/* * Copyright (c) 2016 Kyle Swanson <k@ylo.ph>. * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* http://k.ylo.ph/2016/04/04/loudnorm.html */ #include "libavutil/opt.h" #include "avfilter.h" #include "internal.h" #include "audio.h" #include "ebur128.h" enum FrameType { FIRST_FRAME, INNER_FRAME, FINAL_FRAME, LINEAR_MODE, FRAME_NB }; enum LimiterState { OUT, ATTACK, SUSTAIN, RELEASE, STATE_NB }; enum PrintFormat { NONE, JSON, SUMMARY, PF_NB }; typedef struct LoudNormContext { const AVClass *class; double target_i; double target_lra; double target_tp; double measured_i; double measured_lra; double measured_tp; double measured_thresh; double offset; int linear; int dual_mono; enum PrintFormat print_format; double *buf; int buf_size; int buf_index; int prev_buf_index; double delta[30]; double weights[21]; double prev_delta; int index; double gain_reduction[2]; double *limiter_buf; double *prev_smp; int limiter_buf_index; int limiter_buf_size; enum LimiterState limiter_state; int peak_index; int env_index; int env_cnt; int attack_length; int release_length; int64_t pts; enum FrameType frame_type; int above_threshold; int prev_nb_samples; int channels; FFEBUR128State *r128_in; FFEBUR128State *r128_out; } LoudNormContext; #define OFFSET(x) offsetof(LoudNormContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption loudnorm_options[] = { { "I", "set integrated loudness target", OFFSET(target_i), AV_OPT_TYPE_DOUBLE, {.dbl = -24.}, -70., -5., FLAGS }, { "i", "set integrated loudness target", OFFSET(target_i), AV_OPT_TYPE_DOUBLE, {.dbl = -24.}, -70., -5., FLAGS }, { "LRA", "set loudness range target", OFFSET(target_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 7.}, 1., 20., FLAGS }, { "lra", "set loudness range target", OFFSET(target_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 7.}, 1., 20., FLAGS }, { "TP", "set maximum true peak", OFFSET(target_tp), AV_OPT_TYPE_DOUBLE, {.dbl = -2.}, -9., 0., FLAGS }, { "tp", "set maximum true peak", OFFSET(target_tp), AV_OPT_TYPE_DOUBLE, {.dbl = -2.}, -9., 0., FLAGS }, { "measured_I", "measured IL of input file", OFFSET(measured_i), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 0., FLAGS }, { "measured_i", "measured IL of input file", OFFSET(measured_i), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 0., FLAGS }, { "measured_LRA", "measured LRA of input file", OFFSET(measured_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, 0., 99., FLAGS }, { "measured_lra", "measured LRA of input file", OFFSET(measured_lra), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, 0., 99., FLAGS }, { "measured_TP", "measured true peak of input file", OFFSET(measured_tp), AV_OPT_TYPE_DOUBLE, {.dbl = 99.}, -99., 99., FLAGS }, { "measured_tp", "measured true peak of input file", OFFSET(measured_tp), AV_OPT_TYPE_DOUBLE, {.dbl = 99.}, -99., 99., FLAGS }, { "measured_thresh", "measured threshold of input file", OFFSET(measured_thresh), AV_OPT_TYPE_DOUBLE, {.dbl = -70.}, -99., 0., FLAGS }, { "offset", "set offset gain", OFFSET(offset), AV_OPT_TYPE_DOUBLE, {.dbl = 0.