/* * Copyright (c) 2022 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <float.h> #include "libavutil/eval.h" #include "libavutil/ffmath.h" #include "libavutil/opt.h" #include "libavutil/tx.h" #include "audio.h" #include "avfilter.h" #include "filters.h" #include "internal.h" static const char * const var_names[] = { "ch", ///< the value of the current channel "sn", ///< number of samples "nb_channels", "t", ///< timestamp expressed in seconds "sr", ///< sample rate "p", ///< input power in dB for frequency bin "f", ///< frequency in Hz NULL }; enum var_name { VAR_CH, VAR_SN, VAR_NB_CHANNELS, VAR_T, VAR_SR, VAR_P, VAR_F, VAR_VARS_NB }; typedef struct AudioDRCContext { const AVClass *class; double attack_ms; double release_ms; char *expr_str; double attack; double release; int fft_size; int overlap; int channels; float fx; float *window; AVFrame *drc_frame; AVFrame *energy; AVFrame *envelope; AVFrame *factors; AVFrame *in; AVFrame *in_buffer; AVFrame *in_frame; AVFrame *out_dist_frame; AVFrame *spectrum_buf; AVFrame *target_gain; AVFrame *windowed_frame; char *channels_to_filter; AVChannelLayout ch_layout; AVTXContext **tx_ctx; av_tx_fn tx_fn; AVTXContext **itx_ctx; av_tx_fn itx_fn; AVExpr *expr; double var_values[VAR_VARS_NB]; } AudioDRCContext; #define OFFSET(x) offsetof(AudioDRCContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM static const AVOption adrc_options[] = { { "transfer", "set the transfer expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str="p"}, 0, 0, FLAGS }, { "attack", "set the attack", OFFSET(attack_ms), AV_OPT_TYPE_DOUBLE, {.dbl=50.}, 1, 1000, FLAGS }, { "release", "set the release", OFFSET(release_ms), AV_OPT_TYPE_DOUBLE, {.dbl=100.}, 5, 2000, FLAGS }, { "channels", "set channels to filter",OFFSET(channels_to_filter),AV_OPT_TYPE_STRING,{.str="all"},0, 0, FLAGS }, {NULL} }; AVFILTER_DEFINE_CLASS(adrc); static void generate_hann_window(float *window, int size) { for (int i = 0; i < size; i++) { float value = 0.5f * (1.f - cosf(2.f * M_PI * i / size)); window[i] = value; } } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioDRCContext *s = ctx->priv; float scale; int ret; s->fft_size = inlink->sample_rate > 100000 ? 1024 : inlink->sample_rate > 50000 ? 512 : 256; s->fx = inlink->sample_rate * 0.5f / (s->fft_size / 2 + 1); s->overlap = s->fft_size / 4; s->window = av_calloc(s->fft_size, sizeof(*s->window)); if (!s->window) return AVERROR(ENOMEM); s->drc_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); s->energy = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1); s->envelope = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1); s->factors = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1); s->in_buffer = ff_get_audio_buffer(inlink, s->fft_size * 2); s->in_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); s->out_dist_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); s->spectrum_buf = ff_get_audio_buffer(inlink, s->fft_size * 2); s->target_gain = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1); s->windowed_frame = ff_get_audio_buffer(inlink, s->fft_size * 2); if (!s->in_buffer || !s->in_frame || !s->target_gain || !s->out_dist_frame || !s->windowed_frame || !s->envelope || !s->drc_frame || !s->spectrum_buf || !s->energy || !s->factors) return AVERROR(ENOMEM); generate_hann_window(s->window, s->fft_size); s->channels = inlink->ch_layout.nb_channels; s->tx_ctx = av_calloc(s->channels, sizeof(*s->tx_ctx)); s->itx_ctx = av_calloc(s->channels, sizeof(*s->itx_ctx)); if (!s->tx_ctx || !s->itx_ctx) return AVERROR(ENOMEM); for (int ch = 0; ch < s->channels; ch++) { scale = 1.f / s->fft_size; ret = av_tx_init(&s->tx_ctx[ch], &s->tx_fn, AV_TX_FLOAT_RDFT, 0, s->fft_size, &scale, 0); if (ret < 0) return ret; scale = 1.f; ret = av_tx_init(&s->itx_ctx[ch], &s->itx_fn, AV_TX_FLOAT_RDFT, 1, s->fft_size, &scale, 0); if (ret < 0) return ret; } s->var_values[VAR_SR] = inlink->sample_rate; s->var_values[VAR_NB_CHANNELS] = s->channels; return