/* * Copyright (c) 2018 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <float.h> #include "libavutil/audio_fifo.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "libavcodec/avfft.h" #include "avfilter.h" #include "audio.h" #include "formats.h" #include "filters.h" #define C (M_LN10 * 0.1) #define RATIO 0.98 #define RRATIO (1.0 - RATIO) enum OutModes { IN_MODE, OUT_MODE, NOISE_MODE, NB_MODES }; enum NoiseType { WHITE_NOISE, VINYL_NOISE, SHELLAC_NOISE, CUSTOM_NOISE, NB_NOISE }; typedef struct DeNoiseChannel { int band_noise[15]; double noise_band_auto_var[15]; double noise_band_sample[15]; double *amt; double *band_amt; double *band_excit; double *gain; double *prior; double *prior_band_excit; double *clean_data; double *noisy_data; double *out_samples; double *spread_function; double *abs_var; double *rel_var; double *min_abs_var; FFTComplex *fft_data; FFTContext *fft, *ifft; double noise_band_norm[15]; double noise_band_avr[15]; double noise_band_avi[15]; double noise_band_var[15]; double sfm_threshold; double sfm_alpha; double sfm_results[3]; int sfm_fail_flags[512]; int sfm_fail_total; } DeNoiseChannel; typedef struct AudioFFTDeNoiseContext { const AVClass *class; float noise_reduction; float noise_floor; int noise_type; char *band_noise_str; float residual_floor; int track_noise; int track_residual; int output_mode; float last_residual_floor; float last_noise_floor; float last_noise_reduction; float last_noise_balance; int64_t block_count; int64_t pts; int channels; int sample_noise; int sample_noise_start; int sample_noise_end; float sample_rate; int buffer_length; int fft_length; int fft_length2; int bin_count; int window_length; int sample_advance; int number_of_bands; int band_centre[15]; int *bin2band; double *window; double *band_alpha; double *band_beta; DeNoiseChannel *dnch; double max_gain; double max_var; double gain_scale; double window_weight; double floor; double sample_floor; double auto_floor; int noise_band_edge[17]; int noise_band_count; double matrix_a[25]; double vector_b[5]; double matrix_b[75]; double matrix_c[75]; AVAudioFifo *fifo; } AudioFFTDeNoiseContext; #define OFFSET(x) offsetof(AudioFFTDeNoiseContext, x) #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define AFR AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption afftdn_options[] = { { "nr", "set the noise reduction", OFFSET(noise_reduction), AV_OPT_TYPE_FLOAT, {.dbl = 12}, .01, 97, AFR }, { "nf", "set the noise floor", OFFSET(noise_floor), AV_OPT_TYPE_FLOAT, {.dbl =-50}, -80,-20, AFR }, { "nt", "set the noise type", OFFSET(noise_type), AV_OPT_TYPE_INT, {.i64 = WHITE_NOISE}, WHITE_NOISE, NB_NOISE-1, AF, "type" }, { "w", "white noise", 0, AV_OPT_TYPE_CONST, {.i64 = WHITE_NOISE}, 0, 0, AF, "type" }, { "v", "vinyl noise", 0, AV_OPT_TYPE_CONST, {.i64 = VINYL_NOISE}, 0, 0, AF, "type" }, { "s", "shellac noise", 0, AV_OPT_TYPE_CONST, {.i64 = SHELLAC_NOISE}, 0, 0, AF, "type" }, { "c", "custom noise", 0, AV_OPT_TYPE_CONST, {.i64 = CUSTOM_NOISE}, 0, 0, AF, "type" }, { "bn", "set the custom bands noise", OFFSET(band_noise_str), AV_OPT_TYPE_STRING, {.str = 0}, 0, 0, AF }, { "rf", "set the residual floor", OFFSET(residual_floor), AV_OPT_TYPE_FLOAT, {.dbl =-38}, -80,-20, AFR }, { "tn", "track noise", OFFSET(track_noise), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, AFR }, { "tr", "track residual", OFFSET(track_residual), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, AFR }, { "om", "set output mode", OFFSET(output_mode), AV_OPT_TYPE_INT, {.i64 = OUT_MODE}, 0, NB_MODES-1, AFR, "mode" }, { "i", "input", 0, AV_OPT_TYPE_CONST, {.i64 = IN_MODE}, 0, 0, AFR, "mode" }, { "o", "output", 0, AV_OPT_TYPE_CONST, {.i64 = OUT_MODE}, 0, 0, AFR, "mode" }, { "n", "noise", 0, AV_OPT_TYPE_CONST, {.i64 = NOISE_MODE}, 0, 0, AFR, "mode" }, { NULL } }; AVFILTER_DEFINE_CLASS(afftdn); static int get_band_noise(AudioFFTDeNoiseContext *s, int band, double a, double b, double c) { double d1, d2, d3; d1 = a / s->band_centre[band]; d1 = 10.0 * log(1.0 + d1 * d1) / M_LN10; d2 = b / s->band_centre[band]; d2 = 10.0 * log(1.0 + d2 * d2) / M_LN10; d3 = s->band_centre[band] / c; d3 = 10.0 * log(1.0 + d3 * d3) / M_LN10; return lrint(-d1 + d2 - d3); } static void factor(double *array, int size) { for (int i = 0; i < size - 1; i++) { for (int j = i + 1; j < size; j++) { double d = array[j + i * size] / array[i + i * size]; array[j + i * size] = d; for (int k = i + 1; k < size; k++) { array[j + k * size] -= d * array[i + k * size]; } } } } static void solve(double *matrix, double *vector, int size) { for (int i = 0; i < size - 1; i++) { for (int j = i + 1; j < size; j++) { double d = matrix[j + i * size]; vector[j] -= d * vector[i]; } } vector[size - 1] /= matrix[size * size - 1]; for (int i = size - 2; i >= 0; i--) { double d = vector[i]; for (int j = i + 1; j < size; j++) d -= matrix[i + j * size] * vector[j]; vector[i] = d / matrix[i + i * size]; } } static int process_get_band_noise(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, int band) { double product, sum, f; int i = 0; if (band < 15) return dnch->band_noise[band]; for (int j = 0; j < 5; j++) { sum = 0.0; for (int k = 0; k < 15; k++) sum += s->matrix_b[i++] * dnch->band_noise[k]; s->vector_b[j] = sum; } solve(s->matrix_a, s->vector_b, 5); f = (0.5 * s->sample_rate) / s->band_centre[14]; f = 15.0 + log(f / 1.5) / log(1.5); sum = 0.0; product = 1.0; for (int j = 0; j < 5; j++) { sum += product * s->vector_b[j]; product *= f; } return lrint(sum); } static void calculate_sfm(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, int start, int end) { double d1 = 0.0, d2 = 1.0; int i = 0, j = 0; for (int k = start; k < end; k++) { if (dnch->noisy_data[k] > s->sample_floor) { j++; d1 += dnch->noisy_data[k]; d2 *= dnch->noisy_data[k]; if (d2 > 1.0E100) { d2 *= 1.0E-100; i++; } else if (d2 < 1.0E-100) { d2 *= 1.0E100; i--; } } } if (j > 1) { d1 /= j; dnch->sfm_results[0] = d1; d2 = log(d2) + 230.2585 * i; d2 /= j; d1 = log(d1); dnch->sfm_results[1] = d1; dnch->sfm_results[2] = d1 - d2; } else { dnch->sfm_results[0] = s->auto_floor; dnch->sfm_results[1] = dnch->sfm_threshold; dnch->sfm_results[2] = dnch->sfm_threshold; } } static double limit_gain(double a, double b) { if (a > 1.0) return (b * a - 1.0) / (b + a - 2.0); if (a < 1.0) return (b * a - 2.0 * a + 1.0) / (b - a); return 1.0; } static void process_frame(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, FFTComplex *fft_data, double *prior, double *prior_band_excit, int track_noise) { double d1, d2, d3, gain; int n, i1; d1 = fft_data[0].re * fft_data[0].re; dnch->noisy_data[0] = d1; d2 = d1 / dnch->abs_var[0]; d3 = RATIO * prior[0] + RRATIO * fmax(d2 - 1.0, 0.0); gain = d3 / (1.0 + d3); gain *= (gain + M_PI_4 / fmax(d2, 1.0E-6)); prior[0] = (d2 * gain); dnch->clean_data[0] = (d1 * gain); gain = sqrt(gain); dnch->gain[0] = gain; n = 0; for (int i = 1; i < s->fft_length2; i++) { d1 = fft_data[i].re * fft_data[i].re + fft_data[i].im * fft_data[i].im; if (d1 > s->sample_floor) n = i; dnch->noisy_data[i] = d1; d2 = d1 / dnch->abs_var[i]; d3 = RATIO * prior[i] + RRATIO * fmax(d2 - 1.0, 0.0); gain = d3 / (1.0 + d3); gain *= (gain + M_PI_4 / fmax(d2, 1.0E-6)); prior[i] = d2 * gain; dnch->clean_data[i] = d1 * gain; gain = sqrt(gain); dnch->gain[i] = gain; } d1 = fft_data[0].im * fft_data[0].im; if (d1 > s->sample_floor) n = s->fft_length2; dnch->noisy_data[s->fft_length2] = d1; d2 = d1 / dnch->abs_var[s->fft_length2]; d3 = RATIO * prior[s->fft_length2] + RRATIO * fmax(d2 - 1.0, 0.0); gain = d3 / (1.0 + d3); gain *= gain + M_PI_4 / fmax(d2, 1.0E-6); prior[s->fft_length2] = d2 * gain; dnch->clean_data[s->fft_length2] = d1 * gain; gain = sqrt(gain); dnch->gain[s->fft_length2] = gain; if (n > s->fft_length2 - 2) { n = s->bin_count; i1 = s->noise_band_count; } else { i1 = 0; for (int i = 0; i <= s->noise_band_count; i++) { if (n > 1.1 * s->noise_band_edge[i]) { i1 = i; } } } if (track_noise && (i1 > s->noise_band_count / 2)) { int j = FFMIN(n, s->noise_band_edge[i1]); int m = 3, k; for (k = i1 - 1; k >= 0; k--) { int i = s->noise_band_edge[k]; calculate_sfm(s, dnch, i, j); dnch->noise_band_sample[k] = dnch->sfm_results[0]; if (dnch->sfm_results[2] + 0.013 * m * fmax(0.0, dnch->sfm_results[1] - 20.53) >= dnch->sfm_threshold) { break; } j = i; m++; } if (k < i1 - 1) { double sum = 0.0, min, max; int i; for (i = i1 - 1; i > k; i--) { min = log(dnch->noise_band_sample[i] / dnch->noise_band_auto_var[i]); sum += min; } i = i1 - k - 1; if (i < 5) { min = 3.0E-4 * i * i; } else { min = 3.0E-4 * (8 * i - 16); } if (i < 3) { max = 2.0E-4 * i * i; } else { max = 2.0E-4 * (4 * i - 4); } if (s->track_residual) { if (s->last_noise_floor > s->last_residual_floor + 9) { min *= 0.5; max *= 0.75; } else if (s->last_noise_floor > s->last_residual_floor + 6) { min *= 0.4; max *= 1.0; } else if (s->last_noise_floor > s->last_residual_floor + 4) { min *= 0.3; max *= 1.3; } else if (s->last_noise_floor > s->last_residual_floor + 2) { min *= 0.2; max *= 1.6; } else if (s->last_noise_floor > s->last_residual_floor) { min *= 0.1; max *= 2.0; } else { min = 0.0; max *= 2.5; } } sum = av_clipd(sum, -min, max); sum = exp(sum); for (int i = 0; i < 15; i++) dnch->noise_band_auto_var[i] *= sum; } else if (dnch->sfm_results[2] >= dnch->sfm_threshold) { dnch->sfm_fail_flags[s->block_count & 0x1FF] = 1; dnch->sfm_fail_total += 1; } } for (int i = 0; i < s->number_of_bands; i++) { dnch->band_excit[i] = 0.0; dnch->band_amt[i] = 0.0; } for (int i = 0; i < s->bin_count; i++) { dnch->band_excit[s->bin2band[i]] += dnch->clean_data[i]; } for (int i = 0; i < s->number_of_bands; i++) { dnch->band_excit[i] = fmax(dnch->band_excit[i], s->band_alpha[i] * dnch->band_excit[i] + s->band_beta[i] * prior_band_excit[i]); prior_band_excit[i] = dnch->band_excit[i]; } for (int j = 0, i = 0; j < s->number_of_bands; j++) { for (int k = 0; k < s->number_of_bands; k++) { dnch->band_amt[j] += dnch->spread_function[i++] * dnch->band_excit[k]; } } for (int i = 0; i < s->bin_count; i++) dnch->amt[i] = dnch->band_amt[s->bin2band[i]]; if (dnch->amt[0] > dnch->abs_var[0]) { dnch->gain[0] = 1.0; } else if (dnch->amt[0] > dnch->min_abs_var[0]) { double limit = sqrt(dnch->abs_var[0] / dnch->amt[0]); dnch->gain[0] = limit_gain(dnch->gain[0], limit); } else { dnch->gain[0] = limit_gain(dnch->gain[0], s->max_gain); } if (dnch->amt[s->fft_length2] > dnch->abs_var[s->fft_length2]) { dnch->gain[s->fft_length2] = 1.0; } else if (dnch->amt[s->fft_length2] > dnch->min_abs_var[s->fft_length2]) { double limit = sqrt(dnch->abs_var[s->fft_length2] / dnch->amt[s->fft_length2]); dnch->gain[s->fft_length2] = limit_gain(dnch->gain[s->fft_length2], limit); } else { dnch->gain[s->fft_length2] = limit_gain(dnch->gain[s->fft_length2], s->max_gain); } for (int i = 1; i < s->fft_length2; i++) { if (dnch->amt[i] > dnch->abs_var[i]) { dnch->gain[i] = 1.0; } else if (dnch->amt[i] > dnch->min_abs_var[i]) { double limit = sqrt(dnch->abs_var[i] / dnch->amt[i]); dnch->gain[i] = limit_gain(dnch->gain[i], limit); } else { dnch->gain[i] = limit_gain(dnch->gain[i], s->max_gain); } } gain = dnch->gain[0]; dnch->clean_data[0] = (gain * gain * dnch->noisy_data[0]); fft_data[0].re *= gain; gain = dnch->gain[s->fft_length2]; dnch->clean_data[s->fft_length2] = (gain * gain * dnch->noisy_data[s->fft_length2]); fft_data[0].im *= gain; for (int i = 1; i < s->fft_length2; i++) { gain = dnch->gain[i]; dnch->clean_data[i] = (gain * gain * dnch->noisy_data[i]); fft_data[i].re *= gain; fft_data[i].im *= gain; } } static double freq2bark(double x) { double d = x / 7500.0; return 13.0 * atan(7.6E-4 * x) + 3.5 * atan(d * d); } static int get_band_centre(AudioFFTDeNoiseContext *s, int band) { if (band == -1) return lrint(s->band_centre[0] / 1.5); return s->band_centre[band]; } static int get_band_edge(AudioFFTDeNoiseContext *s, int band) { int i; if (band == 15) { i = lrint(s->band_centre[14] * 1.224745); } else { i = lrint(s->band_centre[band] / 1.224745); } return FFMIN(i, s->sample_rate / 2); } static void set_band_parameters(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch) { double band_noise, d2, d3, d4, d5; int i = 0, j = 0, k = 0; d5 = 0.0; band_noise = process_get_band_noise(s, dnch, 0); for (int m = j; m <= s->fft_length2; m++) { if (m == j) { i = j; d5 = band_noise; if (k == 15) { j = s->bin_count; } else { j = s->fft_length * get_band_centre(s, k) / s->sample_rate; } d2 = j - i; band_noise = process_get_band_noise(s, dnch, k); k++; } d3 = (j - m) / d2; d4 = (m - i) / d2; dnch->rel_var[m] = exp((d5 * d3 + band_noise * d4) * C); } dnch->rel_var[s->fft_length2] = exp(band_noise * C); for (i = 0; i < 15; i++) dnch->noise_band_auto_var[i] = s->max_var * exp((process_get_band_noise(s, dnch, i) - 2.0) * C); for (i = 0; i <= s->fft_length2; i++) { dnch->abs_var[i] = fmax(s->max_var * dnch->rel_var[i], 1.0); dnch->min_abs_var[i] = s->gain_scale * dnch->abs_var[i]; } } static void read_custom_noise(AudioFFTDeNoiseContext *s, int ch) { DeNoiseChannel *dnch = &s->dnch[ch]; char *p, *arg, *saveptr = NULL; int i, ret, band_noise[15] = { 0 }; if (!s->band_noise_str) return; p = av_strdup(s->band_noise_str); if (!p) return; for (i = 0; i < 15; i++) { if (!