/*
 * Copyright (c) 2016 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation; either version 2.1 of the License,
 * or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/avstring.h"
#include "libavfilter/internal.h"
#include "libavutil/common.h"
#include "libavutil/cpu.h"
#include "libavutil/opt.h"
#include "libavutil/eval.h"
#include "libavutil/tx.h"
#include "audio.h"
#include "filters.h"
#include "window_func.h"

typedef struct AFFTFiltContext {
    const AVClass *class;
    char *real_str;
    char *img_str;
    int fft_size;

    AVTXContext **fft, **ifft;
    av_tx_fn  tx_fn, itx_fn;
    AVComplexFloat **fft_in;
    AVComplexFloat **fft_out;
    AVComplexFloat **fft_temp;
    int nb_exprs;
    int channels;
    int window_size;
    AVExpr **real;
    AVExpr **imag;
    int hop_size;
    float overlap;
    AVFrame *window;
    AVFrame *buffer;
    int win_func;
    float *window_func_lut;
} AFFTFiltContext;

static const char *const var_names[] = {            "sr",     "b",       "nb",        "ch",        "chs",   "pts",     "re",     "im", NULL };
enum                                   { VAR_SAMPLE_RATE, VAR_BIN, VAR_NBBINS, VAR_CHANNEL, VAR_CHANNELS, VAR_PTS, VAR_REAL, VAR_IMAG, VAR_VARS_NB };

#define OFFSET(x) offsetof(AFFTFiltContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM

static const AVOption afftfilt_options[] = {
    { "real", "set channels real expressions",       OFFSET(real_str), AV_OPT_TYPE_STRING, {.str = "re" }, 0, 0, A },
    { "imag", "set channels imaginary expressions",  OFFSET(img_str),  AV_OPT_TYPE_STRING, {.str = "im" }, 0, 0, A },
    { "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=4096}, 16, 131072, A },
    WIN_FUNC_OPTION("win_func", OFFSET(win_func), A, WFUNC_HANNING),
    { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0,  1, A },
    { NULL },
};

AVFILTER_DEFINE_CLASS(afftfilt);

static inline double getreal(void *priv, double x, double ch)
{
    AFFTFiltContext *s = priv;
    int ich, ix;

    ich = av_clip(ch, 0, s->nb_exprs - 1);
    ix = av_clip(x, 0, s->window_size / 2);

    return s->fft_out[ich][ix].re;
}

static inline double getimag(void *priv, double x, double ch)
{
    AFFTFiltContext *s = priv;
    int ich, ix;

    ich = av_clip(ch, 0, s->nb_exprs - 1);
    ix = av_clip(x, 0, s->window_size / 2);

    return s->fft_out[ich][ix].im;
}

static double realf(void *priv, double x, double ch) { return getreal(priv, x, ch); }
static double imagf(void *priv, double x, double ch) { return getimag(priv, x, ch); }

static const char *const func2_names[]    = { "real", "imag", NULL };
static double (*const func2[])(void *, double, double) = {  realf,  imagf, NULL };

static int config_input(AVFilterLink *inlink)
{
    AVFilterContext *ctx = inlink->dst;
    AFFTFiltContext *s = ctx->priv;
    char *saveptr = NULL;
    int ret = 0, ch;
    float overlap, scale = 1.f;
    char *args;
    const char *last_expr = "1";
    int buf_size;

    s->channels = inlink->ch_layout.nb_channels;
    s->fft  = av_calloc(s->channels, sizeof(*s->fft));
    s->ifft = av_calloc(s->channels, sizeof(*s->ifft));
    if (!s->fft || !s->ifft)
        return AVERROR(ENOMEM);

    for (int ch = 0; ch < s->channels; ch++) {
        ret = av_tx_init(&s->fft[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0);
        if (ret < 0)
            return ret;
    }

    for (int ch = 0; ch < s->channels; ch++) {
        ret = av_tx_init(&s->ifft[ch], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->fft_size, &scale, 0);
        if (ret < 0)
            return ret;
    }

    s->window_size = s->fft_size;
    buf_size = FFALIGN(s->window_size, av_cpu_max_align());

    s->fft_in = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_in));
    if (!s->fft_in)
        return AVERROR(ENOMEM);

    s->fft_out = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_out));
    if (!s->fft_out)
        return AVERROR(ENOMEM);

    s->fft_temp = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft_temp));
    if (!s->fft_temp)
        return AVERROR(ENOMEM);

    for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
        s->fft_in[ch] = av_calloc(buf_size, sizeof(**s->fft_in));
        if (!s->fft_in[ch])
            return AVERROR(ENOMEM);

        s->fft_out[ch] = av_calloc(buf_size, sizeof(**s->fft_out));
        if (!s->fft_out[ch])
            return AVERROR(ENOMEM);

