/* * Copyright (c) 2018 Gregor Richards * Copyright (c) 2017 Mozilla * Copyright (c) 2005-2009 Xiph.Org Foundation * Copyright (c) 2007-2008 CSIRO * Copyright (c) 2008-2011 Octasic Inc. * Copyright (c) Jean-Marc Valin * Copyright (c) 2019 Paul B Mahol * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "libavutil/avassert.h" #include "libavutil/file_open.h" #include "libavutil/float_dsp.h" #include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "libavutil/tx.h" #include "avfilter.h" #include "audio.h" #include "filters.h" #include "formats.h" #define FRAME_SIZE_SHIFT 2 #define FRAME_SIZE (120<<FRAME_SIZE_SHIFT) #define WINDOW_SIZE (2*FRAME_SIZE) #define FREQ_SIZE (FRAME_SIZE + 1) #define PITCH_MIN_PERIOD 60 #define PITCH_MAX_PERIOD 768 #define PITCH_FRAME_SIZE 960 #define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE) #define SQUARE(x) ((x)*(x)) #define NB_BANDS 22 #define CEPS_MEM 8 #define NB_DELTA_CEPS 6 #define NB_FEATURES (NB_BANDS+3*NB_DELTA_CEPS+2) #define WEIGHTS_SCALE (1.f/256) #define MAX_NEURONS 128 #define ACTIVATION_TANH 0 #define ACTIVATION_SIGMOID 1 #define ACTIVATION_RELU 2 #define Q15ONE 1.0f typedef struct DenseLayer { const float *bias; const float *input_weights; int nb_inputs; int nb_neurons; int activation; } DenseLayer; typedef struct GRULayer { const float *bias; const float *input_weights; const float *recurrent_weights; int nb_inputs; int nb_neurons; int activation; } GRULayer; typedef struct RNNModel { int input_dense_size; const DenseLayer *input_dense; int vad_gru_size; const GRULayer *vad_gru; int noise_gru_size; const GRULayer *noise_gru; int denoise_gru_size; const GRULayer *denoise_gru; int denoise_output_size; const DenseLayer *denoise_output; int vad_output_size; const DenseLayer *vad_output; } RNNModel; typedef struct RNNState { float *vad_gru_state; float *noise_gru_state; float *denoise_gru_state; RNNModel *model; } RNNState; typedef struct DenoiseState { float analysis_mem[FRAME_SIZE]; float cepstral_mem[CEPS_MEM][NB_BANDS]; int memid; DECLARE_ALIGNED(32, float, synthesis_mem)[FRAME_SIZE]; float pitch_buf[PITCH_BUF_SIZE]; float pitch_enh_buf[PITCH_BUF_SIZE]; float last_gain; int last_period; float mem_hp_x[2]; float lastg[NB_BANDS]; float history[FRAME_SIZE]; RNNState rnn[2]; AVTXContext *tx, *txi; av_tx_fn tx_fn, txi_fn; } DenoiseState; typedef struct AudioRNNContext { const AVClass *class; char *model_name; float mix; int channels; DenoiseState *st; DECLARE_ALIGNED(32, float, window)[WINDOW_SIZE]; DECLARE_ALIGNED(32, float, dct_table)[FFALIGN(NB_BANDS, 4)][FFALIGN(NB_BANDS, 4)]; RNNModel *model[2]; AVFloatDSPContext *fdsp; } AudioRNNContext; #define F_ACTIVATION_TANH 0 #define F_ACTIVATION_SIGMOID 1 #define F_ACTIVATION_RELU 2 static void rnnoise_model_free(RNNModel *model) { #define FREE_MAYBE(ptr) do { if (ptr) free(ptr); } while (0) #define FREE_DENSE(name) do { \ if (model->name) { \ av_free((void *) model->name->input_weights); \ av_free((void *) model->name->bias); \ av_free((void *) model->name); \ } \ } while (0) #define FREE_GRU(name) do { \ if (model->name) { \ av_free((void *) model->name->input_weights); \ av_free((void *) model->name->recurrent_weights); \ av_free((void *) model->name->bias); \ av_free((void *) model->name); \ } \ } while (0) if (!model) return; FREE_DENSE(input_dense); FREE_GRU(vad_gru); FREE_GRU(noise_gru); FREE_GRU(denoise_gru); FREE_DENSE(denoise_output); FREE_DENSE(vad_output); av_free(model); } static int rnnoise_model_from_file(FILE *f, RNNModel **rnn) { RNNModel *ret = NULL; DenseLayer *input_dense; GRULayer *vad_gru; GRULayer *noise_gru; GRULayer *denoise_gru; DenseLayer *denoise_output; DenseLayer *vad_output; int in; if (fscanf(f, "rnnoise-nu model file version %d\n", &in) != 1 || in != 1) return AVERROR_INVALIDDATA; ret = av_calloc(1, sizeof(RNNModel)); if (!ret) return AVERROR(ENOMEM); #define ALLOC_LAYER(type, name) \ name = av_calloc(1, sizeof(type)); \ if (!name) { \ rnnoise_model_free(ret); \ return AVERROR(ENOMEM); \ } \ ret->name = name ALLOC_LAYER(DenseLayer, input_dense); ALLOC_LAYER(GRULayer, vad_gru); ALLOC_LAYER(GRULayer, noise_gru); ALLOC_LAYER(GRULayer, denoise_gru); ALLOC_LAYER(DenseLayer, denoise_output); ALLOC_LAYER(DenseLayer, vad_output); #define INPUT_VAL(name) do { \ if (fscanf(f, "%d", &in) != 1 || in < 0 || in > 128) { \ rnnoise_model_free(ret); \ return AVERROR(EINVAL); \ } \ name = in; \ } while (0) #define INPUT_ACTIVATION(name) do { \ int activation; \ INPUT_VAL(activation); \ switch (activation) { \ case F_ACTIVATION_SIGMOID: \ name = ACTIVATION_SIGMOID; \ break; \ case F_ACTIVATION_RELU: \ name = ACTIVATION_RELU; \ break; \ default: \ name = ACTIVATION_TANH; \ } \ } while (0) #define INPUT_ARRAY(name, len) do { \ float *values = av_calloc((len), sizeof(float)); \ if (!values) { \ rnnoise_model_free(ret); \ return AVERROR(ENOMEM); \ } \ name = values; \ for (int i = 0; i < (len); i++) { \ if (fscanf(f, "%d", &in) != 1) { \ rnnoise_model_free(ret); \ return AVERROR(EINVAL); \ } \ values[i] = in; \ } \ } while (0) #define INPUT_ARRAY3(name, len0, len1, len2) do { \ float *values = av_calloc(FFALIGN((len0), 4) * FFALIGN((len1), 4) * (len2), sizeof(float)); \ if (!values) { \ rnnoise_model_free(ret); \ return AVERROR(ENOMEM); \ } \ name = values; \ for (int k = 0; k < (len0); k++) { \ for (int i = 0; i < (len2); i++) { \ for (int j = 0; j < (len1); j++) { \ if (fscanf(f, "%d", &in) != 1) { \ rnnoise_model_free(ret); \ return AVERROR(EINVAL); \ } \ values[j * (len2) * FFALIGN((len0), 4) + i * FFALIGN((len0), 4) + k] = in; \ } \ } \ } \ } while (0) #define NEW_LINE() do { \ int c; \ while ((c = fgetc(f)) != EOF) { \ if (c == '\n') \ break; \ } \ } while (0) #define INPUT_DENSE(name) do { \ INPUT_VAL(name->nb_inputs); \ INPUT_VAL(name->nb_neurons); \ ret->name ## _size = name->nb_neurons; \ INPUT_ACTIVATION(name->activation); \ NEW_LINE(); \ INPUT_ARRAY(name->input_weights, name->nb_inputs * name->nb_neurons); \ NEW_LINE(); \ INPUT_ARRAY(name->bias, name->nb_neurons); \ NEW_LINE(); \ } while (0) #define INPUT_GRU(name) do { \ INPUT_VAL(name->nb_inputs); \ INPUT_VAL(name->nb_neurons); \ ret->name ## _size = name->nb_neurons; \ INPUT_ACTIVATION(name->activation); \ NEW_LINE(); \ INPUT_ARRAY3(name->input_weights, name->nb_inputs, name->nb_neurons, 3); \ NEW_LINE(); \ INPUT_ARRAY3(name->recurrent_weights, name->nb_neurons, name->nb_neurons, 3); \ NEW_LINE(); \ INPUT_ARRAY(name->bias, name->nb_neurons * 3); \ NEW_LINE(); \ } while (0) INPUT_DENSE(input_dense); INPUT_GRU(vad_gru); INPUT_GRU(noise_gru); INPUT_GRU(denoise_gru); INPUT_DENSE(denoise_output); INPUT_DENSE(vad_output); if (vad_output->nb_neurons != 1) { rnnoise_model_free(ret); return AVERROR(EINVAL); } *rnn = ret; return 0; } static int query_formats(AVFilterContext *ctx) { static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; int ret, sample_rates[] = { 48000, -1 }; ret = ff_set_common_formats_from_list(ctx, sample_fmts); if (ret < 0) return ret; ret = ff_set_common_all_channel_counts(ctx); if (ret < 0) return ret; return ff_set_common_samplerates_from_list(ctx, sample_rates); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioRNNContext *s = ctx->priv; int ret = 0; s->channels = inlink->ch_layout.nb_channels; if (!s->st) s->st = av_calloc(s->channels, sizeof(DenoiseState)); if (!s->st) return AVERROR(ENOMEM); for (int i = 0; i < s->channels; i++) { DenoiseState *st = &s->st[i]; st->rnn[0].model = s->model[0]; st->rnn[0].vad_gru_state = av_calloc(sizeof(float), FFALIGN(s->model[0]->vad_gru_size, 16)); st->rnn[0].noise_gru_state = av_calloc(sizeof(float), FFALIGN(s->model[0]->noise_gru_size, 16)); st->rnn[0].denoise_gru_state = av_calloc(sizeof(float), FFALIGN(s->model[0]->denoise_gru_size, 16)); if (!st->rnn[0].vad_gru_state || !st->rnn[0].noise_gru_state || !st->rnn[0].denoise_gru_state) return AVERROR(ENOMEM); } for (int i = 0; i < s->channels; i++) { DenoiseState *st = &s->st[i]; if (!st->tx) ret = av_tx_init(&st->tx, &st->tx_fn, AV_TX_FLOAT_FFT, 0, WINDOW_SIZE, NULL, 0); if (ret < 0) return ret; if (!st->txi) ret = av_tx_init(&st->txi, &st->txi_fn, AV_TX_FLOAT_FFT, 1, WINDOW_SIZE, NULL, 0); if (ret < 0) return ret; } return ret; } static void biquad(float *y, float mem[2], const float *x, const float *b, const float *a, int N) { for (int i = 0; i < N; i++) { float xi, yi; xi = x[i]; yi = x[i] + mem[0]; mem[0] = mem[1] + (b[0]*xi - a[0]*yi); mem[1] = (b[1]*xi - a[1]*yi); y[i] = yi; } } #define RNN_MOVE(dst, src, n) (memmove((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) )) #define RNN_CLEAR(dst, n) (memset((dst), 0, (n)*sizeof(*(dst)))) #define RNN_COPY(dst, src, n) (memcpy((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) )) static void forward_transform(DenoiseState *st, AVComplexFloat *out, const float *in) { AVComplexFloat x[WINDOW_SIZE]; AVComplexFloat y[WINDOW_SIZE]; for (int i = 0; i < WINDOW_SIZE; i++) { x[i].re = in[i]; x[i].im = 0; } st->tx_fn(st->tx, y, x, sizeof(float)); RNN_COPY(out, y, FREQ_SIZE); } static void inverse_transform(DenoiseState *st, float *out, const AVComplexFloat *in) { AVComplexFloat x[WINDOW_SIZE]; AVComplexFloat y[WINDOW_SIZE]; RNN_COPY(x, in, FREQ_SIZE); for (int i = FREQ_SIZE; i < WINDOW_SIZE; i++) { x[i].re = x[WINDOW_SIZE - i].re; x[i].im = -x[WINDOW_SIZE - i].im; } st->txi_fn(st->txi, y, x, sizeof(float)); for (int i = 0; i < WINDOW_SIZE; i++) out[i] = y[i].re / WINDOW_SIZE; } static const uint8_t eband5ms[] = { /*0 200 400 600 800 1k 1.2 1.4 1.6 2k 2.4 2.8 3.2 4k 4.8 5.6 6.8 8k 9.6 12k 15.6 20k*/ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100 }; static void compute_band_energy(float *bandE, const AVComplexFloat *X) { float sum[NB_BANDS] = {0}; for (int i = 0; i < NB_BANDS - 1; i++) { int band_size; band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT; for (int j = 0; j < band_size; j++) { float tmp, frac = (float)j / band_size; tmp = SQUARE(X[(eband5ms[i] << FRAME_SIZE_SHIFT) + j].re); tmp += SQUARE(X[(eband5ms[i] << FRAME_SIZE_SHIFT) + j].im); sum[i] += (1.f - frac) * tmp; sum[i + 1] += frac * tmp; } } sum[0] *= 2; sum[NB_BANDS - 1] *= 2; for (int i = 0; i < NB_BANDS; i++) bandE[i] = sum[i]; } static void compute_band_corr(float *bandE, const AVComplexFloat *X, const AVComplexFloat *P) { float sum[NB_BANDS] = { 0 }; for (int i = 0; i < NB_BANDS - 1; i++) { int band_size; band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT; for (int j = 0; j < band_size; j++) { float tmp, frac = (float)j / band_size; tmp = X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].re * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].re; tmp += X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].im * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].im; sum[i] += (1 - frac) * tmp; sum[i + 1] += frac * tmp; } } sum[0] *= 2; sum[NB_BANDS-1] *= 2; for (int i = 0; i < NB_BANDS; i++) bandE[i] = sum[i]; } static void frame_analysis(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, float *Ex, const float *in) { LOCAL_ALIGNED_32(float, x, [WINDOW_SIZE]); RNN_COPY(x, st->analysis_mem, FRAME_SIZE); RNN_COPY(x + FRAME_SIZE, in, FRAME_SIZE); RNN_COPY(st->analysis_mem, in, FRAME_SIZE); s->fdsp->vector_fmul(x, x, s->window, WINDOW_SIZE); forward_transform(st, X, x); compute_band_energy(Ex, X); } static void frame_synthesis(AudioRNNContext *s, DenoiseState *st, float *out, const AVComplexFloat *y) { LOCAL_ALIGNED_32(float, x, [WINDOW_SIZE]); const float *src = st->history; const float mix = s->mix; const float imix = 1.f - FFMAX(mix, 0.f); inverse_transform(st, x, y); s->fdsp->vector_fmul(x, x, s->window, WINDOW_SIZE); s->fdsp->vector_fmac_scalar(x, st->synthesis_mem, 1.f, FRAME_SIZE); RNN_COPY(out, x, FRAME_SIZE); RNN_COPY(st->synthesis_mem, &x[FRAME_SIZE], FRAME_SIZE); for (int n = 0; n < FRAME_SIZE; n++) out[n] = out[n] * mix + src[n] * imix; } static inline void xcorr_kernel(const float *x, const float *y, float sum[4], int len) { float y_0, y_1, y_2, y_3 = 0; int j; y_0 = *y++; y_1 = *y++; y_2 = *y++; for (j = 0; j < len - 3; j += 4) { float tmp; tmp = *x++; y_3 = *y++; sum[0] += tmp * y_0; sum[1] += tmp * y_1; sum[2] += tmp * y_2; sum[3] += tmp * y_3; tmp = *x++; y_0 = *y++; sum[0] += tmp * y_1; sum[1] += tmp * y_2; sum[2] += tmp * y_3; sum[3] += tmp * y_0; tmp = *x++; y_1 = *y++; sum[0] += tmp * y_2; sum[1] += tmp * y_3; sum[2] += tmp * y_0; sum[3] += tmp * y_1; tmp = *x++; y_2 = *y++; sum[0] += tmp * y_3; sum[1] += tmp * y_0; sum[2] += tmp * y_1; sum[3] += tmp * y_2; } if (j++ < len) { float tmp = *x++; y_3 = *y++; sum[0] += tmp * y_0; sum[1] += tmp * y_1; sum[2] += tmp * y_2; sum[3] += tmp * y_3; } if (j++ < len) { float tmp=*x++; y_0 = *y++; sum[0] += tmp * y_1; sum[1] += tmp * y_2; sum[2] += tmp * y_3; sum[3] += tmp * y_0; } if (j < len) { float tmp=*x++; y_1 = *y++; sum[0] += tmp * y_2; sum[1] += tmp * y_3; sum[2] += tmp * y_0; sum[3] += tmp * y_1; } } static inline float celt_inner_prod(const float *x, const float *y, int N) { float xy = 0.f; for (int i = 0; i < N; i++) xy += x[i] * y[i]; return xy; } static void celt_pitch_xcorr(const float *x, const float *y, float *xcorr, int len, int max_pitch) { int i; for (i = 0; i < max_pitch - 3; i += 4) { float sum[4] = { 0, 0, 0, 0}; xcorr_kernel(x, y + i, sum, len); xcorr[i] = sum[0]; xcorr[i + 1] = sum[1]; xcorr[i + 2] = sum[2]; xcorr[i + 3] = sum[3]; } /* In case max_pitch isn't a multiple of 4, do non-unrolled version. */ for (; i < max_pitch; i++) { xcorr[i] = celt_inner_prod(x, y + i, len); } } static int celt_autocorr(const float *x, /* in: [0...n-1] samples x */ float *ac, /* out: [0...lag-1] ac values */ const float *window, int overlap, int lag, int n) { int fastN = n - lag; int shift; const float *xptr; float xx[PITCH_BUF_SIZE>>1]; if (overlap == 0) { xptr = x; } else { for (int i = 0; i < n; i++) xx[i] = x[i]; for (int i = 0; i < overlap; i++) { xx[i] = x[i] * window[i]; xx[n-i-1] = x[n-i-1] * window[i]; } xptr = xx; } shift = 0; celt_pitch_xcorr(xptr, xptr, ac, fastN, lag+1); for (int k = 0; k <= lag; k++) { float