(arg = av_strtok(p, "| ", &saveptr))) break; p = NULL; ret = av_sscanf(arg, "%d", &band_noise[i]); if (ret != 1) { av_log(s, AV_LOG_ERROR, "Custom band noise must be integer.\n"); break; } band_noise[i] = av_clip(band_noise[i], -24, 24); } av_free(p); memcpy(dnch->band_noise, band_noise, sizeof(band_noise)); } static void set_parameters(AudioFFTDeNoiseContext *s) { if (s->last_noise_floor != s->noise_floor) s->last_noise_floor = s->noise_floor; if (s->track_residual) s->last_noise_floor = fmaxf(s->last_noise_floor, s->residual_floor); s->max_var = s->floor * exp((100.0 + s->last_noise_floor) * C); if (s->track_residual) { s->last_residual_floor = s->residual_floor; s->last_noise_reduction = fmax(s->last_noise_floor - s->last_residual_floor, 0); s->max_gain = exp(s->last_noise_reduction * (0.5 * C)); } else if (s->noise_reduction != s->last_noise_reduction) { s->last_noise_reduction = s->noise_reduction; s->last_residual_floor = av_clipf(s->last_noise_floor - s->last_noise_reduction, -80, -20); s->max_gain = exp(s->last_noise_reduction * (0.5 * C)); } s->gain_scale = 1.0 / (s->max_gain * s->max_gain); for (int ch = 0; ch < s->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; set_band_parameters(s, dnch); } } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioFFTDeNoiseContext *s = ctx->priv; double wscale, sar, sum, sdiv; int i, j, k, m, n; s->dnch = av_calloc(inlink->channels, sizeof(*s->dnch)); if (!s->dnch) return AVERROR(ENOMEM); s->pts = AV_NOPTS_VALUE; s->channels = inlink->channels; s->sample_rate = inlink->sample_rate; s->sample_advance = s->sample_rate / 80; s->window_length = 3 * s->sample_advance; s->fft_length2 = 1 << (32 - ff_clz(s->window_length)); s->fft_length = s->fft_length2 * 2; s->buffer_length = s->fft_length * 2; s->bin_count = s->fft_length2 + 1; s->band_centre[0] = 80; for (i = 1; i < 15; i++) { s->band_centre[i] = lrint(1.5 * s->band_centre[i - 1] + 5.0); if (s->band_centre[i] < 1000) { s->band_centre[i] = 10 * (s->band_centre[i] / 10); } else if (s->band_centre[i] < 5000) { s->band_centre[i] = 50 * ((s->band_centre[i] + 20) / 50); } else if (s->band_centre[i] < 15000) { s->band_centre[i] = 100 * ((s->band_centre[i] + 45) / 100); } else { s->band_centre[i] = 1000 * ((s->band_centre[i] + 495) / 1000); } } for (j = 0; j < 5; j++) { for (k = 0; k < 5; k++) { s->matrix_a[j + k * 5] = 0.0; for (m = 0; m < 15; m++) s->matrix_a[j + k * 5] += pow(m, j + k); } } factor(s->matrix_a, 5); i = 0; for (j = 0; j < 5; j++) for (k = 0; k < 15; k++) s->matrix_b[i++] = pow(k, j); i = 0; for (j = 0; j < 15; j++) for (k = 0; k < 5; k++) s->matrix_c[i++] = pow(j, k); s->window = av_calloc(s->window_length, sizeof(*s->window)); s->bin2band = av_calloc(s->bin_count, sizeof(*s->bin2band)); if (!s->window || !s->bin2band) return AVERROR(ENOMEM); sdiv = s->sample_rate / 17640.0; for (i = 0; i <= s->fft_length2; i++) s->bin2band[i] = lrint(sdiv * freq2bark((0.5 * i * s->sample_rate) / s->fft_length2)); s->number_of_bands = s->bin2band[s->fft_length2] + 1; s->band_alpha = av_calloc(s->number_of_bands, sizeof(*s->band_alpha)); s->band_beta = av_calloc(s->number_of_bands, sizeof(*s->band_beta)); if (!s->band_alpha || !s->band_beta) return AVERROR(ENOMEM); for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; switch (s->noise_type) { case WHITE_NOISE: for (i = 0; i < 15; i++) dnch->band_noise[i] = 0; break; case VINYL_NOISE: for (i = 0; i < 15; i++) dnch->band_noise[i] = get_band_noise(s, i, 50.0, 500.5, 2125.0) + FFMAX(i - 7, 0); break; case SHELLAC_NOISE: for (i = 0; i < 15; i++) dnch->band_noise[i] = get_band_noise(s, i, 1.0, 500.0, 1.0E10) + FFMAX(i - 12, -5); break; case CUSTOM_NOISE: read_custom_noise(s, ch); break; default: return