        s->fft_temp[ch] = av_calloc(buf_size, sizeof(**s->fft_temp));
        if (!s->fft_temp[ch])
            return AVERROR(ENOMEM);
    }

    s->real = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->real));
    if (!s->real)
        return AVERROR(ENOMEM);

    s->imag = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->imag));
    if (!s->imag)
        return AVERROR(ENOMEM);

    args = av_strdup(s->real_str);
    if (!args)
        return AVERROR(ENOMEM);

    for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
        char *arg = av_strtok(ch == 0 ? args : NULL, "|", &saveptr);

        ret = av_expr_parse(&s->real[ch], arg ? arg : last_expr, var_names,
                            NULL, NULL, func2_names, func2, 0, ctx);
        if (ret < 0)
            goto fail;
        if (arg)
            last_expr = arg;
        s->nb_exprs++;
    }

    av_freep(&args);

    args = av_strdup(s->img_str ? s->img_str : s->real_str);
    if (!args)
        return AVERROR(ENOMEM);

    saveptr = NULL;
    last_expr = "1";
    for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
        char *arg = av_strtok(ch == 0 ? args : NULL, "|", &saveptr);

        ret = av_expr_parse(&s->imag[ch], arg ? arg : last_expr, var_names,
                            NULL, NULL, func2_names, func2, 0, ctx);
        if (ret < 0)
            goto fail;
        if (arg)
            last_expr = arg;
    }

    av_freep(&args);

    s->window_func_lut = av_realloc_f(s->window_func_lut, s->window_size,
                                      sizeof(*s->window_func_lut));
    if (!s->window_func_lut)
        return AVERROR(ENOMEM);
    generate_window_func(s->window_func_lut, s->window_size, s->win_func, &overlap);
    for (int i = 0; i < s->window_size; i++)
        s->window_func_lut[i] = sqrtf(s->window_func_lut[i] / s->window_size);
    if (s->overlap == 1)
        s->overlap = overlap;

    s->hop_size = s->window_size * (1 - s->overlap);
    if (s->hop_size <= 0)
        return AVERROR(EINVAL);

    s->window = ff_get_audio_buffer(inlink, s->window_size * 2);
    if (!s->window)
        return AVERROR(ENOMEM);

    s->buffer = ff_get_audio_buffer(inlink, s->window_size * 2);
    if (!s->buffer)
        return AVERROR(ENOMEM);

fail:
    av_freep(&args);

    return ret;
}

static int tx_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
    AFFTFiltContext *s = ctx->priv;
    const int channels = s->channels;
    const int start = (channels * jobnr) / nb_jobs;
    const int end = (channels * (jobnr+1)) / nb_jobs;

    for (int ch = start; ch < end; ch++) {
        AVComplexFloat *fft_in = s->fft_in[ch];
        AVComplexFloat *fft_out = s->fft_out[ch];

        s->tx_fn(s->fft[ch], fft_out, fft_in, sizeof(*fft_in));
    }

    return 0;
}

static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
    AFFTFiltContext *s = ctx->priv;
    const int window_size = s->window_size;
    const float *window_lut = s->window_func_lut;
    const float f = sqrtf(1.f - s->overlap);
    const int channels = s->channels;
    const int start = (channels * jobnr) / nb_jobs;
    const int end = (channels * (jobnr+1)) / nb_jobs;
    double values[VAR_VARS_NB];

    memcpy(values, arg, sizeof(values));

    for (int ch = start; ch < end; ch++) {
        AVComplexFloat *fft_out = s->fft_out[ch];
        AVComplexFloat *fft_temp = s->fft_temp[ch];
        float *buf = (float *)s->buffer->extended_data[ch];

        values[VAR_CHANNEL] = ch;

        if (ctx->is_disabled) {
            for (int n = 0; n < window_size; n++) {
                fft_temp[n].re = fft_out[n].re;
                fft_temp[n].im = fft_out[n].im;
            }
        } else {
            for (int n = 0; n <= window_size / 2; n++) {
                float fr, fi;

                values[VAR_BIN] = n;
                values[VAR_REAL] = fft_out[n].re;
                values[VAR_IMAG] = fft_out[n].im;

                fr = av_expr_eval(s->real[ch], values, s);
                fi = av_expr_eval(s->imag[ch], values, s);

                fft_temp[n].re = fr;
                fft_temp[n].im = fi;
            }

            for (int n = window_size / 2 + 1, x = window_size / 2 - 1; n < window_size; n++, x--) {
                fft_temp[n].re =  fft_temp[x].re;
                fft_temp[n].im = -fft_temp[x].im;
            }
        }

        s->itx_fn(s->ifft[ch], fft_out, fft_temp, sizeof(*fft_temp));