}, -99., 99., FLAGS }, { "linear", "normalize linearly if possible", OFFSET(linear), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS }, { "dual_mono", "treat mono input as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "print_format", "set print format for stats", OFFSET(print_format), AV_OPT_TYPE_INT, {.i64 = NONE}, NONE, PF_NB -1, FLAGS, "print_format" }, { "none", 0, 0, AV_OPT_TYPE_CONST, {.i64 = NONE}, 0, 0, FLAGS, "print_format" }, { "json", 0, 0, AV_OPT_TYPE_CONST, {.i64 = JSON}, 0, 0, FLAGS, "print_format" }, { "summary", 0, 0, AV_OPT_TYPE_CONST, {.i64 = SUMMARY}, 0, 0, FLAGS, "print_format" }, { NULL } }; AVFILTER_DEFINE_CLASS(loudnorm); static inline int frame_size(int sample_rate, int frame_len_msec) { const int frame_size = round((double)sample_rate * (frame_len_msec / 1000.0)); return frame_size + (frame_size % 2); } static void init_gaussian_filter(LoudNormContext *s) { double total_weight = 0.0; const double sigma = 3.5; double adjust; int i; const int offset = 21 / 2; const double c1 = 1.0 / (sigma * sqrt(2.0 * M_PI)); const double c2 = 2.0 * pow(sigma, 2.0); for (i = 0; i < 21; i++) { const int x = i - offset; s->weights[i] = c1 * exp(-(pow(x, 2.0) / c2)); total_weight += s->weights[i]; } adjust = 1.0 / total_weight; for (i = 0; i < 21; i++) s->weights[i] *= adjust; } static double gaussian_filter(LoudNormContext *s, int index) { double result = 0.; int i; index = index - 10 > 0 ? index - 10 : index + 20; for (i = 0; i < 21; i++) result += s->delta[((index + i) < 30) ? (index + i) : (index + i - 30)] * s->weights[i]; return result; } static void detect_peak(LoudNormContext *s, int offset, int nb_samples, int channels, int *peak_delta, double *peak_value) { int n, c, i, index; double ceiling; double *buf; *peak_delta = -1; buf = s->limiter_buf; ceiling = s->target_tp; index = s->limiter_buf_index + (offset * channels) + (1920 * channels); if (index >= s->limiter_buf_size) index -= s->limiter_buf_size; if (s->frame_type == FIRST_FRAME) { for (c = 0; c < channels; c++) s->prev_smp[c] = fabs(buf[index + c - channels]); } for (n = 0; n < nb_samples; n++) { for (c = 0; c < channels; c++) { double this, next, max_peak; this = fabs(buf[(index + c) < s->limiter_buf_size ? (index + c) : (index + c - s->limiter_buf_size)]); next = fabs(buf[(index + c + channels) < s->limiter_buf_size ? (index + c + channels) : (index + c + channels - s->limiter_buf_size)]); if ((s->prev_smp[c] <= this) && (next <= this) && (this > ceiling) && (n > 0)) { int detected; detected = 1; for (i = 2; i < 12; i++) { next = fabs(buf[(index + c + (i * channels)) < s->limiter_buf_size ? (index + c + (i * channels)) : (index + c + (i * channels) - s->limiter_buf_size)]); if (next > this) { detected = 0; break; } } if (!detected) continue; for (c = 0; c < channels; c++) { if (c == 0 || fabs(buf[index + c]) > max_peak) max_peak = fabs(buf[index + c]); s->prev_smp[c] = fabs(buf[(index + c) < s->limiter_buf_size ? (index + c) : (index + c - s->limiter_buf_size)]); } *peak_delta = n; s->peak_index = index; *peak_value = max_peak; return; } s->prev_smp[c] = this; } index += channels; if (index >= s->limiter_buf_size) index -= s->limiter_buf_size; } } static void true_peak_limiter(LoudNormContext *s, double *out, int nb_samples, int channels) { int n, c, index, peak_delta, smp_cnt; double ceiling, peak_value; double *buf; buf = s->limiter_buf; ceiling = s->target_tp; index = s->limiter_buf_index; smp_cnt = 0; if (s->frame_type == FIRST_FRAME) { double max; max = 0.; for (n = 0; n < 1920; n++) { for (c = 0; c < channels; c++) { max = fabs(buf[c]) > max ? fabs(buf[c]) : max; } buf += channels; } if (max > ceiling) { s->gain_reduction[1] = ceiling / max; s->limiter_state = SUSTAIN; buf = s->limiter_buf; for (n = 0; n < 1920; n++) { for (c = 0; c < channels; c++) { double env; env = s->gain_reduction[1]; buf[c] *= env; } buf += channels; } } buf = s->limiter_buf; } do { switch(s->limiter_state) { case OUT: detect_peak(s, smp_cnt, nb_samples - smp_cnt, channels, &peak_delta, &peak_value); if (peak_delta != -1) { s->env_cnt = 0; smp_cnt += (peak_delta - s->attack_length); s->gain_reduction[0] = 1.; s->gain_reduction[1] = ceiling / peak_value; s->limiter_state = ATTACK; s->env_index = s->peak_index - (s->attack_length * channels); if (s->env_index < 0) s->env_index += s->limiter_buf_size; s->env_index += (s->env_cnt * channels); if (s->env_index > s->limiter_buf_size) s->env_index -= s->limiter_buf_size; } else { smp_cnt = nb_samples; } break; case ATTACK: for (; s->env_cnt < s->attack_length; s->env_cnt++) { for (c = 0; c < channels; c++) { double env; env = s->gain_reduction[0] - ((double) s->env_cnt / (s->attack_length - 1) * (s->gain_reduction[0] - s->gain_reduction[1])); buf[s->env_index + c] *= env; } s->env_index += channels; if (s->env_index >= s->limiter_buf_size) s->env_index -= s->limiter_buf_size; smp_cnt++; if (smp_cnt >= nb_samples) { s->env_cnt++; break; } } if (smp_cnt < nb_samples) { s->env_cnt = 0; s->attack_length = 1920; s->limiter_state = SUSTAIN; } break; case SUSTAIN: detect_peak(s, smp_cnt, nb_samples, channels, &peak_delta, &peak_value); if (peak_delta == -1) { s->limiter_state = RELEASE; s->gain_reduction[0] = s->gain_reduction[1]; s->gain_reduction[1] = 1.; s->env_cnt = 0; break; } else { double gain_reduction; gain_reduction = ceiling / peak_value; if (gain_reduction < s->gain_reduction[1]) { s->limiter_state = ATTACK; s->attack_length = peak_delta; if (s->attack_length <= 1) s->attack_length = 2; s->gain_reduction[0] = s->gain_reduction[1]; s->gain_reduction[1] = gain_reduction; s->env_cnt = 0; break; } for (s->env_cnt = 0; s->env_cnt < peak_delta; s->env_cnt++) { for (c = 0; c < channels; c++) { double env; env = s->gain_reduction[1]; buf[s->env_index + c] *= env; } s->env_index += channels; if (s->env_index >= s->limiter_buf_size) s->env_index -= s->limiter_buf_size; smp_cnt++; if (smp_cnt >= nb_samples) { s->env_cnt++; break; } } } break; case RELEASE: for (; s->env_cnt < s->release_length; s->env_cnt++) { for (c = 0; c < channels; c++) { double env; env = s->gain_reduction[0] + (((double) s->env_cnt / (s->release_length - 1)) * (s->gain_reduction[1] - s->gain_reduction[0])); buf[s->env_index + c] *= env; } s->env_index += channels; if (s->env_index >= s->limiter_buf_size) s->env_index -= s->limiter_buf_size; smp_cnt++; if (smp_cnt >= nb_samples) { s->env_cnt++; break; } } if (smp_cnt < nb_samples) { s->env_cnt = 0; s->limiter_state = OUT; } break; } } while (smp_cnt < nb_samples); for (n = 0; n < nb_samples; n++) { for (c = 0; c < channels; c++) { out[c] = buf[index + c]; if (fabs(out[c]) > ceiling) { out[c] = ceiling * (out[c] < 0 ? -1 : 1); } } out += channels; index += channels; if (index >= s->limiter_buf_size) index -= s->limiter_buf_size; } } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LoudNormContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; const double *src; double *dst; double *buf; double *limiter_buf; int i, n, c, subframe_length, src_index; double gain, gain_next, env_global, env_shortterm, global, shortterm, lra, relative_threshold; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } if (s->pts == AV_NOPTS_VALUE) s->pts = in->pts; out->pts = s->pts; src = (const double *)in->data[0]; dst = (double *)out->data[0]; buf = s->buf; limiter_buf = s->limiter_buf; ff_ebur128_add_frames_double(s->r128_in, src, in->nb_samples); if (s->frame_type == FIRST_FRAME && in->nb_samples < frame_size(inlink->sample_rate, 3000)) { double offset, offset_tp, true_peak; ff_ebur128_loudness_global(s->r128_in, &global); for (c = 0; c < inlink->channels; c++) { double tmp; ff_ebur128_sample_peak(s->r128_in, c, &tmp); if (c == 0 || tmp > true_peak) true_peak = tmp; } offset = s->target_i - global; offset_tp = true_peak + offset; s->offset = offset_tp < s->target_tp ? offset : s->target_tp - true_peak; s->offset = pow(10., s->offset / 20.); s->frame_type = LINEAR_MODE; } switch (s->frame_type) { case FIRST_FRAME: for (n = 0; n < in->nb_samples; n++) { for (c = 0; c < inlink->channels; c++) { buf[s->buf_index + c] = src[c]; } src += inlink->channels; s->buf_index += inlink->channels; } ff_ebur128_loudness_shortterm(s->r128_in, &shortterm); if (shortterm < s->measured_thresh) { s->above_threshold = 0; env_shortterm = shortterm <= -70. ? 0. : s->target_i - s->measured_i; } else { s->above_threshold = 1; env_shortterm = shortterm <= -70. ? 0. : s->target_i - shortterm; } for (n = 0; n < 30; n++) s->delta[n] = pow(10., env_shortterm / 20.); s->prev_delta = s->delta[s->index]; s->buf_index = s->limiter_buf_index = 0; for (n = 0; n < (s->limiter_buf_size / inlink->channels); n++) { for (c = 0; c < inlink->channels; c++) { limiter_buf[s->limiter_buf_index + c] = buf[s->buf_index + c] * s->delta[s->index] * s->offset; } s->limiter_buf_index += inlink->channels; if (s->limiter_buf_index >= s->limiter_buf_size) s->limiter_buf_index -= s->limiter_buf_size; s->buf_index += inlink->channels; } subframe_length = frame_size(inlink->sample_rate, 100); true_peak_limiter(s, dst, subframe_length, inlink->channels); ff_ebur128_add_frames_double(s->r128_out, dst, subframe_length); s->pts += out->nb_samples = inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = subframe_length; s->frame_type = INNER_FRAME; break; case INNER_FRAME: gain = gaussian_filter(s, s->index + 10 < 30 ? s->index + 10 : s->index + 10 - 30); gain_next = gaussian_filter(s, s->index + 11 < 30 ? s->index + 11 : s->index + 11 - 30); for (n = 0; n < in->nb_samples; n++) { for (c = 0; c < inlink->channels; c++) { buf[s->prev_buf_index + c] = src[c]; limiter_buf[s->limiter_buf_index + c] = buf[s->buf_index + c] * (gain + (((double) n / in->nb_samples) * (gain_next - gain))) * s->offset; } src += inlink->channels; s->limiter_buf_index += inlink->channels; if (s->limiter_buf_index >= s->limiter_buf_size) s->limiter_buf_index -= s->limiter_buf_size; s->prev_buf_index += inlink->channels; if (s->prev_buf_index >= s->buf_size) s->prev_buf_index -= s->buf_size; s->buf_index += inlink->channels; if (s->buf_index >= s->buf_size) s->buf_index -= s->buf_size; } subframe_length = (frame_size(inlink->sample_rate, 100) - in->nb_samples) * inlink->channels; s->limiter_buf_index = s->limiter_buf_index + subframe_length < s->limiter_buf_size ? s->limiter_buf_index + subframe_length : s->limiter_buf_index + subframe_length - s->limiter_buf_size; true_peak_limiter(s, dst, in->nb_samples, inlink->channels); ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples); ff_ebur128_loudness_range(s->r128_in, &lra); ff_ebur128_loudness_global(s->r128_in, &global); ff_ebur128_loudness_shortterm(s->r128_in, &shortterm); ff_ebur128_relative_threshold(s->r128_in, &relative_threshold); if (s->above_threshold == 0) { double shortterm_out; if (shortterm > s->measured_thresh) s->prev_delta *= 1.0058; ff_ebur128_loudness_shortterm(s->r128_out, &shortterm_out); if (shortterm_out >= s->target_i) s->above_threshold = 1; } if (shortterm < relative_threshold || shortterm <= -70. || s->above_threshold == 0) { s->delta[s->index] = s->prev_delta; } else { env_global = fabs(shortterm - global) < (s->target_lra / 2.) ? shortterm - global : (s->target_lra / 2.) * ((shortterm - global) < 0 ? -1 : 1); env_shortterm = s->target_i - shortterm; s->delta[s->index] = pow(10., (env_global + env_shortterm) / 20.); } s->prev_delta = s->delta[s->index]; s->index++; if (s->index >= 30) s->index -= 30; s->prev_nb_samples = in->nb_samples; s->pts += in->nb_samples; break; case FINAL_FRAME: gain = gaussian_filter(s, s->index + 10 < 30 ? s->index + 10 : s->index + 10 - 30); s->limiter_buf_index = 0; src_index = 0; for (n = 0; n < s->limiter_buf_size / inlink->channels; n++) { for (c = 0; c < inlink->channels; c++) { s->limiter_buf[s->limiter_buf_index + c] = src[src_index + c] * gain * s->offset; } src_index += inlink->channels; s->limiter_buf_index += inlink->channels; if (s->limiter_buf_index >= s->limiter_buf_size) s->limiter_buf_index -= s->limiter_buf_size; } subframe_length = frame_size(inlink->sample_rate, 100); for (i = 0; i < in->nb_samples / subframe_length; i++) { true_peak_limiter(s, dst, subframe_length, inlink->channels); for (n = 0; n < subframe_length; n++) { for (c = 0; c < inlink->channels; c++) { if (src_index < (in->nb_samples * inlink->channels)) { limiter_buf[s->limiter_buf_index + c] = src[src_index + c] * gain * s->offset; } else { limiter_buf[s->limiter_buf_index + c] = 0.; } } if (src_index < (in->nb_samples * inlink->channels)) src_index += inlink->channels; s->limiter_buf_index += inlink->channels; if (s->limiter_buf_index >= s->limiter_buf_size) s->limiter_buf_index -= s->limiter_buf_size; } dst += (subframe_length * inlink->channels); } dst = (double *)out->data[0]; ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples); break; case LINEAR_MODE: for (n = 0; n < in->nb_samples; n++) { for (c = 0; c < inlink->channels; c++) { dst[c] = src[c] * s->offset; } src += inlink->channels; dst += inlink->channels; } dst = (double *)out->data[0]; ff_ebur128_add_frames_double(s->r128_out, dst, in->nb_samples); s->pts += in->nb_samples; break; } if (in != out) av_frame_free(&in); return ff_filter_frame(outlink, out); } static int request_frame(AVFilterLink *outlink) { int ret; AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; LoudNormContext *s = ctx->priv; ret = ff_request_frame(inlink); if (ret == AVERROR_EOF && s->frame_type == INNER_FRAME) { double *src; double *buf; int nb_samples, n, c, offset; AVFrame *frame; nb_samples = (s->buf_size / inlink->channels) - s->prev_nb_samples; nb_samples -= (frame_size(inlink->sample_rate, 100) - s->prev_nb_samples); frame = ff_get_audio_buffer(outlink, nb_samples); if (!frame) return AVERROR(ENOMEM); frame->nb_samples = nb_samples; buf = s->buf; src = (double *)frame->data[0]; offset = ((s->limiter_buf_size / inlink->channels) - s->prev_nb_samples) * inlink->channels; offset -= (frame_size(inlink->sample_rate, 100) - s->prev_nb_samples) * inlink->channels; s->buf_index = s->buf_index - offset < 0 ? s->buf_index - offset + s->buf_size : s->buf_index - offset; for (n = 0; n < nb_samples; n++) { for (c = 0; c < inlink->channels; c++) { src[c] = buf[s->buf_index + c]; } src += inlink->channels; s->buf_index += inlink->channels; if (s->buf_index >= s->buf_size) s->buf_index -= s->buf_size; } s->frame_type = FINAL_FRAME; ret = filter_frame(inlink, frame); } return ret; } static int query_formats(AVFilterContext *ctx) { LoudNormContext *s = ctx->priv; AVFilterFormats *formats; AVFilterChannelLayouts *layouts; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const int input_srate[] = {192000, -1}; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE }; int ret; layouts = ff_all_channel_counts(); if (!layouts) return AVERROR(ENOMEM); ret = ff_set_common_channel_layouts(ctx, layouts); if (ret < 0) return ret; formats = ff_make_format_list(sample_fmts); if (!formats) return AVERROR(ENOMEM); ret = ff_set_common_formats(ctx, formats); if (ret < 0) return ret; if (s->frame_type != LINEAR_MODE) { formats = ff_make_format_list(input_srate); if (!formats) return AVERROR(ENOMEM); ret = ff_formats_ref(formats, &inlink->out_samplerates); if (ret < 0) return ret; ret = ff_formats_ref(formats, &outlink->in_samplerates); if (ret < 0) return ret; } return 0; } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; LoudNormContext *s = ctx->priv; s->r128_in = ff_ebur128_init(inlink->channels, inlink->sample_rate, 0, FF_EBUR128_MODE_I | FF_EBUR128_MODE_S | FF_EBUR128_MODE_LRA | FF_EBUR128_MODE_SAMPLE_PEAK); if (!s->r128_in) return AVERROR(ENOMEM); s->r128_out = ff_ebur128_init(inlink->channels, inlink->sample_rate, 0, FF_EBUR128_MODE_I | FF_EBUR128_MODE_S | FF_EBUR128_MODE_LRA | FF_EBUR128_MODE_SAMPLE_PEAK); if (!s->r128_out) return AVERROR(ENOMEM); if (inlink->channels == 1 && s->dual_mono) { ff_ebur128_set_channel(s->r128_in, 0, FF_EBUR128_DUAL_MONO); ff_ebur128_set_channel(s->r128_out, 0, FF_EBUR128_DUAL_MONO); } s->buf_size = frame_size(inlink->sample_rate, 3000) * inlink->channels; s->buf = av_malloc_array(s->buf_size, sizeof(*s->buf)); if (!s->buf) return AVERROR(ENOMEM); s->limiter_buf_size = frame_size(inlink->sample_rate, 210) * inlink->channels; s->limiter_buf = av_malloc_array(s->buf_size, sizeof(*s->limiter_buf)); if (!s->limiter_buf) return AVERROR(ENOMEM); s->prev_smp = av_malloc_array(inlink->channels, sizeof(*s->prev_smp)); if (!s->prev_smp) return AVERROR(ENOMEM); init_gaussian_filter(s); if (s->frame_type != LINEAR_MODE) { inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = frame_size(inlink->sample_rate, 3000); } s->pts = AV_NOPTS_VALUE; s->buf_index = s->prev_buf_index = s->limiter_buf_index = 0; s->channels = inlink->channels; s->index = 1; s->limiter_state = OUT; s->offset = pow(10., s->offset / 20.); s->target_tp = pow(10., s->target_tp / 20.); s->attack_length = frame_size(inlink->sample_rate, 10); s->release_length = frame_size(inlink->sample_rate, 100); return 0; } static av_cold int init(AVFilterContext *ctx) { LoudNormContext *s = ctx->priv; s->frame_type = FIRST_FRAME; if (s->linear) { double offset, offset_tp; offset = s->target_i - s->measured_i; offset_tp = s->measured_tp + offset; if (s->measured_tp != 99 && s->measured_thresh != -70 && s->measured_lra != 0 && s->measured_i != 0) { if ((offset_tp <= s->target_tp) && (s->measured_lra <= s->target_lra)) { s->frame_type = LINEAR_MODE; s->offset = offset; } } } return 0; } static av_cold void uninit(AVFilterContext *ctx) { LoudNormContext *s = ctx->priv; double i_in, i_out, lra_in, lra_out, thresh_in, thresh_out, tp_in, tp_out; int c; if (!s->r128_in || !s->r128_out) goto end; ff_ebur128_loudness_range(s->r128_in, &lra_in); ff_ebur128_loudness_global(s->r128_in, &i_in); ff_ebur128_relative_threshold(s->r128_in, &thresh_in); for (c = 0; c < s->channels; c++) { double tmp; ff_ebur128_sample_peak(s->r128_in, c, &tmp); if ((c == 0) || (tmp > tp_in)) tp_in = tmp; } ff_ebur128_loudness_range(s->r128_out, &lra_out); ff_ebur128_loudness_global(s->r128_out, &i_out); ff_ebur128_relative_threshold(s->r128_out, &thresh_out); for (c = 0; c < s->channels; c++) { double tmp; ff_ebur128_sample_peak(s->r128_out, c, &tmp); if ((c == 0) || (tmp > tp_out)) tp_out = tmp; } switch(s->print_format) { case NONE: break; case JSON: av_log(ctx, AV_LOG_INFO, "\n{\n" "\t\"input_i\" : \"%.2f\",\n" "\t\"input_tp\" : \"%.2f\",\n" "\t\"input_lra\" : \"%.2f\",\n" "\t\"input_thresh\" : \"%.2f\",\n" "\t\"output_i\" : \"%.2f\",\n" "\t\"output_tp\" : \"%+.2f\",\n" "\t\"output_lra\" : \"%.2f\",\n" "\t\"output_thresh\" : \"%.2f\",\n" "\t\"normalization_type\" : \"%s\",\n" "\t\"target_offset\" : \"%.2f\"\n" "}\n", i_in, 20. * log10(tp_in), lra_in, thresh_in, i_out, 20. * log10(tp_out), lra_out, thresh_out, s->frame_type == LINEAR_MODE ? "linear" : "dynamic", s->target_i - i_out ); break; case SUMMARY: av_log(ctx, AV_LOG_INFO, "\n" "Input Integrated: %+6.1f LUFS\n" "Input True Peak: %+6.1f dBTP\n" "Input LRA: %6.1f LU\n" "Input Threshold: %+6.1f LUFS\n" "\n" "Output Integrated: %+6.1f LUFS\n" "Output True Peak: %+6.1f dBTP\n" "Output LRA: %6.1f LU\n" "Output Threshold: %+6.1f LUFS\n" "\n" "Normalization Type: %s\n" "Target Offset: %+6.1f LU\n", i_in, 20. * log10(tp_in), lra_in, thresh_in, i_out, 20. * log10(tp_out), lra_out, thresh_out, s->frame_type == LINEAR_MODE ? "Linear" : "Dynamic", s->target_i - i_out ); break; } end: if (s->r128_in) ff_ebur128_destroy(&s->r128_in); if (s->r128_out) ff_ebur128_destroy(&s->r128_out); av_freep(&s->limiter_buf); av_freep(&s->prev_smp); av_freep(&s->buf); } static const AVFilterPad avfilter_af_loudnorm_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad avfilter_af_loudnorm_outputs[] = { { .name = "default", .request_frame = request_frame, .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; AVFilter ff_af_loudnorm = { .name = "loudnorm", .description = NULL_IF_CONFIG_SMALL("EBU R128 loudness normalization"), .priv_size = sizeof(LoudNormContext), .priv_class = &loudnorm_class, .query_formats = query_formats, .init = init, .uninit = uninit, .inputs = avfilter_af_loudnorm_inputs, .outputs = avfilter_af_loudnorm_outputs, };