AVERROR_BUG; } dnch->sfm_threshold = 0.8; dnch->sfm_alpha = 0.05; for (i = 0; i < 512; i++) dnch->sfm_fail_flags[i] = 0; dnch->sfm_fail_total = 0; j = FFMAX((int)(10.0 * (1.3 - dnch->sfm_threshold)), 1); for (i = 0; i < 512; i += j) { dnch->sfm_fail_flags[i] = 1; dnch->sfm_fail_total += 1; } dnch->amt = av_calloc(s->bin_count, sizeof(*dnch->amt)); dnch->band_amt = av_calloc(s->number_of_bands, sizeof(*dnch->band_amt)); dnch->band_excit = av_calloc(s->number_of_bands, sizeof(*dnch->band_excit)); dnch->gain = av_calloc(s->bin_count, sizeof(*dnch->gain)); dnch->prior = av_calloc(s->bin_count, sizeof(*dnch->prior)); dnch->prior_band_excit = av_calloc(s->number_of_bands, sizeof(*dnch->prior_band_excit)); dnch->clean_data = av_calloc(s->bin_count, sizeof(*dnch->clean_data)); dnch->noisy_data = av_calloc(s->bin_count, sizeof(*dnch->noisy_data)); dnch->out_samples = av_calloc(s->buffer_length, sizeof(*dnch->out_samples)); dnch->abs_var = av_calloc(s->bin_count, sizeof(*dnch->abs_var)); dnch->rel_var = av_calloc(s->bin_count, sizeof(*dnch->rel_var)); dnch->min_abs_var = av_calloc(s->bin_count, sizeof(*dnch->min_abs_var)); dnch->fft_data = av_calloc(s->fft_length2 + 1, sizeof(*dnch->fft_data)); dnch->fft = av_fft_init(av_log2(s->fft_length2), 0); dnch->ifft = av_fft_init(av_log2(s->fft_length2), 1); dnch->spread_function = av_calloc(s->number_of_bands * s->number_of_bands, sizeof(*dnch->spread_function)); if (!dnch->amt || !dnch->band_amt || !dnch->band_excit || !dnch->gain || !dnch->prior || !dnch->prior_band_excit || !dnch->clean_data || !dnch->noisy_data || !dnch->out_samples || !dnch->fft_data || !dnch->abs_var || !dnch->rel_var || !dnch->min_abs_var || !dnch->spread_function || !dnch->fft || !dnch->ifft) return AVERROR(ENOMEM); } for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; double *prior_band_excit = dnch->prior_band_excit; double *prior = dnch->prior; double min, max; double p1, p2; p1 = pow(0.1, 2.5 / sdiv); p2 = pow(0.1, 1.0 / sdiv); j = 0; for (m = 0; m < s->number_of_bands; m++) { for (n = 0; n < s->number_of_bands; n++) { if (n < m) { dnch->spread_function[j++] = pow(p2, m - n); } else if (n > m) { dnch->spread_function[j++] = pow(p1, n - m); } else { dnch->spread_function[j++] = 1.0; } } } for (m = 0; m < s->number_of_bands; m++) { dnch->band_excit[m] = 0.0; prior_band_excit[m] = 0.0; } for (m = 0; m <= s->fft_length2; m++) dnch->band_excit[s->bin2band[m]] += 1.0; j = 0; for (m = 0; m < s->number_of_bands; m++) { for (n = 0; n < s->number_of_bands; n++) prior_band_excit[m] += dnch->spread_function[j++] * dnch->band_excit[n]; } min = pow(0.1, 2.5); max = pow(0.1, 1.0); for (int i = 0; i < s->number_of_bands; i++) { if (i < lrint(12.0 * sdiv)) { dnch->band_excit[i] = pow(0.1, 1.45 + 0.1 * i / sdiv); } else { dnch->band_excit[i] = pow(0.1, 2.5 - 0.2 * (i / sdiv - 14.0)); } dnch->band_excit[i] = av_clipd(dnch->band_excit[i], min, max); } for (int i = 0; i <= s->fft_length2; i++) prior[i] = RRATIO; for (int i = 0; i < s->buffer_length; i++) dnch->out_samples[i] = 0; j = 0; for (int i = 0; i < s->number_of_bands; i++) for (int k = 0; k < s->number_of_bands; k++) dnch->spread_function[j++] *= dnch->band_excit[i] / prior_band_excit[i]; } j = 0; sar = s->sample_advance / s->sample_rate; for (int i = 0; i <= s->fft_length2; i++) { if ((i == s->fft_length2) || (s->bin2band[i] > j)) { double d6 = (i - 1) * s->sample_rate / s->fft_length; double d7 = fmin(0.008 + 2.2 / d6, 0.03); s->band_alpha[j] = exp(-sar / d7); s->band_beta[j] = 1.0 - s->band_alpha[j]; j = s->bin2band[i]; } } wscale = sqrt(16.0 / (9.0 * s->fft_length)); sum = 0.0; for (int i = 0; i < s->window_length; i++) { double d10 = sin(i * M_PI / s->window_length); d10 *= wscale * d10; s->window[i] = d10; sum += d10 * d10; } s->window_weight = 0.5 * sum; s->floor = (1LL << 48) * exp(-23.025558369790467) * s->window_weight; s->sample_floor = s->floor * exp(4.144600506562284); s->auto_floor = s->floor * exp(6.907667510937141); set_parameters(s); s->noise_band_edge[0] = FFMIN(s->fft_length2, s->fft_length * get_band_edge(s, 0) / s->sample_rate); i = 0; for (int j = 1; j < 16; j++) { s->noise_band_edge[j] = FFMIN(s->fft_length2, s->fft_length * get_band_edge(s, j) / s->sample_rate); if (s->noise_band_edge[j] > lrint(1.1 * s->noise_band_edge[j - 1])) i++; s->noise_band_edge[16] = i; } s->noise_band_count = s->noise_band_edge[16]; s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->fft_length); if (!s->fifo) return AVERROR(ENOMEM); return 0; } static void preprocess(FFTComplex *in, int len) { double d1, d2, d3, d4, d5, d6, d7, d8, d9, d10; int n, i, k; d5 = 2.0 * M_PI / len; d8 = sin(0.5 * d5); d8 = -2.0 * d8 * d8; d7 = sin(d5); d9 = 1.0 + d8; d6 = d7; n = len / 2; for (i = 1; i < len / 4; i++) { k = n - i; d2 = 0.5 * (in[i].re + in[k].re); d1 = 0.5 * (in[i].im - in[k].im); d4 = 0.5 * (in[i].im + in[k].im); d3 = 0.5 * (in[k].re - in[i].re); in[i].re = d2 + d9 * d4 + d6 * d3; in[i].im = d1 + d9 * d3 - d6 * d4; in[k].re = d2 - d9 * d4 - d6 * d3; in[k].im = -d1 + d9 * d3 - d6 * d4; d10 = d9; d9 += d9 * d8 - d6 * d7; d6 += d6 * d8 + d10 * d7; } d2 = in[0].re; in[0].re = d2 + in[0].im; in[0].im = d2 - in[0].im; } static void postprocess(FFTComplex *in, int len) { double d1, d2, d3, d4, d5, d6, d7, d8, d9, d10; int n, i, k; d5 = 2.0 * M_PI / len; d8 = sin(0.5 * d5); d8 = -2.0 * d8 * d8; d7 = sin(d5); d9 = 1.0 + d8; d6 = d7; n = len / 2; for (i = 1; i < len / 4; i++) { k = n - i; d2 = 0.5 * (in[i].re + in[k].re); d1 = 0.5 * (in[i].im - in[k].im); d4 = 0.5 * (in[i].re - in[k].re); d3 = 0.5 * (in[i].im + in[k].im); in[i].re = d2 - d9 * d3 - d6 * d4; in[i].im = d1 + d9 * d4 - d6 * d3; in[k].re = d2 + d9 * d3 + d6 * d4; in[k].im = -d1 + d9 * d4 - d6 * d3; d10 = d9; d9 += d9 * d8 - d6 * d7; d6 += d6 * d8 + d10 * d7; } d2 = in[0].re; in[0].re = 0.5 * (d2 + in[0].im); in[0].im = 0.5 * (d2 - in[0].im); } static void init_sample_noise(DeNoiseChannel *dnch) { for (int i = 0; i < 15; i++) { dnch->noise_band_norm[i] = 0.0; dnch->noise_band_avr[i] = 0.0; dnch->noise_band_avi[i] = 0.0; dnch->noise_band_var[i] = 0.0; } } static void sample_noise_block(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, AVFrame *in, int ch) { float *src = (float *)in->extended_data[ch]; double mag2, var = 0.0, avr = 0.0, avi = 0.0; int edge, j, k, n, edgemax; for (int i = 0; i < s->window_length; i++) { dnch->fft_data[i].re = s->window[i] * src[i] * (1LL << 24); dnch->fft_data[i].im = 0.0; } for (int i = s->window_length; i < s->fft_length2; i++) { dnch->fft_data[i].re = 0.0; dnch->fft_data[i].im = 0.0; } av_fft_permute(dnch->fft, dnch->fft_data); av_fft_calc(dnch->fft, dnch->fft_data); preprocess(dnch->fft_data, s->fft_length); edge = s->noise_band_edge[0]; j = edge; k = 0; n = j; edgemax = fmin(s->fft_length2, s->noise_band_edge[15]); dnch->fft_data[s->fft_length2].re = dnch->fft_data[0].im; dnch->fft_data[0].im = 0.0; dnch->fft_data[s->fft_length2].im = 0.0; for (int i = j; i <= edgemax; i++) { if ((i == j) && (i < edgemax)) { if (j > edge) { dnch->noise_band_norm[k - 1] += j - edge; dnch->noise_band_avr[k - 1] += avr; dnch->noise_band_avi[k - 1] += avi; dnch->noise_band_var[k - 1] += var; } k++; edge = j; j = s->noise_band_edge[k]; if (k == 15) { j++; } var = 0.0; avr = 0.0; avi = 0.0; } avr += dnch->fft_data[n].re; avi += dnch->fft_data[n].im; mag2 = dnch->fft_data[n].re * dnch->fft_data[n].re + dnch->fft_data[n].im * dnch->fft_data[n].im; mag2 = fmax(mag2, s->sample_floor); dnch->noisy_data[i] = mag2; var += mag2; n++; } dnch->noise_band_norm[k - 1] += j - edge; dnch->noise_band_avr[k - 1] += avr; dnch->noise_band_avi[k - 1] += avi; dnch->noise_band_var[k - 1] += var; } static void finish_sample_noise(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, double *sample_noise) { for (int i = 0; i < s->noise_band_count; i++) { dnch->noise_band_avr[i] /= dnch->noise_band_norm[i]; dnch->noise_band_avi[i] /= dnch->noise_band_norm[i]; dnch->noise_band_var[i] /= dnch->noise_band_norm[i]; dnch->noise_band_var[i] -= dnch->noise_band_avr[i] * dnch->noise_band_avr[i] + dnch->noise_band_avi[i] * dnch->noise_band_avi[i]; dnch->noise_band_auto_var[i] = dnch->noise_band_var[i]; sample_noise[i] = (1.0 / C) * log(dnch->noise_band_var[i] / s->floor) - 100.0; } if (s->noise_band_count < 15) { for (int i = s->noise_band_count; i < 15; i++) sample_noise[i] = sample_noise[i - 1]; } } static void set_noise_profile(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, double *sample_noise, int