d = 0.f; for (int i = k + fastN; i < n; i++) d += xptr[i] * xptr[i-k]; ac[k] += d; } return shift; } static void celt_lpc(float *lpc, /* out: [0...p-1] LPC coefficients */ const float *ac, /* in: [0...p] autocorrelation values */ int p) { float r, error = ac[0]; RNN_CLEAR(lpc, p); if (ac[0] != 0) { for (int i = 0; i < p; i++) { /* Sum up this iteration's reflection coefficient */ float rr = 0; for (int j = 0; j < i; j++) rr += (lpc[j] * ac[i - j]); rr += ac[i + 1]; r = -rr/error; /* Update LPC coefficients and total error */ lpc[i] = r; for (int j = 0; j < (i + 1) >> 1; j++) { float tmp1, tmp2; tmp1 = lpc[j]; tmp2 = lpc[i-1-j]; lpc[j] = tmp1 + (r*tmp2); lpc[i-1-j] = tmp2 + (r*tmp1); } error = error - (r * r *error); /* Bail out once we get 30 dB gain */ if (error < .001f * ac[0]) break; } } } static void celt_fir5(const float *x, const float *num, float *y, int N, float *mem) { float num0, num1, num2, num3, num4; float mem0, mem1, mem2, mem3, mem4; num0 = num[0]; num1 = num[1]; num2 = num[2]; num3 = num[3]; num4 = num[4]; mem0 = mem[0]; mem1 = mem[1]; mem2 = mem[2]; mem3 = mem[3]; mem4 = mem[4]; for (int i = 0; i < N; i++) { float sum = x[i]; sum += (num0*mem0); sum += (num1*mem1); sum += (num2*mem2); sum += (num3*mem3); sum += (num4*mem4); mem4 = mem3; mem3 = mem2; mem2 = mem1; mem1 = mem0; mem0 = x[i]; y[i] = sum; } mem[0] = mem0; mem[1] = mem1; mem[2] = mem2; mem[3] = mem3; mem[4] = mem4; } static void pitch_downsample(float *x[], float *x_lp, int len, int C) { float ac[5]; float tmp=Q15ONE; float lpc[4], mem[5]={0,0,0,0,0}; float lpc2[5]; float c1 = .8f; for (int i = 1; i < len >> 1; i++) x_lp[i] = .5f * (.5f * (x[0][(2*i-1)]+x[0][(2*i+1)])+x[0][2*i]); x_lp[0] = .5f * (.5f * (x[0][1])+x[0][0]); if (C==2) { for (int i = 1; i < len >> 1; i++) x_lp[i] += (.5f * (.5f * (x[1][(2*i-1)]+x[1][(2*i+1)])+x[1][2*i])); x_lp[0] += .5f * (.5f * (x[1][1])+x[1][0]); } celt_autocorr(x_lp, ac, NULL, 0, 4, len>>1); /* Noise floor -40 dB */ ac[0] *= 1.0001f; /* Lag windowing */ for (int i = 1; i <= 4; i++) { /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/ ac[i] -= ac[i]*(.008f*i)*(.008f*i); } celt_lpc(lpc, ac, 4); for (int i = 0; i < 4; i++) { tmp = .9f * tmp; lpc[i] = (lpc[i] * tmp); } /* Add a zero */ lpc2[0] = lpc[0] + .8f; lpc2[1] = lpc[1] + (c1 * lpc[0]); lpc2[2] = lpc[2] + (c1 * lpc[1]); lpc2[3] = lpc[3] + (c1 * lpc[2]); lpc2[4] = (c1 * lpc[3]); celt_fir5(x_lp, lpc2, x_lp, len>>1, mem); } static inline void dual_inner_prod(const float *x, const float *y01, const float *y02, int N, float *xy1, float *xy2) { float xy01 = 0, xy02 = 0; for (int i = 0; i < N; i++) { xy01 += (x[i] * y01[i]); xy02 += (x[i] * y02[i]); } *xy1 = xy01; *xy2 = xy02; } static float compute_pitch_gain(float xy, float xx, float yy) { return xy / sqrtf(1.f + xx * yy); } static const uint8_t second_check[16] = {0, 0, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2}; static float remove_doubling(float *x, int maxperiod, int minperiod, int N, int *T0_, int prev_period, float prev_gain) { int k, i, T, T0; float g, g0; float pg; float xy,xx,yy,xy2; float xcorr[3]; float best_xy, best_yy; int offset; int minperiod0; float yy_lookup[PITCH_MAX_PERIOD+1]; minperiod0 = minperiod; maxperiod /= 2; minperiod /= 2; *T0_ /= 2; prev_period /= 2; N /= 2; x += maxperiod; if (*T0_>=maxperiod) *T0_=maxperiod-1; T = T0 = *T0_; dual_inner_prod(x, x, x-T0, N, &xx, &xy); yy_lookup[0] = xx; yy=xx; for (i = 1; i <= maxperiod; i++) { yy = yy+(x[-i] * x[-i])-(x[N-i] * x[N-i]); yy_lookup[i] = FFMAX(0, yy); } yy = yy_lookup[T0]; best_xy = xy; best_yy = yy; g = g0 = compute_pitch_gain(xy, xx, yy); /* Look for any pitch at T/k */ for (k = 2; k <= 15; k++) { int T1, T1b; float g1; float cont=0; float thresh; T1 = (2*T0+k)/(2*k); if (T1 < minperiod) break; /* Look for another strong correlation at T1b */ if (k==2) { if (T1+T0>maxperiod) T1b = T0; else T1b = T0+T1; } else { T1b = (2*second_check[k]*T0+k)/(2*k); } dual_inner_prod(x, &x[-T1], &x[-T1b], N, &xy, &xy2); xy = .5f * (xy + xy2); yy = .5f * (yy_lookup[T1] + yy_lookup[T1b]); g1 = compute_pitch_gain(xy, xx, yy); if (FFABS(T1-prev_period)<=1) cont = prev_gain; else if (FFABS(T1-prev_period)<=2 && 5 * k * k < T0) cont = prev_gain * .5f; else cont = 0; thresh = FFMAX(.3f, (.7f * g0) - cont); /* Bias against very high pitch (very short period) to avoid false-positives due to short-term correlation */ if (T1<3*minperiod) thresh = FFMAX(.4f, (.85f * g0) - cont); else if (T1<2*minperiod) thresh = FFMAX(.5f, (.9f * g0) - cont); if (g1 > thresh) { best_xy = xy; best_yy = yy; T = T1; g = g1; } } best_xy = FFMAX(0, best_xy); if (best_yy <= best_xy) pg = Q15ONE; else pg = best_xy/(best_yy + 1); for (k = 0; k < 3; k++) xcorr[k] = celt_inner_prod(x, x-(T+k-1), N); if ((xcorr[2]-xcorr[0]) > .7f * (xcorr[1]-xcorr[0])) offset = 1; else if ((xcorr[0]-xcorr[2]) > (.7f * (xcorr[1] - xcorr[2]))) offset = -1; else offset = 0; if (pg > g) pg = g; *T0_ = 2*T+offset; if (*T0_<minperiod0) *T0_=minperiod0; return pg; } static void find_best_pitch(float *xcorr, float *y, int len, int max_pitch, int *best_pitch) { float best_num[2]; float best_den[2]; float Syy = 1.f; best_num[0] = -1; best_num[1] = -1; best_den[0] = 0; best_den[1] = 0; best_pitch[0] = 0; best_pitch[1] = 1; for (int j = 0; j < len; j++) Syy += y[j] * y[j]; for (int i = 0; i < max_pitch; i++) { if (xcorr[i]>0) { float num; float xcorr16; xcorr16 = xcorr[i]; /* Considering the range of xcorr16, this should avoid both underflows and overflows (inf) when squaring xcorr16 */ xcorr16 *= 1e-12f; num = xcorr16 * xcorr16; if ((num * best_den[1]) > (best_num[1] * Syy)) { if ((num * best_den[0]) > (best_num[0] * Syy)) { best_num[1] = best_num[0]; best_den[1] = best_den[0]; best_pitch[1] = best_pitch[0]; best_num[0] = num; best_den[0] = Syy; best_pitch[0] = i; } else { best_num[1] = num; best_den[1] = Syy; best_pitch[1] = i; } } } Syy += y[i+len]*y[i+len] - y[i] * y[i]; Syy = FFMAX(1, Syy); } } static void pitch_search(const float *x_lp, float *y, int len, int max_pitch, int *pitch) { int lag; int best_pitch[2]={0,0}; int offset; float x_lp4[WINDOW_SIZE]; float y_lp4[WINDOW_SIZE]; float xcorr[WINDOW_SIZE]; lag = len+max_pitch; /* Downsample by 2 again */ for (int j = 0; j < len >> 2; j++) x_lp4[j] = x_lp[2*j]; for (int j = 0; j < lag >> 2; j++) y_lp4[j] = y[2*j]; /* Coarse search with 4x decimation */ celt_pitch_xcorr(x_lp4, y_lp4, xcorr, len>>2, max_pitch>>2); find_best_pitch(xcorr, y_lp4, len>>2, max_pitch>>2, best_pitch); /* Finer search with 2x decimation */ for (int i = 0; i < max_pitch >> 1; i++) { float sum; xcorr[i] = 0; if (FFABS(i-2*best_pitch[0])>2 && FFABS(i-2*best_pitch[1])>2) continue; sum = celt_inner_prod(x_lp, y+i, len>>1); xcorr[i] = FFMAX(-1, sum); } find_best_pitch(xcorr, y, len>>1, max_pitch>>1, best_pitch); /* Refine by pseudo-interpolation */ if (best_pitch[0] > 0 && best_pitch[0] < (max_pitch >> 1) - 1) { float a, b, c; a = xcorr[best_pitch[0] - 1]; b = xcorr[best_pitch[0]]; c = xcorr[best_pitch[0] + 1]; if (c - a > .7f * (b - a)) offset = 1; else if (a - c > .7f * (b-c)) offset = -1; else offset = 0; } else { offset = 0; } *pitch = 2 * best_pitch[0] - offset; } static void dct(AudioRNNContext *s, float *out, const float *in) { for (int i = 0; i < NB_BANDS; i++) { float sum; sum = s->fdsp->scalarproduct_float(in, s->dct_table[i], FFALIGN(NB_BANDS, 4)); out[i] = sum * sqrtf(2.f / 22); } } static int compute_frame_features(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, AVComplexFloat *P, float *Ex, float *Ep, float *Exp, float *features, const float *in) { float E = 0; float *ceps_0, *ceps_1, *ceps_2; float spec_variability = 0; LOCAL_ALIGNED_32(float, Ly, [NB_BANDS]); LOCAL_ALIGNED_32(float, p, [WINDOW_SIZE]); float pitch_buf[PITCH_BUF_SIZE>>1]; int pitch_index; float gain; float *(pre[1]); float tmp[NB_BANDS]; float follow, logMax; frame_analysis(s, st, X, Ex, in); RNN_MOVE(st->pitch_buf, &st->pitch_buf[FRAME_SIZE], PITCH_BUF_SIZE-FRAME_SIZE); RNN_COPY(&st->pitch_buf[PITCH_BUF_SIZE-FRAME_SIZE], in, FRAME_SIZE); pre[0] = &st->pitch_buf[0]; pitch_downsample(pre, pitch_buf, PITCH_BUF_SIZE, 1); pitch_search(pitch_buf+(PITCH_MAX_PERIOD>>1), pitch_buf, PITCH_FRAME_SIZE, PITCH_MAX_PERIOD-3*PITCH_MIN_PERIOD, &pitch_index); pitch_index = PITCH_MAX_PERIOD-pitch_index; gain = remove_doubling(pitch_buf, PITCH_MAX_PERIOD, PITCH_MIN_PERIOD, PITCH_FRAME_SIZE, &pitch_index, st->last_period, st->last_gain); st->last_period = pitch_index; st->last_gain = gain; for (int i = 0; i < WINDOW_SIZE; i++) p[i] = st->pitch_buf[PITCH_BUF_SIZE-WINDOW_SIZE-pitch_index+i]; s->fdsp->vector_fmul(p, p, s->window, WINDOW_SIZE); forward_transform(st, P, p); compute_band_energy(Ep, P); compute_band_corr(Exp, X, P); for (int i = 0; i < NB_BANDS; i++) Exp[i] = Exp[i] / sqrtf(.001f+Ex[i]*Ep[i]); dct(s, tmp, Exp); for (int i = 0; i < NB_DELTA_CEPS; i++) features[NB_BANDS+2*NB_DELTA_CEPS+i] = tmp[i]; features[NB_BANDS+2*NB_DELTA_CEPS] -= 1.3; features[NB_BANDS+2*NB_DELTA_CEPS+1] -= 0.9; features[NB_BANDS+3*NB_DELTA_CEPS] = .01*(pitch_index-300); logMax = -2; follow = -2; for (int i = 0; i < NB_BANDS; i++) { Ly[i] = log10f(1e-2f + Ex[i]); Ly[i] = FFMAX(logMax-7, FFMAX(follow-1.5, Ly[i])); logMax = FFMAX(logMax, Ly[i]); follow = FFMAX(follow-1.5, Ly[i]); E += Ex[i]; } if (E < 0.04f) { /* If there's no audio, avoid messing up the