        memmove(buf, buf + s->hop_size, window_size * sizeof(float));
        for (int i = 0; i < window_size; i++)
            buf[i] += fft_out[i].re * window_lut[i] * f;
    }

    return 0;
}

static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
    AVFilterContext *ctx = inlink->dst;
    AVFilterLink *outlink = ctx->outputs[0];
    AFFTFiltContext *s = ctx->priv;
    const int window_size = s->window_size;
    const float *window_lut = s->window_func_lut;
    double values[VAR_VARS_NB];
    int ch, n, ret;
    AVFrame *out;

    for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
        const int offset = s->window_size - s->hop_size;
        float *src = (float *)s->window->extended_data[ch];
        AVComplexFloat *fft_in = s->fft_in[ch];

        memmove(src, &src[s->hop_size], offset * sizeof(float));
        memcpy(&src[offset], in->extended_data[ch], in->nb_samples * sizeof(float));
        memset(&src[offset + in->nb_samples], 0, (s->hop_size - in->nb_samples) * sizeof(float));

        for (n = 0; n < window_size; n++) {
            fft_in[n].re = src[n] * window_lut[n];
            fft_in[n].im = 0;
        }
    }

    values[VAR_PTS]         = in->pts;
    values[VAR_SAMPLE_RATE] = inlink->sample_rate;
    values[VAR_NBBINS]      = window_size / 2;
    values[VAR_CHANNELS]    = inlink->ch_layout.nb_channels;

    ff_filter_execute(ctx, tx_channel, NULL, NULL,
                      FFMIN(s->channels, ff_filter_get_nb_threads(ctx)));

    ff_filter_execute(ctx, filter_channel, values, NULL,
                      FFMIN(s->channels, ff_filter_get_nb_threads(ctx)));

    out = ff_get_audio_buffer(outlink, s->hop_size);
    if (!out) {
        ret = AVERROR(ENOMEM);
        goto fail;
    }

    av_frame_copy_props(out, in);
    out->nb_samples = in->nb_samples;

    for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
        float *dst = (float *)out->extended_data[ch];
        float *buf = (float *)s->buffer->extended_data[ch];

        memcpy(dst, buf, s->hop_size * sizeof(float));
    }

    ret = ff_filter_frame(outlink, out);
    if (ret < 0)
        goto fail;

fail:
    av_frame_free(&in);
    return ret < 0 ? ret : 0;
}

static int activate(AVFilterContext *ctx)
{
    AVFilterLink *inlink = ctx->inputs[0];
    AVFilterLink *outlink = ctx->outputs[0];
    AFFTFiltContext *s = ctx->priv;
    AVFrame *in = NULL;
    int ret = 0, status;
    int64_t pts;

    FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);

    ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &in);
    if (ret < 0)
        return ret;

    if (ret > 0)
        ret = filter_frame(inlink, in);
    if (ret < 0)
        return ret;

    if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
        ff_outlink_set_status(outlink, status, pts);
        return 0;
    }

    FF_FILTER_FORWARD_WANTED(outlink, inlink);

    return FFERROR_NOT_READY;
}

static av_cold void uninit(AVFilterContext *ctx)
{
    AFFTFiltContext *s = ctx->priv;
    int i;


    for (i = 0; i < s->channels; i++) {
        if (s->ifft)
            av_tx_uninit(&s->ifft[i]);
        if (s->fft)
            av_tx_uninit(&s->fft[i]);
        if (s->fft_in)
            av_freep(&s->fft_in[i]);
        if (s->fft_out)
            av_freep(&s->fft_out[i]);
        if (s->fft_temp)
            av_freep(&s->fft_temp[i]);
    }

    av_freep(&s->fft);
    av_freep(&s->ifft);
    av_freep(&s->fft_in);
    av_freep(&s->fft_out);
    av_freep(&s->fft_temp);

    for (i = 0; i < s->nb_exprs; i++) {
        av_expr_free(s->real[i]);
        av_expr_free(s->imag[i]);
    }

    av_freep(&s->real);
    av_freep(&s->imag);
    av_frame_free(&s->buffer);
    av_frame_free(&s->window);
    av_freep(&s->window_func_lut);
}

static const AVFilterPad inputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_AUDIO,
        .config_props = config_input,
    },
};

const AVFilter ff_af_afftfilt = {
    .name            = "afftfilt",
    .description     = NULL_IF_CONFIG_SMALL("Apply arbitrary expressions to samples in frequency domain."),
    .priv_size       = sizeof(AFFTFiltContext),
    .priv_class      = &afftfilt_class,
    FILTER_INPUTS(inputs),
    FILTER_OUTPUTS(ff_audio_default_filterpad),
    FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
    .activate        = activate,
    .uninit          = uninit,
    .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
                       AVFILTER_FLAG_SLICE_THREADS,
};