/* * Copyright (c) 2011 Jan Kokemüller * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * This file is based on libebur128 which is available at * https://github.com/jiixyj/libebur128/ * * Libebur128 has the following copyright: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "ebur128.h" #include <float.h> #include <limits.h> #include <math.h> /* You may have to define _USE_MATH_DEFINES if you use MSVC */ #include "libavutil/common.h" #include "libavutil/mem.h" #include "libavutil/thread.h" #define CHECK_ERROR(condition, errorcode, goto_point) \ if ((condition)) { \ errcode = (errorcode); \ goto goto_point; \ } #define ALMOST_ZERO 0.000001 #define RELATIVE_GATE (-10.0) #define RELATIVE_GATE_FACTOR pow(10.0, RELATIVE_GATE / 10.0) #define MINUS_20DB pow(10.0, -20.0 / 10.0) struct FFEBUR128StateInternal { /** Filtered audio data (used as ring buffer). */ double *audio_data; /** Size of audio_data array. */ size_t audio_data_frames; /** Current index for audio_data. */ size_t audio_data_index; /** How many frames are needed for a gating block. Will correspond to 400ms * of audio at initialization, and 100ms after the first block (75% overlap * as specified in the 2011 revision of BS1770). */ unsigned long needed_frames; /** The channel map. Has as many elements as there are channels. */ int *channel_map; /** How many samples fit in 100ms (rounded). */ unsigned long samples_in_100ms; /** BS.1770 filter coefficients (nominator). */ double b[5]; /** BS.1770 filter coefficients (denominator). */ double a[5]; /** BS.1770 filter state. */ double v[5][5]; /** Histograms, used to calculate LRA. */ unsigned long *block_energy_histogram; unsigned long *short_term_block_energy_histogram; /** Keeps track of when a new short term block is needed. */ size_t short_term_frame_counter; /** Maximum sample peak, one per channel */ double *sample_peak; /** The maximum window duration in ms. */ unsigned long window; /** Data pointer array for interleaved data */ void **data_ptrs; }; static AVOnce histogram_init = AV_ONCE_INIT; static DECLARE_ALIGNED(32, double, histogram_energies)[1000]; static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001]; static void ebur128_init_filter(FFEBUR128State * st) { int i, j; double f0 = 1681.974450955533; double G = 3.999843853973347; double Q = 0.7071752369554196; double K = tan(M_PI * f0 / (double) st->samplerate); double Vh = pow(10.0, G / 20.0); double Vb = pow(Vh, 0.4996667741545416); double pb[3] = { 0.0, 0.0, 0.0 }; double pa[3] = { 1.0, 0.0, 0.0 }; double rb[3] = { 1.0, -2.0, 1.0 }; double ra[3] = { 1.0, 0.0, 0.0 }; double a0 = 1.0 + K / Q + K * K; pb[0] = (Vh + Vb * K / Q + K * K) / a0; pb[1] = 2.0 * (K * K - Vh) / a0; pb[2] = (Vh - Vb * K / Q + K * K) / a0; pa[1] = 2.0 * (K * K - 1.0) / a0; pa[2] = (1.0 - K / Q + K * K) / a0; f0 = 38.13547087602444; Q = 0.5003270373238773; K = tan(M_PI * f0 / (double) st->samplerate); ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K); ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K); st->d->b[0] = pb[0] * rb[0]; st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0]; st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0]; st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1]; st->d->b[4] = pb[2] * rb[2]; st->d->a[0] = pa[0] * ra[0]; st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0]; st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0]; st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1]; st->d->a[4] = pa[2] * ra[2]; for (i = 0; i < 5; ++i) { for (j = 0; j < 5; ++j) { st->d->v[i][j] = 0.0; } } } static int ebur128_init_channel_map(FFEBUR128State * st) { size_t i; st->d->channel_map = (int *) av_malloc_array(st->channels, sizeof(int)); if (!st->d->channel_map) return AVERROR(ENOMEM); if (st->channels == 4) { st->d->channel_map[0] = FF_EBUR128_LEFT; st->d->channel_map[1] = FF_EBUR128_RIGHT; st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND; st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND; } else if (st->channels == 5) { st->d->channel_map[0] = FF_EBUR128_LEFT; st->d->channel_map[1] = FF_EBUR128_RIGHT; st->d->channel_map[2] = FF_EBUR128_CENTER; st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND; st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND; } else { for (i = 0; i < st->channels; ++i) { switch (i) { case 0: st->d->channel_map[i] = FF_EBUR128_LEFT; break; case 1: st->d->channel_map[i] = FF_EBUR128_RIGHT; break; case 2: st->d->channel_map[i] = FF_EBUR128_CENTER; break; case 3: st->d->channel_map[i] = FF_EBUR128_UNUSED; break; case 4: st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND; break; case 5: st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND; break; default: st->d->channel_map[i] = FF_EBUR128_UNUSED; break; } } } return 0; } static inline void init_histogram(void) { int i; /* initialize static constants */ histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0); for (i = 0; i < 1000; ++i) { histogram_energies[i] = pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0); } for (i = 1; i < 1001; ++i) { histogram_energy_boundaries[i] = pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0); } } FFEBUR128State *ff_ebur128_init(unsigned int channels, unsigned long samplerate, unsigned long window, int mode) { int errcode; FFEBUR128State *st; st = (FFEBUR128State *) av_malloc(sizeof(FFEBUR128State)); CHECK_ERROR(!st, 0, exit) st->d = (struct FFEBUR128StateInternal *) av_malloc(sizeof(struct FFEBUR128StateInternal)); CHECK_ERROR(!st->d, 0, free_state) st->channels = channels; errcode = ebur128_init_channel_map(st); CHECK_ERROR(errcode, 0, free_internal) st->d->sample_peak = (double *) av_mallocz_array(channels, sizeof(double)); CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map) st->samplerate = samplerate; st->d->samples_in_100ms = (st->samplerate + 5) / 10; st->mode = mode; if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) { st->d->window = FFMAX(window, 3000); } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) { st->d->window = FFMAX(window, 400); } else { goto free_sample_peak; } st->d->audio_data_frames = st->samplerate * st->d->window / 1000; if (st->d->audio_data_frames % st->d->samples_in_100ms) { /* round up to multiple of samples_in_100ms */ st->d->audio_data_frames = st->d->audio_data_frames + st->d->samples_in_100ms - (st->d->audio_data_frames % st->d->samples_in_100ms); } st->d->audio_data = (double *) av_mallocz_array(st->d->audio_data_frames, st->channels * sizeof(double)); CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak) ebur128_init_filter(st); st->d->block_energy_histogram = av_mallocz(1000 * sizeof(unsigned long)); CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data) st->d->short_term_block_energy_histogram = av_mallocz(1000 * sizeof(unsigned long)); CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0, free_block_energy_histogram) st->d->short_term_frame_counter = 0; /* the first block needs 400ms of audio data */ st->d->needed_frames = st->d->samples_in_100ms * 4; /* start at the beginning of the buffer */ st->d->audio_data_index = 0; if (ff_thread_once(&histogram_init, &init_histogram) != 0) goto free_short_term_block_energy_histogram; st->d->data_ptrs = av_malloc_array(channels, sizeof(void *)); CHECK_ERROR(!st->d->data_ptrs, 0, free_short_term_block_energy_histogram); return st; free_short_term_block_energy_histogram: av_free(st->d->short_term_block_energy_histogram); free_block_energy_histogram: av_free(st->d->block_energy_histogram); free_audio_data: av_free(st->d->audio_data); free_sample_peak: av_free(st->d->sample_peak); free_channel_map: av_free(st->d->channel_map); free_internal: av_free(st->d); free_state: av_free(st); exit: return NULL; } void ff_ebur128_destroy(FFEBUR128State ** st) { av_free((*st)->d->block_energy_histogram); av_free((*st)->d->short_term_block_energy_histogram); av_free((*st)->d->audio_data); av_free((*st)->d->channel_map); av_free((*st)->d->sample_peak); av_free((*st)->d->data_ptrs); av_free((*st)->d); av_free(*st); *st = NULL; } #define EBUR128_FILTER(type, scaling_factor) \ static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs, \ size_t src_index, size_t frames, \ int stride) { \ double* audio_data = st->d->audio_data + st->d->audio_data_index; \ size_t i, c; \ \ if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \ for (c = 0; c < st->channels; ++c) { \ double max = 0.0; \ for (i = 0; i < frames; ++i) { \ type v = srcs[c][src_index + i * stride]; \ if (v > max) { \ max = v; \ } else if (-v > max) { \ max = -1.0 * v; \ } \ } \ max /= scaling_factor; \ if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max; \ } \ } \ for (c = 0; c < st->channels; ++c) { \ int ci = st->d->channel_map[c] - 1; \ if (ci < 0) continue; \ else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */ \ for (i = 0; i < frames; ++i) { \ st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \ - st->d->a[1] * st->d->v[ci][1] \ - st->d->a[2] * st->d->v[ci][2] \ - st->d->a[3] * st->d->v[ci][3] \ - st->d->a[4] * st->d->v[ci][4]; \ audio_data[i * st->channels + c] = \ st->d->b[0] * st->d->v[ci][0] \ + st->d->b[1] * st->d->v[ci][1] \ + st->d->b[2] * st->d->v[ci][2] \ + st->d->b[3] * st->d->v[ci][3] \ + st->d->b[4] * st->d->v[ci][4]; \ st->d->v[ci][4] = st->d->v[ci][3]; \ st->d->v[ci][3] = st->d->v[ci][2]; \ st->d->v[ci][2] = st->d->v[ci][1]; \ st->d->v[ci][1] = st->d->v[ci][0]; \ } \ st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \ st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \ st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \ st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \ } \ } EBUR128_FILTER(short, -((double)SHRT_MIN)) EBUR128_FILTER(int, -((double)INT_MIN)) EBUR128_FILTER(float, 1.0) EBUR128_FILTER(double, 1.0) static double ebur128_energy_to_loudness(double energy) { return 10 * log10(energy) - 0.691; } static size_t find_histogram_index(double energy) { size_t index_min = 0; size_t index_max = 1000; size_t index_mid; do { index_mid = (index_min + index_max) / 2; if (energy >= histogram_energy_boundaries[index_mid]) { index_min = index_mid; } else { index_max = index_mid; } } while (index_max - index_min != 1); return index_min; } static void ebur128_calc_gating_block(FFEBUR128State * st, size_t frames_per_block, double *optional_output) { size_t i, c; double sum = 0.0; double channel_sum; for (c = 0; c < st->channels; ++c) { if (st->d->channel_map[c] == FF_EBUR128_UNUSED) continue; channel_sum = 0.0; if (st->d->audio_data_index < frames_per_block * st->channels) { for (i = 0; i < st->d->audio_data_index / st->channels; ++i) { channel_sum += st->d->audio_data[i * st->channels + c] * st->d->audio_data[i * st->channels + c]; } for (i = st->d->audio_data_frames - (frames_per_block - st->d->audio_data_index / st->channels); i < st->d->audio_data_frames; ++i) { channel_sum += st->d->audio_data[i * st->channels + c] * st->d->audio_data[i * st->channels + c]; } } else { for (i = st->d->audio_data_index / st->channels - frames_per_block; i < st->d->audio_data_index / st->channels; ++i) { channel_sum += st->d->audio_data[i * st->channels + c] * st->d->audio_data[i * st->channels + c]; } } if (st->d->channel_map[c] == FF_EBUR128_Mp110 || st->d->channel_map[c] == FF_EBUR128_Mm110 || st->d->channel_map[c] == FF_EBUR128_Mp060 || st->d->channel_map[c] == FF_EBUR128_Mm060 || st->d->channel_map[c] == FF_EBUR128_Mp090 || st->d->channel_map[c] == FF_EBUR128_Mm090) { channel_sum *= 1.41; } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) { channel_sum *= 2.0; } sum += channel_sum; } sum /= (double) frames_per_block; if (optional_output) { *optional_output = sum; } else if (sum >= histogram_energy_boundaries[0]) { ++st->d->block_energy_histogram[find_histogram_index(sum)]; } } int ff_ebur128_set_channel(FFEBUR128State * st, unsigned int channel_number, int value) { if (channel_number >= st->channels) { return 1; } if (value == FF_EBUR128_DUAL_MONO && (st->channels != 1 || channel_number != 0)) { return 1; } st->d->channel_map[channel_number] = value; return 0; } static int ebur128_energy_shortterm(FFEBUR128State * st, double *out); #define FF_EBUR128_ADD_FRAMES_PLANAR(type) \ void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs, \ size_t frames, int stride) { \ size_t src_index = 0; \ while (frames > 0) { \ if (frames >= st->d->needed_frames) { \ ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride); \ src_index += st->d->needed_frames * stride; \ frames -= st->d->needed_frames; \ st->d->audio_data_index += st->d->needed_frames * st->channels; \ /* calculate the new gating block */ \ if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) { \ ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL); \ } \ if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \ st->d->short_term_frame_counter += st->d->needed_frames; \ if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \ double st_energy; \ ebur128_energy_shortterm(st, &st_energy); \ if (st_energy >= histogram_energy_boundaries[0]) { \ ++st->d->short_term_block_energy_histogram[ \ find_histogram_index(st_energy)]; \ } \ st->d->short_term_frame_counter = st->d->samples_in_100ms * 20; \ } \ } \ /* 100ms are needed for all blocks besides the first one */ \ st->d->needed_frames = st->d->samples_in_100ms; \ /* reset audio_data_index when buffer full */ \ if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) { \ st->d->audio_data_index = 0; \ } \ } else { \ ebur128_filter_##type(st, srcs, src_index, frames, stride); \ st->d->audio_data_index += frames * st->channels; \ if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \ st->d->short_term_frame_counter += frames; \ } \ st->d->needed_frames -= frames; \ frames = 0; \ } \ } \ } FF_EBUR128_ADD_FRAMES_PLANAR(short) FF_EBUR128_ADD_FRAMES_PLANAR(int) FF_EBUR128_ADD_FRAMES_PLANAR(float) FF_EBUR128_ADD_FRAMES_PLANAR(double) #define FF_EBUR128_ADD_FRAMES(type) \ void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src, \ size_t frames) { \ int i; \ const type **buf = (const type**)st->d->data_ptrs; \ for (i = 0; i < st->channels; i++) \ buf[i] = src + i; \ ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels); \ } FF_EBUR128_ADD_FRAMES(short) FF_EBUR128_ADD_FRAMES(int) FF_EBUR128_ADD_FRAMES(float) FF_EBUR128_ADD_FRAMES(double) static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size, double *relative_threshold) { size_t i, j; int above_thresh_counter = 0; *relative_threshold = 0.0; for (i = 0; i < size; i++) { unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram; for (j = 0; j < 1000; ++j) { *relative_threshold += block_energy_histogram[j] * histogram_energies[j]; above_thresh_counter += block_energy_histogram[j]; } } if (above_thresh_counter != 0) { *relative_threshold /= (double)above_thresh_counter; *relative_threshold *= RELATIVE_GATE_FACTOR; } return above_thresh_counter; } static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size, double *out) { double gated_loudness = 0.0; double relative_threshold; size_t above_thresh_counter; size_t i, j, start_index; for (i = 0; i < size; i++) if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) return AVERROR(EINVAL); if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) { *out = -HUGE_VAL; return 0; } above_thresh_counter = 0; if (relative_threshold < histogram_energy_boundaries[0]) { start_index = 0; } else { start_index = find_histogram_index(relative_threshold); if (relative_threshold > histogram_energies[start_index]) { ++start_index; } } for (i = 0; i < size; i++) { for (j = start_index; j < 1000; ++j) { gated_loudness += sts[i]->d->block_energy_histogram[j] * histogram_energies[j]; above_thresh_counter += sts[i]->d->block_energy_histogram[j]; } } if (!above_thresh_counter) { *out = -HUGE_VAL; return 0; } gated_loudness /= (double) above_thresh_counter; *out = ebur128_energy_to_loudness(gated_loudness); return 0; } int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out) { double relative_threshold; if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) return AVERROR(EINVAL); if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) { *out = -70.0; return 0; } *out = ebur128_energy_to_loudness(relative_threshold); return 0; } int ff_ebur128_loudness_global(FFEBUR128State * st, double *out) { return ebur128_gated_loudness(&st, 1, out); } int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size, double *out) { return ebur128_gated_loudness(sts, size, out); } static int ebur128_energy_in_interval(FFEBUR128State * st, size_t interval_frames, double *out) { if (interval_frames > st->d->audio_data_frames) { return AVERROR(EINVAL); } ebur128_calc_gating_block(st, interval_frames, out); return 0; } static int ebur128_energy_shortterm(FFEBUR128State * st, double *out) { return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30, out); } int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out) { double energy; int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4, &energy); if (error) { return error; } else if (energy <= 0.0) { *out = -HUGE_VAL; return 0; } *out = ebur128_energy_to_loudness(energy); return 0; } int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out) { double energy; int error = ebur128_energy_shortterm(st, &energy); if (error) { return error; } else if (energy <= 0.0) { *out = -HUGE_VAL; return 0; } *out = ebur128_energy_to_loudness(energy); return 0; } int ff_ebur128_loudness_window(FFEBUR128State * st, unsigned long window, double *out) { double energy; size_t interval_frames = st->samplerate * window / 1000; int error = ebur128_energy_in_interval(st, interval_frames, &energy); if (error) { return error; } else if (energy <= 0.0) { *out = -HUGE_VAL; return 0; } *out = ebur128_energy_to_loudness(energy); return 0; } /* EBU - TECH 3342 */ int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size, double *out) { size_t i, j; size_t stl_size; double stl_power, stl_integrated; /* High and low percentile energy */ double h_en, l_en; unsigned long hist[1000] = { 0 }; size_t percentile_low, percentile_high; size_t index; for (i = 0; i < size; ++i) { if (sts[i]) { if ((sts[i]->mode & FF_EBUR128_MODE_LRA) != FF_EBUR128_MODE_LRA) { return AVERROR(EINVAL); } } } stl_size = 0; stl_power = 0.0; for (i = 0; i < size; ++i) { if (!sts[i]) continue; for (j = 0; j < 1000; ++j) { hist[j] += sts[i]->d->short_term_block_energy_histogram[j]; stl_size += sts[i]->d->short_term_block_energy_histogram[j]; stl_power += sts[i]->d->short_term_block_energy_histogram[j] * histogram_energies[j]; } } if (!stl_size) { *out = 0.0; return 0; } stl_power /= stl_size; stl_integrated = MINUS_20DB * stl_power; if (stl_integrated < histogram_energy_boundaries[0]) { index = 0; } else { index = find_histogram_index(stl_integrated); if (stl_integrated > histogram_energies[index]) { ++index; } } stl_size = 0; for (j = index; j < 1000; ++j) { stl_size += hist[j]; } if (!stl_size) { *out = 0.0; return 0; } percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5); percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5); stl_size = 0; j = index; while (stl_size <= percentile_low) { stl_size += hist[j++]; } l_en = histogram_energies[j - 1]; while (stl_size <= percentile_high) { stl_size += hist[j++]; } h_en = histogram_energies[j - 1]; *out = ebur128_energy_to_loudness(h_en) - ebur128_energy_to_loudness(l_en); return 0; } int ff_ebur128_loudness_range(FFEBUR128State * st, double *out) { return ff_ebur128_loudness_range_multiple(&st, 1, out); } int ff_ebur128_sample_peak(FFEBUR128State * st, unsigned int channel_number, double *out) { if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) != FF_EBUR128_MODE_SAMPLE_PEAK) { return AVERROR(EINVAL); } else if (channel_number >= st->channels) { return AVERROR(EINVAL); } *out = st->d->sample_peak[channel_number]; return 0; }