state. */ RNN_CLEAR(features, NB_FEATURES); return 1; } dct(s, features, Ly); features[0] -= 12; features[1] -= 4; ceps_0 = st->cepstral_mem[st->memid]; ceps_1 = (st->memid < 1) ? st->cepstral_mem[CEPS_MEM+st->memid-1] : st->cepstral_mem[st->memid-1]; ceps_2 = (st->memid < 2) ? st->cepstral_mem[CEPS_MEM+st->memid-2] : st->cepstral_mem[st->memid-2]; for (int i = 0; i < NB_BANDS; i++) ceps_0[i] = features[i]; st->memid++; for (int i = 0; i < NB_DELTA_CEPS; i++) { features[i] = ceps_0[i] + ceps_1[i] + ceps_2[i]; features[NB_BANDS+i] = ceps_0[i] - ceps_2[i]; features[NB_BANDS+NB_DELTA_CEPS+i] = ceps_0[i] - 2*ceps_1[i] + ceps_2[i]; } /* Spectral variability features. */ if (st->memid == CEPS_MEM) st->memid = 0; for (int i = 0; i < CEPS_MEM; i++) { float mindist = 1e15f; for (int j = 0; j < CEPS_MEM; j++) { float dist = 0.f; for (int k = 0; k < NB_BANDS; k++) { float tmp; tmp = st->cepstral_mem[i][k] - st->cepstral_mem[j][k]; dist += tmp*tmp; } if (j != i) mindist = FFMIN(mindist, dist); } spec_variability += mindist; } features[NB_BANDS+3*NB_DELTA_CEPS+1] = spec_variability/CEPS_MEM-2.1; return 0; } static void interp_band_gain(float *g, const float *bandE) { memset(g, 0, sizeof(*g) * FREQ_SIZE); for (int i = 0; i < NB_BANDS - 1; i++) { const int band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT; for (int j = 0; j < band_size; j++) { float frac = (float)j / band_size; g[(eband5ms[i] << FRAME_SIZE_SHIFT) + j] = (1.f - frac) * bandE[i] + frac * bandE[i + 1]; } } } static void pitch_filter(AVComplexFloat *X, const AVComplexFloat *P, const float *Ex, const float *Ep, const float *Exp, const float *g) { float newE[NB_BANDS]; float r[NB_BANDS]; float norm[NB_BANDS]; float rf[FREQ_SIZE] = {0}; float normf[FREQ_SIZE]={0}; for (int i = 0; i < NB_BANDS; i++) { if (Exp[i]>g[i]) r[i] = 1; else r[i] = SQUARE(Exp[i])*(1-SQUARE(g[i]))/(.001 + SQUARE(g[i])*(1-SQUARE(Exp[i]))); r[i] = sqrtf(av_clipf(r[i], 0, 1)); r[i] *= sqrtf(Ex[i]/(1e-8+Ep[i])); } interp_band_gain(rf, r); for (int i = 0; i < FREQ_SIZE; i++) { X[i].re += rf[i]*P[i].re; X[i].im += rf[i]*P[i].im; } compute_band_energy(newE, X); for (int i = 0; i < NB_BANDS; i++) { norm[i] = sqrtf(Ex[i] / (1e-8+newE[i])); } interp_band_gain(normf, norm); for (int i = 0; i < FREQ_SIZE; i++) { X[i].re *= normf[i]; X[i].im *= normf[i]; } } static const float tansig_table[201] = { 0.000000f, 0.039979f, 0.079830f, 0.119427f, 0.158649f, 0.197375f, 0.235496f, 0.272905f, 0.309507f, 0.345214f, 0.379949f, 0.413644f, 0.446244f, 0.477700f, 0.507977f, 0.537050f, 0.564900f, 0.591519f, 0.616909f, 0.641077f, 0.664037f, 0.685809f, 0.706419f, 0.725897f, 0.744277f, 0.761594f, 0.777888f, 0.793199f, 0.807569f, 0.821040f, 0.833655f, 0.845456f, 0.856485f, 0.866784f, 0.876393f, 0.885352f, 0.893698f, 0.901468f, 0.908698f, 0.915420f, 0.921669f, 0.927473f, 0.932862f, 0.937863f, 0.942503f, 0.946806f, 0.950795f, 0.954492f, 0.957917f, 0.961090f, 0.964028f, 0.966747f, 0.969265f, 0.971594f, 0.973749f, 0.975743f, 0.977587f, 0.979293f, 0.980869f, 0.982327f, 0.983675f, 0.984921f, 0.986072f, 0.987136f, 0.988119f, 0.989027f, 0.989867f, 0.990642f, 0.991359f, 0.992020f, 0.992631f, 0.993196f, 0.993718f, 0.994199f, 0.994644f, 0.995055f, 0.995434f, 0.995784f, 0.996108f, 0.996407f, 0.996682f, 0.996937f, 0.997172f, 0.997389f, 0.997590f, 0.997775f, 0.997946f, 0.998104f, 0.998249f, 0.998384f, 0.998508f, 0.998623f, 0.998728f, 0.998826f, 0.998916f, 0.999000f, 0.999076f, 0.999147f, 0.999213f, 0.999273f, 0.999329f, 0.999381f, 0.999428f, 0.999472f, 0.999513f, 0.999550f, 0.999585f, 0.999617f, 0.999646f, 0.999673f, 0.999699f, 0.999722f, 0.999743f, 0.999763f, 0.999781f, 0.999798f, 0.999813f, 0.999828f, 0.999841f, 0.999853f, 0.999865f, 0.999875f, 0.999885f, 0.999893f, 0.999902f, 0.999909f, 0.999916f, 0.999923f, 0.999929f, 0.999934f, 0.999939f, 0.999944f, 0.999948f, 0.999952f, 0.999956f, 0.999959f, 0.999962f, 0.999965f, 0.999968f, 0.999970f, 0.999973f, 0.999975f, 0.999977f, 0.999978f, 0.999980f, 0.999982f, 0.999983f, 0.999984f, 0.999986f, 0.999987f, 0.999988f, 0.999989f, 0.999990f, 0.999990f, 0.999991f, 0.999992f, 0.999992f, 0.999993f, 0.999994f, 0.999994f, 0.999994f, 0.999995f, 0.999995f, 0.999996f, 0.999996f, 0.999996f, 0.999997f, 0.999997f, 0.999997f, 0.999997f, 0.999997f, 0.999998f, 0.999998f, 0.999998f, 0.999998f, 0.999998f, 0.999998f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f, }; static inline float tansig_approx(float x) { float y, dy; float sign=1; int i; /* Tests are reversed to catch NaNs */ if (!(x<8)) return 1; if (!(x>-8)) return -1; /* Another check in case of -ffast-math */ if (isnan(x)) return 0; if (x < 0) { x=-x; sign=-1; } i = (int)floor(.5f+25*x); x -= .04f*i; y = tansig_table[i]; dy = 1-y*y; y = y + x*dy*(1 - y*x); return sign*y; } static inline float sigmoid_approx(float x) { return .5f + .5f*tansig_approx(.5f*x); } static void compute_dense(const DenseLayer *layer, float *output, const float *input) { const int N = layer->nb_neurons, M = layer->nb_inputs, stride = N; for (int i = 0; i < N; i++) { /* Compute update gate. */ float sum = layer->bias[i]; for (int j = 0; j < M; j++) sum += layer->input_weights[j * stride + i] * input[j]; output[i] = WEIGHTS_SCALE * sum; } if (layer->activation == ACTIVATION_SIGMOID) { for (int i = 0; i < N; i++) output[i] = sigmoid_approx(output[i]); } else if (layer->activation == ACTIVATION_TANH) { for (int i = 0; i < N; i++) output[i] = tansig_approx(output[i]); } else if (layer->activation == ACTIVATION_RELU) { for (int i = 0; i < N; i++) output[i] = FFMAX(0, output[i]); } else { av_assert0(0); } } static void compute_gru(AudioRNNContext *s, const GRULayer *gru, float *state, const float *input) { LOCAL_ALIGNED_32(float, z, [MAX_NEURONS]); LOCAL_ALIGNED_32(float, r, [MAX_NEURONS]); LOCAL_ALIGNED_32(float, h, [MAX_NEURONS]); const int M = gru->nb_inputs; const int N = gru->nb_neurons; const int AN = FFALIGN(N, 4); const int AM = FFALIGN(M, 4); const int stride = 3 * AN, istride = 3 * AM; for (int i = 0; i < N; i++) { /* Compute update gate. */ float sum = gru->bias[i]; sum += s->fdsp->scalarproduct_float(gru->input_weights + i * istride, input, AM); sum += s->fdsp->scalarproduct_float(gru->recurrent_weights + i * stride, state, AN); z[i] = sigmoid_approx(WEIGHTS_SCALE * sum); } for (int i = 0; i < N; i++) { /* Compute reset gate. */ float sum = gru->bias[N + i]; sum += s->fdsp->scalarproduct_float(gru->input_weights + AM + i * istride, input, AM); sum += s->fdsp->scalarproduct_float(gru->recurrent_weights + AN + i * stride, state, AN); r[i] = sigmoid_approx(WEIGHTS_SCALE * sum); } for (int i = 0; i < N; i++) { /* Compute output. */ float sum = gru->bias[2 * N + i]; sum += s->fdsp->scalarproduct_float(gru->input_weights + 2 * AM + i * istride, input, AM); for (int j = 0; j < N; j++) sum += gru->recurrent_weights[2 * AN + i * stride + j] * state[j] * r[j]; if (gru->activation == ACTIVATION_SIGMOID) sum = sigmoid_approx(WEIGHTS_SCALE * sum); else if (gru->activation == ACTIVATION_TANH) sum = tansig_approx(WEIGHTS_SCALE * sum); else if (gru->activation == ACTIVATION_RELU) sum = FFMAX(0, WEIGHTS_SCALE * sum); else av_assert0(0); h[i] = z[i] * state[i] + (1.f - z[i]) * sum; } RNN_COPY(state, h, N); } #define INPUT_SIZE 42 static void compute_rnn(AudioRNNContext *s, RNNState *rnn, float *gains, float *vad, const float *input) { LOCAL_ALIGNED_32(float, dense_out, [MAX_NEURONS]); LOCAL_ALIGNED_32(float, noise_input, [MAX_NEURONS * 3]); LOCAL_ALIGNED_32(float, denoise_input, [MAX_NEURONS * 3]); compute_dense(rnn->model->input_dense, dense_out, input); compute_gru(s, rnn->model->vad_gru, rnn->vad_gru_state, dense_out); compute_dense(rnn->model->vad_output, vad, rnn->vad_gru_state); memcpy(noise_input, dense_out, rnn->model->input_dense_size * sizeof(float)); memcpy(noise_input + rnn->model->input_dense_size, rnn->vad_gru_state, rnn->model->vad_gru_size * sizeof(float)); memcpy(noise_input + rnn->model->input_dense_size + rnn->model->vad_gru_size, input, INPUT_SIZE * sizeof(float)); compute_gru(s, rnn->model->noise_gru, rnn->noise_gru_state, noise_input); memcpy(denoise_input, rnn->vad_gru_state, rnn->model->vad_gru_size * sizeof(float)); memcpy(denoise_input + rnn->model->vad_gru_size, rnn->noise_gru_state, rnn->model->noise_gru_size * sizeof(float)); memcpy(denoise_input + rnn->model->vad_gru_size + rnn->model->noise_gru_size, input, INPUT_SIZE * sizeof(float)); compute_gru(s, rnn->model->denoise_gru, rnn->denoise_gru_state, denoise_input); compute_dense(rnn->model->denoise_output, gains, rnn->denoise_gru_state); } static float rnnoise_channel(AudioRNNContext *s, DenoiseState *st, float *out, const float *in, int disabled) { AVComplexFloat X[FREQ_SIZE]; AVComplexFloat P[WINDOW_SIZE]; float x[FRAME_SIZE]; float Ex[NB_BANDS], Ep[NB_BANDS]; LOCAL_ALIGNED_32(float, Exp, [NB_BANDS]); float features[NB_FEATURES]; float g[NB_BANDS]; float gf[FREQ_SIZE]; float vad_prob = 0; float *history = st->history; static const float a_hp[2] = {-1.99599, 0.99600}; static const float b_hp[2] = {-2, 1}; int silence; biquad(x, st->mem_hp_x, in, b_hp, a_hp, FRAME_SIZE); silence = compute_frame_features(s, st, X, P, Ex, Ep, Exp, features, x); if (!silence && !disabled) { compute_rnn(s, &st->rnn[0], g, &vad_prob, features); pitch_filter(X, P, Ex, Ep, Exp, g); for (int i = 0; i < NB_BANDS; i++) { float alpha = .6f; g[i] = FFMAX(g[i], alpha * st->lastg[i]); st->lastg[i] = g[i]; } interp_band_gain(gf, g); for (int i = 0; i < FREQ_SIZE; i++) { X[i].re *= gf[i]; X[i].im *= gf[i]; } } frame_synthesis(s, st, out, X); memcpy(history, in, FRAME_SIZE * sizeof(*history)); return vad_prob; } typedef struct ThreadData { AVFrame *in, *out; } ThreadData; static int rnnoise_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AudioRNNContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; const int start = (out->ch_layout.nb_channels * jobnr) / nb_jobs; const int end = (out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; for (int ch = start; ch < end; ch++) { rnnoise_channel(s, &s->st[ch], (float *)out->extended_data[ch], (const float *)in->extended_data[ch], ctx->is_disabled); } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out = NULL; ThreadData td; out = ff_get_audio_buffer(outlink, FRAME_SIZE); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } out->pts = in->pts; td.in = in; td.out = out; ff_filter_execute(ctx, rnnoise_channels, &td, NULL, FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); av_frame_free(&in); return ff_filter_frame(outlink, out); } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *in = NULL; int ret; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); ret = ff_inlink_consume_samples(inlink, FRAME_SIZE, FRAME_SIZE, &in); if (ret < 0) return ret; if (ret > 0) return filter_frame(inlink, in); FF_FILTER_FORWARD_STATUS(inlink, outlink); FF_FILTER_FORWARD_WANTED(outlink, inlink); return FFERROR_NOT_READY; } static int open_model(AVFilterContext *ctx, RNNModel **model) { AudioRNNContext *s = ctx->priv; int ret; FILE *f; if (!s->model_name) return AVERROR(EINVAL); f = avpriv_fopen_utf8(s->model_name, "r"); if (!f) { av_log(ctx, AV_LOG_ERROR, "Failed to open model file: %s\n", s->model_name); return AVERROR(EINVAL); } ret = rnnoise_model_from_file(f, model); fclose(f); if (!*model || ret < 0) return ret; return 0; } static av_cold int init(AVFilterContext *ctx) { AudioRNNContext *s = ctx->priv; int ret; s->fdsp = avpriv_float_dsp_alloc(0); if (!s->fdsp) return AVERROR(ENOMEM); ret = open_model(ctx, &s->model[0]); if (ret < 0) return ret; for (int i = 0; i < FRAME_SIZE; i++) { s->window[i] = sin(.5*M_PI*sin(.5*M_PI*(i+.5)/FRAME_SIZE) * sin(.5*M_PI*(i+.5)/FRAME_SIZE)); s->window[WINDOW_SIZE - 1 - i] = s->window[i]; } for (int i = 0; i < NB_BANDS; i++) { for (int j = 0; j < NB_BANDS; j++) { s->dct_table[j][i] = cosf((i + .5f) * j * M_PI / NB_BANDS); if (j == 0) s->dct_table[j][i] *= sqrtf(.5); } } return 0; } static void free_model(AVFilterContext *ctx, int n) { AudioRNNContext *s = ctx->priv; rnnoise_model_free(s->model[n]); s->model[n] = NULL; for (int ch = 0; ch < s->channels && s->st; ch++) { av_freep(&s->st[ch].rnn[n].vad_gru_state); av_freep(&s->st[ch].rnn[n].noise_gru_state); av_freep(&s->st[ch].rnn[n].denoise_gru_state); } } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { AudioRNNContext *s = ctx->priv; int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; ret = open_model(ctx, &s->model[1]); if (ret < 0) return ret; FFSWAP(RNNModel *, s->model[0], s->model[1]); for (int ch = 0; ch < s->channels; ch++) FFSWAP(RNNState, s->st[ch].rnn[0], s->st[ch].rnn[1]); ret = config_input(ctx->inputs[0]); if (ret < 0) { for (int ch = 0; ch < s->channels; ch++) FFSWAP(RNNState, s->st[ch].rnn[0], s->st[ch].rnn[1]); FFSWAP(RNNModel *, s->model[0], s->model[1]); return ret; } free_model(ctx, 1); return 0; } static av_cold void uninit(AVFilterContext *ctx) { AudioRNNContext *s = ctx->priv; av_freep(&s->fdsp); free_model(ctx, 0); for (int ch = 0; ch < s->channels && s->st; ch++) { av_tx_uninit(&s->st[ch].tx); av_tx_uninit(&s->st[ch].txi); } av_freep(&s->st); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, }; #define OFFSET(x) offsetof(AudioRNNContext, x) #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption arnndn_options[] = { { "model", "set model name", OFFSET(model_name), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, AF }, { "m", "set model name", OFFSET(model_name), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, AF }, { "mix", "set output vs input mix", OFFSET(mix), AV_OPT_TYPE_FLOAT, {.dbl=1.0},-1, 1, AF }, { NULL } }; AVFILTER_DEFINE_CLASS(arnndn); const AVFilter ff_af_arnndn = { .name = "arnndn", .description = NULL_IF_CONFIG_SMALL("Reduce noise from speech using Recurrent Neural Networks."), .priv_size = sizeof(AudioRNNContext), .priv_class = &arnndn_class, .activate = activate, .init = init, .uninit = uninit, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), FILTER_QUERY_FUNC(query_formats), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, };