av_expr_parse(&s->expr, s->expr_str, var_names, NULL, NULL, NULL, NULL, 0, ctx); } static void apply_window(AudioDRCContext *s, const float *in_frame, float *out_frame, const int add_to_out_frame) { const float *window = s->window; const int fft_size = s->fft_size; if (add_to_out_frame) { for (int i = 0; i < fft_size; i++) out_frame[i] += in_frame[i] * window[i]; } else { for (int i = 0; i < fft_size; i++) out_frame[i] = in_frame[i] * window[i]; } } static float sqrf(float x) { return x * x; } static void get_energy(AVFilterContext *ctx, int len, float *energy, const float *spectral) { for (int n = 0; n < len; n++) { energy[n] = 10.f * log10f(sqrf(spectral[2 * n]) + sqrf(spectral[2 * n + 1])); if (!isnormal(energy[n])) energy[n] = -351.f; } } static void get_target_gain(AVFilterContext *ctx, int len, float *gain, const float *energy, double *var_values, float fx, int bypass) { AudioDRCContext *s = ctx->priv; if (bypass) { memcpy(gain, energy, sizeof(*gain) * len); return; } for (int n = 0; n < len; n++) { const float Xg = energy[n]; var_values[VAR_P] = Xg; var_values[VAR_F] = n * fx; gain[n] = av_expr_eval(s->expr, var_values, s); } } static void get_envelope(AVFilterContext *ctx, int len, float *envelope, const float *energy, const float *gain) { AudioDRCContext *s = ctx->priv; const float release = s->release; const float attack = s->attack; for (int n = 0; n < len; n++) { const float Bg = gain[n] - energy[n]; const float Vg = envelope[n]; if (Bg > Vg) { envelope[n] = attack * Vg + (1.f - attack) * Bg; } else if (Bg <= Vg) { envelope[n] = release * Vg + (1.f - release) * Bg; } else { envelope[n] = 0.f; } } } static void get_factors(AVFilterContext *ctx, int len, float *factors, const float *envelope) { for (int n = 0; n < len; n++) factors[n] = sqrtf(ff_exp10f(envelope[n] / 10.f)); } static void apply_factors(AVFilterContext *ctx, int len, float *spectrum, const float *factors) { for (int n = 0; n < len; n++) { spectrum[2*n+0] *= factors[n]; spectrum[2*n+1] *= factors[n]; } } static void feed(AVFilterContext *ctx, int ch, const float *in_samples, float *out_samples, float *in_frame, float *out_dist_frame, float *windowed_frame, float *drc_frame, float *spectrum_buf, float *energy, float *target_gain, float *envelope, float *factors) { AudioDRCContext *s = ctx->priv; double var_values[VAR_VARS_NB]; const int fft_size = s->fft_size; const int nb_coeffs = s->fft_size / 2 + 1; const int overlap = s->overlap; enum AVChannel channel = av_channel_layout_channel_from_index(&ctx->inputs[0]->ch_layout, ch); const int bypass = av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0; memcpy(var_values, s->var_values, sizeof(var_values)); var_values[VAR_CH] = ch; // shift in/out buffers memmove(in_frame, in_frame + overlap, (fft_size - overlap) * sizeof(*in_frame)); memmove(out_dist_frame, out_dist_frame + overlap, (fft_size - overlap) * sizeof(*out_dist_frame)); memcpy(in_frame + fft_size - overlap, in_samples, sizeof(*in_frame) * overlap); memset(out_dist_frame + fft_size - overlap, 0, sizeof(*out_dist_frame) * overlap); apply_window(s, in_frame, windowed_frame, 0); s->tx_fn(s->tx_ctx[ch], spectrum_buf, windowed_frame, sizeof(float)); get_energy(ctx, nb_coeffs, energy, spectrum_buf); get_target_gain(ctx, nb_coeffs, target_gain, energy, var_values, s->fx, bypass); get_envelope(ctx, nb_coeffs, envelope, energy, target_gain); get_factors(ctx, nb_coeffs, factors, envelope); apply_factors(ctx, nb_coeffs, spectrum_buf, factors); s->itx_fn(s->itx_ctx[ch], drc_frame, spectrum_buf, sizeof(AVComplexFloat)); apply_window(s, drc_frame, out_dist_frame, 1); // 4 times overlap with squared hanning window results in 1.5 time increase in amplitude if (!ctx->is_disabled) { for (int i = 0; i < overlap; i++) out_samples[i] = out_dist_frame[i] / 1.5f; } else { memcpy(out_samples, in_frame, sizeof(*out_samples) * overlap); } } static int drc_channel(AVFilterContext *ctx, AVFrame *in, AVFrame *out, int ch) { AudioDRCContext *s = ctx->priv; const float *src = (const float *)in->extended_data[ch]; float *in_buffer = (float *)s->in_buffer->extended_data[ch]; float *dst = (float *)out->extended_data[ch]; memcpy(in_buffer, src, sizeof(*in_buffer) * s->overlap); feed(ctx, ch, in_buffer, dst, (float *)(s->in_frame->extended_data[ch]), (float *)(s->out_dist_frame->extended_data[ch]), (float *)(s->windowed_frame->extended_data[ch]), (float *)(s->drc_frame->extended_data[ch]), (float *)(s->spectrum_buf->extended_data[ch]), (float *)(s->energy->extended_data[ch]), (float *)(s->target_gain->extended_data[ch]), (float *)(s->envelope->extended_data[ch]), (float *)(s->factors->extended_data[ch])); return 0; } static int drc_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { AudioDRCContext *s = ctx->priv; AVFrame *in = s->in; AVFrame *out = arg; const int start = (out->ch_layout.nb_channels * jobnr) / nb_jobs; const int end = (out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; for (int ch = start; ch < end; ch++) drc_channel(ctx, in, out, ch); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AudioDRCContext *s = ctx->priv; AVFrame *out; int ret; out = ff_get_audio_buffer(outlink, s->overlap); if (!out) { ret = AVERROR(ENOMEM); goto fail; } s->var_values[VAR_SN] = outlink->sample_count_in; s->var_values[VAR_T] = s->var_values[VAR_SN] * (double)1/outlink->sample_rate; s->in = in; av_frame_copy_props(out, in); ff_filter_execute(ctx, drc_channels, out, NULL, FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); out->pts = in->pts; out->nb_samples = in->nb_samples; ret = ff_filter_frame(outlink, out); fail: av_frame_free(&in); s->in = NULL; return ret < 0 ? ret : 0; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AudioDRCContext *s = ctx->priv; AVFrame *in = NULL; int ret = 0, status; int64_t pts; ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout); if (ret < 0) return ret; if (strcmp(s->channels_to_filter, "all")) av_channel_layout_from_string(&s->ch_layout, s->channels_to_filter); FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); ret = ff_inlink_consume_samples(inlink, s->overlap, s->overlap, &in); if (ret < 0) return ret; if (ret > 0) { s->attack = expf(-1.f / (s->attack_ms * inlink->sample_rate / 1000.f)); s->release = expf(-1.f / (s->release_ms * inlink->sample_rate / 1000.f)); return filter_frame(inlink, in); } else if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { ff_outlink_set_status(outlink, status, pts); return 0; } else { if (ff_inlink_queued_samples(inlink) >= s->overlap) { ff_filter_set_ready(ctx, 10); } else if (ff_outlink_frame_wanted(outlink)) { ff_inlink_request_frame(inlink); } return 0; } } static av_cold void uninit(AVFilterContext *ctx) { AudioDRCContext *s = ctx->priv; av_channel_layout_uninit(&s->ch_layout); av_expr_free(s->expr); s->expr = NULL; av_freep(&s->window); av_frame_free(&s->drc_frame); av_frame_free(&s->energy); av_frame_free(&s->envelope); av_frame_free(&s->factors); av_frame_free(&s->in_buffer); av_frame_free(&s->in_frame); av_frame_free(&s->out_dist_frame); av_frame_free(&s->spectrum_buf); av_frame_free(&s->target_gain); av_frame_free(&s->windowed_frame); for (int ch = 0; ch < s->channels; ch++) { if (s->tx_ctx) av_tx_uninit(&s->tx_ctx[ch]); if (s->itx_ctx) av_tx_uninit(&s->itx_ctx[ch]); } av_freep(&s->tx_ctx); av_freep(&s->itx_ctx); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { AudioDRCContext *s = ctx->priv; char *old_expr_str = av_strdup(s->expr_str); int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret >= 0 && strcmp(old_expr_str, s->expr_str)) { ret = av_expr_parse(&s->expr, s->expr_str, var_names, NULL, NULL, NULL, NULL, 0, ctx); } av_free(old_expr_str); return ret; } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, }; const AVFilter ff_af_adrc = { .name = "adrc", .description = NULL_IF_CONFIG_SMALL("Audio Spectral Dynamic Range Controller."), .priv_size = sizeof(AudioDRCContext), .priv_class = &adrc_class, .uninit = uninit, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, .activate = activate, .process_command = process_command, };