new_profile) { int new_band_noise[15]; double temp[15]; double sum = 0.0, d1; float new_noise_floor; int i, n; for (int m = 0; m < 15; m++) temp[m] = sample_noise[m]; if (new_profile) { i = 0; for (int m = 0; m < 5; m++) { sum = 0.0; for (n = 0; n < 15; n++) sum += s->matrix_b[i++] * temp[n]; s->vector_b[m] = sum; } solve(s->matrix_a, s->vector_b, 5); i = 0; for (int m = 0; m < 15; m++) { sum = 0.0; for (n = 0; n < 5; n++) sum += s->matrix_c[i++] * s->vector_b[n]; temp[m] = sum; } } sum = 0.0; for (int m = 0; m < 15; m++) sum += temp[m]; d1 = (int)(sum / 15.0 - 0.5); if (!new_profile) i = lrint(temp[7] - d1); for (d1 -= dnch->band_noise[7] - i; d1 > -20.0; d1 -= 1.0) ; for (int m = 0; m < 15; m++) temp[m] -= d1; new_noise_floor = d1 + 2.5; if (new_profile) { av_log(s, AV_LOG_INFO, "bn="); for (int m = 0; m < 15; m++) { new_band_noise[m] = lrint(temp[m]); new_band_noise[m] = av_clip(new_band_noise[m], -24, 24); av_log(s, AV_LOG_INFO, "%d ", new_band_noise[m]); } av_log(s, AV_LOG_INFO, "\n"); memcpy(dnch->band_noise, new_band_noise, sizeof(new_band_noise)); } if (s->track_noise) s->noise_floor = new_noise_floor; } typedef struct ThreadData { AVFrame *in; } ThreadData; static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AudioFFTDeNoiseContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; const int start = (in->channels * jobnr) / nb_jobs; const int end = (in->channels * (jobnr+1)) / nb_jobs; for (int ch = start; ch < end; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; const float *src = (const float *)in->extended_data[ch]; double *dst = dnch->out_samples; if (s->track_noise) { int i = s->block_count & 0x1FF; if (dnch->sfm_fail_flags[i]) dnch->sfm_fail_total--; dnch->sfm_fail_flags[i] = 0; dnch->sfm_threshold *= 1.0 - dnch->sfm_alpha; dnch->sfm_threshold += dnch->sfm_alpha * (0.5 + (1.0 / 640) * dnch->sfm_fail_total); } for (int m = 0; m < s->window_length; m++) { dnch->fft_data[m].re = s->window[m] * src[m] * (1LL << 24); dnch->fft_data[m].im = 0; } for (int m = s->window_length; m < s->fft_length2; m++) { dnch->fft_data[m].re = 0; dnch->fft_data[m].im = 0; } av_fft_permute(dnch->fft, dnch->fft_data); av_fft_calc(dnch->fft, dnch->fft_data); preprocess(dnch->fft_data, s->fft_length); process_frame(s, dnch, dnch->fft_data, dnch->prior, dnch->prior_band_excit, s->track_noise); postprocess(dnch->fft_data, s->fft_length); av_fft_permute(dnch->ifft, dnch->fft_data); av_fft_calc(dnch->ifft, dnch->fft_data); for (int m = 0; m < s->window_length; m++) dst[m] += s->window[m] * dnch->fft_data[m].re / (1LL << 24); } return 0; } static void get_auto_noise_levels(AudioFFTDeNoiseContext *s, DeNoiseChannel *dnch, double *levels) { if (s->noise_band_count > 0) { for (int i = 0; i < s->noise_band_count; i++) { levels[i] = (1.0 / C) * log(dnch->noise_band_auto_var[i] / s->floor) - 100.0; } if (s->noise_band_count < 15) { for (int i = s->noise_band_count; i < 15; i++) levels[i] = levels[i - 1]; } } else { for (int i = 0; i < 15; i++) { levels[i] = -100.0; } } } static int output_frame(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AudioFFTDeNoiseContext *s = ctx->priv; AVFrame *out = NULL, *in = NULL; ThreadData td; int ret = 0; in = ff_get_audio_buffer(outlink, s->window_length); if (!in) return AVERROR(ENOMEM); ret = av_audio_fifo_peek(s->fifo, (void **)in->extended_data, s->window_length); if (ret < 0) goto end; if (s->track_noise) { for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; double levels[15]; get_auto_noise_levels(s, dnch, levels); set_noise_profile(s, dnch, levels, 0); } if (s->noise_floor != s->last_noise_floor) set_parameters(s); } if (s->sample_noise_start) { for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; init_sample_noise(dnch); } s->sample_noise_start = 0; s->sample_noise = 1; } if (s->sample_noise) { for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; sample_noise_block(s, dnch, in, ch); } } if (s->sample_noise_end) { for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; double sample_noise[15]; finish_sample_noise(s, dnch, sample_noise); set_noise_profile(s, dnch, sample_noise, 1); set_band_parameters(s, dnch); } s->sample_noise = 0; s->sample_noise_end = 0; } s->block_count++; td.in = in; ctx->internal->execute(ctx, filter_channel, &td, NULL, FFMIN(outlink->channels, ff_filter_get_nb_threads(ctx))); out = ff_get_audio_buffer(outlink, s->sample_advance); if (!out) { ret = AVERROR(ENOMEM); goto end; } for (int ch = 0; ch < inlink->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; double *src = dnch->out_samples; float *orig = (float *)in->extended_data[ch]; float *dst = (float *)out->extended_data[ch]; switch (s->output_mode) { case IN_MODE: for (int m = 0; m < s->sample_advance; m++) dst[m] = orig[m]; break; case OUT_MODE: for (int m = 0; m < s->sample_advance; m++) dst[m] = src[m]; break; case NOISE_MODE: for (int m = 0; m < s->sample_advance; m++) dst[m] = orig[m] - src[m]; break; default: av_frame_free(&out); ret = AVERROR_BUG; goto end; } memmove(src, src + s->sample_advance, (s->window_length - s->sample_advance) * sizeof(*src)); memset(src + (s->window_length - s->sample_advance), 0, s->sample_advance * sizeof(*src)); } av_audio_fifo_drain(s->fifo, s->sample_advance); out->pts = s->pts; ret = ff_filter_frame(outlink, out); if (ret < 0) goto end; s->pts += av_rescale_q(s->sample_advance, (AVRational){1, outlink->sample_rate}, outlink->time_base); end: av_frame_free(&in); return ret; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AudioFFTDeNoiseContext *s = ctx->priv; AVFrame *frame = NULL; int ret; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); ret = ff_inlink_consume_frame(inlink, &frame); if (ret < 0) return ret; if (ret > 0) { if (s->pts == AV_NOPTS_VALUE) s->pts = frame->pts; ret = av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples); av_frame_free(&frame); if (ret < 0) return ret; } if (av_audio_fifo_size(s->fifo) >= s->window_length) return output_frame(inlink); FF_FILTER_FORWARD_STATUS(inlink, outlink); if (ff_outlink_frame_wanted(outlink) && av_audio_fifo_size(s->fifo) < s->window_length) { ff_inlink_request_frame(inlink); return 0; } return FFERROR_NOT_READY; } static av_cold void uninit(AVFilterContext *ctx) { AudioFFTDeNoiseContext *s = ctx->priv; av_freep(&s->window); av_freep(&s->bin2band); av_freep(&s->band_alpha); av_freep(&s->band_beta); if (s->dnch) { for (int ch = 0; ch < s->channels; ch++) { DeNoiseChannel *dnch = &s->dnch[ch]; av_freep(&dnch->amt); av_freep(&dnch->band_amt); av_freep(&dnch->band_excit); av_freep(&dnch->gain); av_freep(&dnch->prior); av_freep(&dnch->prior_band_excit); av_freep(&dnch->clean_data); av_freep(&dnch->noisy_data); av_freep(&dnch->out_samples); av_freep(&dnch->spread_function); av_freep(&dnch->abs_var); av_freep(&dnch->rel_var); av_freep(&dnch->min_abs_var); av_freep(&dnch->fft_data); av_fft_end(dnch->fft); dnch->fft = NULL; av_fft_end(dnch->ifft); dnch->ifft = NULL; } av_freep(&s->dnch); } av_audio_fifo_free(s->fifo); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; int ret; formats = ff_make_format_list(sample_fmts); if (!formats) return AVERROR(ENOMEM); ret = ff_set_common_formats(ctx, formats); if (ret < 0) return ret; layouts = ff_all_channel_counts(); if (!layouts) return AVERROR(ENOMEM); ret = ff_set_common_channel_layouts(ctx, layouts); if (ret < 0) return ret; formats = ff_all_samplerates(); return ff_set_common_samplerates(ctx, formats); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { AudioFFTDeNoiseContext *s = ctx->priv; int need_reset = 0; int ret = 0; if (!strcmp(cmd, "sample_noise") || !strcmp(cmd, "sn")) { if (!strcmp(args, "start")) { s->sample_noise_start = 1; s->sample_noise_end = 0; } else if (!strcmp(args, "end") || !strcmp(args, "stop")) { s->sample_noise_start = 0; s->sample_noise_end = 1; } } else { ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; need_reset = 1; } if (need_reset) set_parameters(s); return 0; } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, { NULL } }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; AVFilter ff_af_afftdn = { .name = "afftdn", .description = NULL_IF_CONFIG_SMALL("Denoise audio samples using FFT."), .query_formats = query_formats, .priv_size = sizeof(AudioFFTDeNoiseContext), .priv_class = &afftdn_class, .activate = activate, .uninit = uninit, .inputs = inputs, .outputs = outputs, .process_command = process_command, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };