAGS, "preset_name" }, { "lighter", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LIGHTER}, 0, 0, FLAGS, "preset_name" }, { "linear_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LINEAR_CONTRAST}, 0, 0, FLAGS, "preset_name" }, { "medium_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_MEDIUM_CONTRAST}, 0, 0, FLAGS, "preset_name" }, { "negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NEGATIVE}, 0, 0, FLAGS, "preset_name" }, { "strong_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_STRONG_CONTRAST}, 0, 0, FLAGS, "preset_name" }, { "vintage", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_VINTAGE}, 0, 0, FLAGS, "preset_name" }, { "master","set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "m", "set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "red", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "r", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "green", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "g", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "blue", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "b", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "all", "set points coordinates for all components", OFFSET(comp_points_str_all), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "psfile", "set Photoshop curves file name", OFFSET(psfile), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "plot", "save Gnuplot script of the curves in specified file", OFFSET(plot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "interp", "specify the kind of interpolation", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=INTERP_NATURAL}, INTERP_NATURAL, NB_INTERPS-1, FLAGS, "interp_name" }, { "natural", "natural cubic spline", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NATURAL}, 0, 0, FLAGS, "interp_name" }, { "pchip", "monotonically cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_PCHIP}, 0, 0, FLAGS, "interp_name" }, { NULL } }; AVFILTER_DEFINE_CLASS(curves); static const struct { const char *r; const char *g; const char *b; const char *master; } curves_presets[] = { [PRESET_COLOR_NEGATIVE] = { "0.129/1 0.466/0.498 0.725/0", "0.109/1 0.301/0.498 0.517/0", "0.098/1 0.235/0.498 0.423/0", }, [PRESET_CROSS_PROCESS] = { "0/0 0.25/0.156 0.501/0.501 0.686/0.745 1/1", "0/0 0.25/0.188 0.38/0.501 0.745/0.815 1/0.815", "0/0 0.231/0.094 0.709/0.874 1/1", }, [PRESET_DARKER] = { .master = "0/0 0.5/0.4 1/1" }, [PRESET_INCREASE_CONTRAST] = { .master = "0/0 0.149/0.066 0.831/0.905 0.905/0.98 1/1" }, [PRESET_LIGHTER] = { .master = "0/0 0.4/0.5 1/1" }, [PRESET_LINEAR_CONTRAST] = { .master = "0/0 0.305/0.286 0.694/0.713 1/1" }, [PRESET_MEDIUM_CONTRAST] = { .master = "0/0 0.286/0.219 0.639/0.643 1/1" }, [PRESET_NEGATIVE] = { .master = "0/1 1/0" }, [PRESET_STRONG_CONTRAST] = { .master = "0/0 0.301/0.196 0.592/0.6 0.686/0.737 1/1" }, [PRESET_VINTAGE] = { "0/0.11 0.42/0.51 1/0.95", "0/0 0.50/0.48 1/1", "0/0.22 0.49/0.44 1/0.8", } }; static struct keypoint *make_point(double x, double y, struct keypoint *next) { struct keypoint *point = av_mallocz(sizeof(*point)); if (!point) return NULL; point->x = x; point->y = y; point->next = next; return point; } static int parse_points_str(AVFilterContext *ctx, struct keypoint **points, const char *s, int lut_size) { char *p = (char *)s; // strtod won't alter the string struct keypoint *last = NULL; const int scale = lut_size - 1; /* construct a linked list based on the key points string */ while (p && *p) { struct keypoint *point = make_point(0, 0, NULL); if (!point) return AVERROR(ENOMEM); point->x = av_strtod(p, &p); if (p && *p) p++; point->y = av_strtod(p, &p); if (p && *p) p++; if (point->x < 0 || point->x > 1 || point->y < 0 || point->y > 1) { av_log(ctx, AV_LOG_ERROR, "Invalid key point coordinates (%f;%f), " "x and y must be in the [0;1] range.\n", point->x, point->y); return AVERROR(EINVAL); } if (!*points) *points = point; if (last) { if ((int)(last->x * scale) >= (int)(point->x * scale)) { av_log(ctx, AV_LOG_ERROR, "Key point coordinates (%f;%f) " "and (%f;%f) are too close from each other or not " "strictly increasing on the x-axis\n", last->x, last->y, point->x, point->y); return AVERROR(EINVAL); } last->next = point; } last = point; } if (*points && !(*points)->next) { av_log(ctx, AV_LOG_WARNING, "Only one point (at (%f;%f)) is defined, " "this is unlikely to behave as you expect. You probably want" "at least 2 points.", (*points)->x, (*points)->y); } return 0; } static int get_nb_points(const struct keypoint *d) { int n = 0; while (d) { n++; d = d->next; } return n; } /** * Natural cubic spline interpolation * Finding curves using Cubic Splines notes by Steven Rauch and John Stockie. * @see http://people.math.sfu.ca/~stockie/teaching/macm316/notes/splines.pdf */ #define CLIP(v) (nbits == 8 ? av_clip_uint8(v) : av_clip_uintp2_c(v, nbits)) static inline int interpolate(void *log_ctx, uint16_t *y, const struct keypoint *points, int nbits) { int i, ret = 0; const struct keypoint *point = points; double xprev = 0; const int lut_size = 1<<nbits; const int scale = lut_size - 1; double (*matrix)[3]; double *h, *r; const int n = get_nb_points(points); // number of splines if (n == 0) { for (i = 0; i < lut_size; i++) y[i] = i; return 0; } if (n == 1) { for (i = 0; i < lut_size; i++) y[i] = CLIP(point->y * scale); return 0; } matrix = av_calloc(n, sizeof(*matrix)); h = av_malloc((n - 1) * sizeof(*h)); r = av_calloc(n, sizeof(*r)); if (!matrix || !h || !r) { ret = AVERROR(ENOMEM); goto end; } /* h(i) = x(i+1) - x(i) */ i = -1; for (point = points; point; point = point->next) { if (i != -1) h[i] = point->x - xprev; xprev = point->x; i++; } /* right-side of the polynomials, will be modified to contains the solution */ point = points; for (i = 1; i < n - 1; i++) { const double yp = point->y; const double yc = point->next->y; const double yn = point->next->next->y; r[i] = 6 * ((yn-yc)/h[i] - (yc-yp)/h[i-1]); point = point->next; } #define BD 0 /* sub diagonal (below main) */ #define MD 1 /* main diagonal (center) */ #define AD 2 /* sup diagonal (above main) */ /* left side of the polynomials into a tridiagonal matrix. */ matrix[0][MD] = matrix[n - 1][MD] = 1; for (i = 1; i < n - 1; i++) { matrix[i][BD] = h[i-1]; matrix[i][MD] = 2 * (h[i-1] + h[i]); matrix[i][AD] = h[i]; } /* tridiagonal solving of the linear system */ for (i = 1; i < n; i++) { const double den = matrix[i][MD] - matrix[i][BD] * matrix[i-1][AD]; const double k = den ? 1./den : 1.; matrix[i][AD] *= k; r[i] = (r[i] - matrix[i][BD] * r[i - 1]) * k; } for (i = n - 2; i >= 0; i--) r[i] = r[i] - matrix[i][AD] * r[i + 1]; point = points; /* left padding */ for (i = 0; i < (int)(point->x * scale); i++) y[i] = CLIP(point->y * scale); /* compute the graph with x=[x0..xN] */ i = 0; av_assert0(point->next); // always at least 2 key points while (point->next) { const double yc = point->y; const double yn = point->next->y; const double a = yc; const double b = (yn-yc)/h[i] - h[i]*r[i]/2. - h[i]*(r[i+1]-r[i])/6.; const double c = r[i] / 2.; const double d = (r[i+1] - r[i]) / (6.*h[i]); int x; const int x_start = point->x * scale; const int x_end = point->next->x * scale; av_assert0(x_start >= 0 && x_start < lut_size && x_end >= 0 && x_end < lut_size); for (x = x_start; x <= x_end; x++) { const double xx = (x - x_start) * 1./scale; const double yy = a + b*xx + c*xx*xx + d*xx*xx*xx; y[x] = CLIP(yy * scale); av_log(log_ctx, AV_LOG_DEBUG, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]); } point = point->next; i++; } /* right padding */ for (i = (int)(point->x * scale); i < lut_size; i++) y[i] = CLIP(point->y * scale); end: av_free(matrix); av_free(h); av_free(r); return ret; } #define SIGN(x) (x > 0.0 ? 1 : x < 0.0 ? -1 : 0) /** * Evalaute the derivative of an edge endpoint * * @param h0 input interval of the interval closest to the edge * @param h1 input interval of the interval next to the closest * @param m0 linear slope of the interval closest to the edge * @param m1 linear slope of the intervalnext to the closest * @return edge endpoint derivative * * Based on scipy.interpolate._edge_case() * https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L239 * which is a python implementation of the special case endpoints, as suggested in * Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (pchiptx.m) */ static double pchip_edge_case(double h0, double h1, double m0, double m1) { int mask, mask2; double d; d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1); mask = SIGN(d) != SIGN(m0); mask2 = (SIGN(m0) != SIGN(m1)) && (fabs(d) > 3. * fabs(m0)); if (mask) d = 0.0; else if (mask2) d = 3.0 * m0; return d; } /** * Evalaute the piecewise polynomial derivatives at endpoints * * @param n input interval of the interval closest to the edge * @param hk input intervals * @param mk linear slopes over intervals * @param dk endpoint derivatives (output) * @return 0 success * * Based on scipy.interpolate._find_derivatives() * https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L254 */ static int pchip_find_derivatives(const int n, const double *hk, const double *mk, double *dk) { int ret = 0; const int m = n - 1; int8_t *smk; smk = av_malloc(n); if (!smk) { ret = AVERROR(ENOMEM); goto end; } /* smk = sgn(mk) */ for (int i = 0; i < n; i++) smk[i] = SIGN(mk[i]); /* check the strict monotonicity */ for (int i = 0; i < m; i++) { int8_t condition = (smk[i + 1] != smk[i]) || (mk[i + 1] == 0) || (mk[i] == 0); if (condition) { dk[i + 1] = 0.0; } else { double w1 = 2 * hk[i + 1] + hk[i]; double w2 = hk[i + 1] + 2 * hk[i]; dk[i + 1] = (w1 + w2) / (w1 / mk[i] + w2 / mk[i + 1]); } } dk[0] = pchip_edge_case(hk[0], hk[1], mk[0], mk[1]); dk[n] = pchip_edge_case(hk[n - 1], hk[n - 2], mk[n - 1], mk[n - 2]); end: av_free(smk); return ret; } /** * Evalaute half of the cubic hermite interpolation expression, wrt one interval endpoint * * @param x normalized input value at the endpoint * @param f output value at the endpoint * @param d derivative at the endpoint: normalized to the interval, and properly sign adjusted * @return half of the interpolated value */ static inline double interp_cubic_hermite_half(const double x, const double f, const double d) { double x2 = x * x, x3 = x2 * x; return f * (3.0 * x2 - 2.0 * x3) + d * (x3 - x2); } /** * Prepare the lookup table by piecewise monotonic cubic interpolation (PCHIP) * * @param log_ctx for logging * @param y output lookup table (output) * @param points user-defined control points/endpoints * @param nbits bitdepth * @return 0 success * * References: * [1] F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise * cubic interpolants, SIAM J. Sci. Comput., 5(2), 300-304 (1984). DOI:10.1137/0905021. * [2] scipy.interpolate: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html */ static inline int interpolate_pchip(void *log_ctx, uint16_t *y, const struct keypoint *points, int nbits) { const struct keypoint *point = points; const int lut_size = 1<<nbits; const int n = get_nb_points(points); // number of endpoints double *xi, *fi, *di, *hi, *mi; const int scale = lut_size - 1; // white value uint16_t x; /* input index/value */ int ret = 0; /* no change for n = 0 or 1 */ if (n == 0) { /* no points, no change */ for (int i = 0; i < lut_size; i++) y[i] = i; return 0; } if (n == 1) { /* 1 point - 1 color everywhere */ const uint16_t yval = CLIP(point->y * scale); for (int i = 0; i < lut_size; i++) y[i] = yval; return 0; } xi = av_calloc(3*n + 2*(n-1), sizeof(double)); /* output values at interval endpoints */ if (!xi) { ret = AVERROR(ENOMEM); goto end; } fi = xi + n; /* output values at inteval endpoints */ di = fi + n; /* output slope wrt normalized input at interval endpoints */ hi = di + n; /* interval widths */ mi = hi + n - 1; /* linear slope over intervals */ /* scale endpoints and store them in a contiguous memory block */ for (int i = 0; i < n; i++) { xi[i] = point->x * scale; fi[i] = point->y * scale; point = point->next; } /* h(i) = x(i+1) - x(i); mi(i) = (f(i+1)-f(i))/h(i) */ for (int i = 0; i < n - 1; i++) { const double val = (xi[i+1]-xi[i]); hi[i] = val; mi[i] = (fi[i+1]-fi[i]) / val; } if (n == 2) { /* edge case, use linear interpolation */ const double m = mi[0], b = fi[0] - xi[0]*m; for (int i = 0; i < lut_size; i++) y[i] = CLIP(i*m + b); goto end; } /* compute the derivatives at the endpoints*/ ret = pchip_find_derivatives(n-1, hi, mi, di); if (ret) goto end; /* interpolate/extrapolate */ x = 0; if (xi[0] > 0) { /* below first endpoint, use the first endpoint value*/ const double xi0 = xi[0]; const double yi0 = fi[0]; const uint16_t yval = CLIP(yi0); for (; x < xi0; x++) { y[x] = yval; av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi0, yi0, x, y[x]); } av_log(log_ctx, AV_LOG_DEBUG, "Interval -1: [0, %d] -> %d\n", x - 1, yval); } /* for each interval */ for (int i = 0, x0 = x; i < n-1; i++, x0 = x) { const double xi0 = xi[i]; /* start-of-interval input value */ const double xi1 = xi[i + 1]; /* end-of-interval input value */ const double h = hi[i]; /* interval width */ const double f0 = fi[i]; /* start-of-interval output value */ const double f1 = fi[i + 1]; /* end-of-interval output value */ const double d0 = di[i]; /* start-of-interval derivative */ const double d1 = di[i + 1]; /* end-of-interval derivative */ /* fill the lut over the interval */ for (; x < xi1; x++) { /* safe not to check j < lut_size */ const double xx = (x - xi0) / h; /* normalize input */ const double yy = interp_cubic_hermite_half(1 - xx, f0, -h * d0) + interp_cubic_hermite_half(xx, f1, h * d1); y[x] = CLIP(yy); av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]); } if (x > x0) av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> [%d, %d]\n", i, x0, x-1, y[x0], y[x-1]); else av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: empty\n", i); } if (x && x < lut_size) { /* above the last endpoint, use the last endpoint value*/ const double xi1 = xi[n - 1]; const double yi1 = fi[n - 1]; const uint16_t yval = CLIP(yi1); av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> %d\n", n-1, x, lut_size - 1, yval); for (; x && x < lut_size; x++) { /* loop until int overflow */ y[x] = yval; av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi1, yi1, x, yval); } } end: av_free(xi); return ret; } static int parse_psfile(AVFilterContext *ctx, const char *fname) { CurvesContext *curves = ctx->priv; uint8_t *buf; size_t size; int i, ret, av_unused(version), nb_curves; AVBPrint ptstr; static const int comp_ids[] = {3, 0, 1, 2}; av_bprint_init(&ptstr, 0, AV_BPRINT_SIZE_AUTOMATIC); ret = av_file_map(fname, &buf, &size, 0, NULL); if (ret < 0) return ret; #define READ16(dst) do { \ if (size < 2) { \ ret = AVERROR_INVALIDDATA; \ goto end; \ } \ dst = AV_RB16(buf); \ buf += 2; \ size -= 2; \ } while (0) READ16(version); READ16(nb_curves); for (i = 0; i < FFMIN(nb_curves, FF_ARRAY_ELEMS(comp_ids)); i++) { int nb_points, n; av_bprint_clear(&ptstr); READ16(nb_points); for (n = 0; n < nb_points; n++) { int y, x; READ16(y); READ16(x); av_bprintf(&ptstr, "%f/%f ", x / 255., y / 255.); } if (*ptstr.str) { char **pts = &curves->comp_points_str[comp_ids[i]]; if (!*pts) { *pts = av_strdup(ptstr.str); av_log(ctx, AV_LOG_DEBUG, "curves %d (intid=%d) [%d points]: [%s]\n", i, comp_ids[i], nb_points, *pts); if (!*pts) { ret = AVERROR(ENOMEM); goto end; } } } } end: av_bprint_finalize(&ptstr, NULL); av_file_unmap(buf, size); return ret; } static int dump_curves(const char *fname, uint16_t *graph[NB_COMP + 1], struct keypoint *comp_points[NB_COMP + 1], int lut_size) { int i; AVBPrint buf; const double scale = 1. / (lut_size - 1); static const char * const colors[] = { "red", "green", "blue", "#404040", }; FILE *f = avpriv_fopen_utf8(fname, "w"); av_assert0(FF_ARRAY_ELEMS(colors) == NB_COMP + 1); if (!f) { int ret = AVERROR(errno); av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n", fname, av_err2str(ret)); return ret; } av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED); av_bprintf(&buf, "set xtics 0.1\n"); av_bprintf(&buf, "set ytics 0.1\n"); av_bprintf(&buf, "set size square\n"); av_bprintf(&buf, "set grid\n"); for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) { av_bprintf(&buf, "%s'-' using 1:2 with lines lc '%s' title ''", i ? ", " : "plot ", colors[i]); if (comp_points[i]) av_bprintf(&buf, ", '-' using 1:2 with points pointtype 3 lc '%s' title ''", colors[i]); } av_bprintf(&buf, "\n"); for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) { int x; /* plot generated values */ for (x = 0; x < lut_size; x++) av_bprintf(&buf, "%f %f\n", x * scale, graph[i][x] * scale); av_bprintf(&buf, "e\n"); /* plot user knots */ if (comp_points[i]) { const struct keypoint *point = comp_points[i]; while (point) { av_bprintf(&buf, "%f %f\n", point->x, point->y); point = point->next; } av_bprintf(&buf, "e\n"); } } fwrite(buf.str, 1, buf.len, f); fclose(f); av_bprint_finalize(&buf, NULL); return 0; } static av_cold int curves_init(AVFilterContext *ctx) { int i, ret; CurvesContext *curves = ctx->priv; char **pts = curves->comp_points_str; const char *allp = curves->comp_points_str_all; //if (!allp && curves->preset != PRESET_NONE && curves_presets[curves->preset].all) // allp = curves_presets[curves->preset].all; if (allp) { for (i = 0; i < NB_COMP; i++) { if (!pts[i]) pts[i] = av_strdup(allp); if (!pts[i]) return AVERROR(ENOMEM); } } if (curves->psfile && !curves->parsed_psfile) { ret = parse_psfile(ctx, curves->psfile); if (ret < 0) return ret; curves->parsed_psfile = 1; } if (curves->preset != PRESET_NONE) { #define SET_COMP_IF_NOT_SET(n, name) do { \ if (!pts[n] && curves_presets[curves->preset].name) { \ pts[n] = av_strdup(curves_presets[curves->preset].name); \ if (!pts[n]) \ return AVERROR(ENOMEM); \ } \ } while (0) SET_COMP_IF_NOT_SET(0, r); SET_COMP_IF_NOT_SET(1, g); SET_COMP_IF_NOT_SET(2, b); SET_COMP_IF_NOT_SET(3, master); curves->preset = PRESET_NONE; } return 0; } static int filter_slice_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { int x, y; const CurvesContext *curves = ctx->priv; const ThreadData *td = arg; const AVFrame *in = td->in; const AVFrame *out = td->out; const int direct = out == in; const int step = curves->step; const uint8_t r = curves->rgba_map[R]; const uint8_t g = curves->rgba_map[G]; const uint8_t b = curves->rgba_map[B]; const uint8_t a = curves->rgba_map[A]; const int slice_start = (in->height * jobnr ) / nb_jobs; const int slice_end = (in->height * (jobnr+1)) / nb_jobs; if (curves->is_16bit) { for (y = slice_start; y < slice_end; y++) { uint16_t *dstp = ( uint16_t *)(out->data[0] + y * out->linesize[0]); const uint16_t *srcp = (const uint16_t *)(in ->data[0] + y * in->linesize[0]); for (x = 0; x < in->width * step; x += step) { dstp[x + r] = curves->graph[R][srcp[x + r]]; dstp[x + g] = curves->graph[G][srcp[x + g]]; dstp[x + b] = curves->graph[B][srcp[x + b]]; if (!direct && step == 4) dstp[x + a] = srcp[x + a]; } } } else { uint8_t *dst = out->data[0] + slice_start * out->linesize[0]; const uint8_t *src = in->data[0] + slice_start * in->linesize[0]; for (y = slice_start; y < slice_end; y++) { for (x = 0; x < in->width * step; x += step) { dst[x + r] = curves->graph[R][src[x + r]]; dst[x + g] = curves->graph[G][src[x + g]]; dst[x + b] = curves->graph[B][src[x + b]]; if (!direct && step == 4) dst[x + a] = src[x + a]; } dst += out->linesize[0]; src += in ->linesize[0]; } } return 0; } static int filter_slice_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { int x, y; const CurvesContext *curves = ctx->priv; const ThreadData *td = arg; const AVFrame *in = td->in; const AVFrame *out = td->out; const int direct = out == in; const int step = curves->step; const uint8_t r = curves->rgba_map[R]; const uint8_t g = curves->rgba_map[G]; const uint8_t b = curves->rgba_map[B]; const uint8_t a = curves->rgba_map[A]; const int slice_start = (in->height * jobnr ) / nb_jobs; const int slice_end = (in->height * (jobnr+1)) / nb_jobs; if (curves->is_16bit) { for (y = slice_start; y < slice_end; y++) { uint16_t *dstrp = ( uint16_t *)(out->data[r] + y * out->linesize[r]); uint16_t *dstgp = ( uint16_t *)(out->data[g] + y * out->linesize[g]); uint16_t *dstbp = ( uint16_t *)(out->data[b] + y * out->linesize[b]); uint16_t *dstap = ( uint16_t *)(out->data[a] + y * out->linesize[a]); const uint16_t *srcrp = (const uint16_t *)(in ->data[r] + y * in->linesize[r]); const uint16_t *srcgp = (const uint16_t *)(in ->data[g] + y * in->linesize[g]); const uint16_t *srcbp = (const uint16_t *)(in ->data[b] + y * in->linesize[b]); const uint16_t *srcap = (const uint16_t *)(in ->data[a] + y * in->linesize[a]); for (x = 0; x < in->width; x++) { dstrp[x] = curves->graph[R][srcrp[x]]; dstgp[x] = curves->graph[G][srcgp[x]]; dstbp[x] = curves->graph[B][srcbp[x]]; if (!direct && step == 4) dstap[x] = srcap[x]; } } } else { uint8_t *dstr = out->data[r] + slice_start * out->linesize[r]; uint8_t *dstg = out->data[g] + slice_start * out->linesize[g]; uint8_t *dstb = out->data[b] + slice_start * out->linesize[b]; uint8_t *dsta = out->data[a] + slice_start * out->linesize[a]; const uint8_t *srcr = in->data[r] + slice_start * in->linesize[r]; const uint8_t *srcg = in->data[g] + slice_start * in->linesize[g]; const uint8_t *srcb = in->data[b] + slice_start * in->linesize[b]; const uint8_t *srca = in->data[a] + slice_start * in->linesize[a]; for (y = slice_start; y < slice_end; y++) { for (x = 0; x < in->width; x++) { dstr[x] = curves->graph[R][srcr[x]]; dstg[x] = curves->graph[G][srcg[x]]; dstb[x] = curves->graph[B][srcb[x]]; if (!direct && step == 4) dsta[x] = srca[x]; } dstr += out->linesize[r]; dstg += out->linesize[g]; dstb += out->linesize[b]; dsta += out->linesize[a]; srcr += in ->linesize[r]; srcg += in ->linesize[g]; srcb += in ->linesize[b]; srca += in ->linesize[a]; } } return 0; } static int config_input(AVFilterLink *inlink) { int i, j, ret; AVFilterContext *ctx = inlink->dst; CurvesContext *curves = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); char **pts = curves->comp_points_str; struct keypoint *comp_points[NB_COMP + 1] = {0}; ff_fill_rgba_map(curves->rgba_map, inlink->format); curves->is_16bit = desc->comp[0].depth > 8; curves->depth = desc->comp[0].depth; curves->lut_size = 1 << curves->depth; curves->step = av_get_padded_bits_per_pixel(desc) >> (3 + curves->is_16bit); curves->filter_slice = desc->flags & AV_PIX_FMT_FLAG_PLANAR ? filter_slice_planar : filter_slice_packed; for (i = 0; i < NB_COMP + 1; i++) { if (!curves->graph[i]) curves->graph[i] = av_calloc(curves->lut_size, sizeof(*curves->graph[0])); if (!curves->graph[i]) return AVERROR(ENOMEM); ret = parse_points_str(ctx, comp_points + i, curves->comp_points_str[i], curves->lut_size); if (ret < 0) return ret; if (curves->interp == INTERP_PCHIP) ret = interpolate_pchip(ctx, curves->graph[i], comp_points[i], curves->depth); else ret = interpolate(ctx, curves->graph[i], comp_points[i], curves->depth); if (ret < 0) return ret; } if (pts[NB_COMP]) { for (i = 0; i < NB_COMP; i++) for (j = 0; j < curves->lut_size; j++) curves->graph[i][j] = curves->graph[NB_COMP][curves->graph[i][j]]; } if (av_log_get_level() >= AV_LOG_VERBOSE) { for (i = 0; i < NB_COMP; i++) { const struct keypoint *point = comp_points[i]; av_log(ctx, AV_LOG_VERBOSE, "#%d points:", i); while (point) { av_log(ctx, AV_LOG_VERBOSE, " (%f;%f)", point->x, point->y); point = point->next; } } } if (curves->plot_filename && !curves->saved_plot) { dump_curves(curves->plot_filename, curves->graph, comp_points, curves->lut_size); curves->saved_plot = 1; } for (i = 0; i < NB_COMP + 1; i++) { struct keypoint *point = comp_points[i]; while (point) { struct keypoint *next = point->next; av_free(point); point = next; } } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; CurvesContext *curves = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; ThreadData td; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } td.in = in; td.out = out; ff_filter_execute(ctx, curves->filter_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); if (out != in) av_frame_free(&in); return ff_filter_frame(outlink, out); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { CurvesContext *curves = ctx->priv; int ret; if (!strcmp(cmd, "plot")) { curves->saved_plot = 0; } else if (!strcmp(cmd, "all") || !strcmp(cmd, "preset") || !strcmp(cmd, "psfile") || !strcmp(cmd, "interp")) { if (!strcmp(cmd, "psfile")) curves->parsed_psfile = 0; av_freep(&curves->comp_points_str_all); av_freep(&curves->comp_points_str[0]); av_freep(&curves->comp_points_str[1]); av_freep(&curves->comp_points_str[2]); av_freep(&curves->comp_points_str[NB_COMP]); } else if (!strcmp(cmd, "red") || !strcmp(cmd, "r")) { av_freep(&curves->comp_points_str[0]); } else if (!strcmp(cmd, "green") || !strcmp(cmd, "g")) { av_freep(&curves->comp_points_str[1]); } else if (!strcmp(cmd, "blue") || !strcmp(cmd, "b")) { av_freep(&curves->comp_points_str[2]); } else if (!strcmp(cmd, "master") || !strcmp(cmd, "m")) { av_freep(&curves->comp_points_str[NB_COMP]); } ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; ret = curves_init(ctx); if (ret < 0) return ret; return config_input(ctx->inputs[0]); } static av_cold void curves_uninit(AVFilterContext *ctx) { int i; CurvesContext *curves = ctx->priv; for (i = 0; i < NB_COMP + 1; i++) av_freep(&curves->graph[i]); } static const AVFilterPad curves_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, }; const AVFilter ff_vf_curves = { .name = "curves", .description = NULL_IF_CONFIG_SMALL("Adjust components curves."), .priv_size = sizeof(CurvesContext), .init = curves_init, .uninit = curves_uninit, FILTER_INPUTS(curves_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS(AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16), .priv_class = &curves_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, };