/* * Zip Motion Blocks Video (ZMBV) encoder * Copyright (c) 2006 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Zip Motion Blocks Video encoder */ #include <stdio.h> #include <stdlib.h> #include "libavutil/intreadwrite.h" #include "avcodec.h" #include <zlib.h> #define ZMBV_KEYFRAME 1 #define ZMBV_DELTAPAL 2 #define ZMBV_BLOCK 16 /** * Encoder context */ typedef struct ZmbvEncContext { AVCodecContext *avctx; AVFrame pic; int range; uint8_t *comp_buf, *work_buf; uint8_t pal[768]; uint32_t pal2[256]; //for quick comparisons uint8_t *prev; int pstride; int comp_size; int keyint, curfrm; z_stream zstream; } ZmbvEncContext; static int score_tab[256]; /** Block comparing function * XXX should be optimized and moved to DSPContext * TODO handle out of edge ME */ static inline int block_cmp(uint8_t *src, int stride, uint8_t *src2, int stride2, int bw, int bh, int *xored) { int sum = 0; int i, j; uint8_t histogram[256] = {0}; *xored = 0; for(j = 0; j < bh; j++){ for(i = 0; i < bw; i++){ int t = src[i] ^ src2[i]; histogram[t]++; *xored |= t; } src += stride; src2 += stride2; } for(i = 1; i < 256; i++) sum += score_tab[histogram[i]]; return sum; } /** Motion estimation function * TODO make better ME decisions */ static int zmbv_me(ZmbvEncContext *c, uint8_t *src, int sstride, uint8_t *prev, int pstride, int x, int y, int *mx, int *my, int *xored) { int dx, dy, tx, ty, tv, bv, bw, bh; *mx = *my = 0; bw = FFMIN(ZMBV_BLOCK, c->avctx->width - x); bh = FFMIN(ZMBV_BLOCK, c->avctx->height - y); bv = block_cmp(src, sstride, prev, pstride, bw, bh, xored); if(!bv) return 0; for(ty = FFMAX(y - c->range, 0); ty < FFMIN(y + c->range, c->avctx->height - bh); ty++){ for(tx = FFMAX(x - c->range, 0); tx < FFMIN(x + c->range, c->avctx->width - bw); tx++){ if(tx == x && ty == y) continue; // we already tested this block dx = tx - x; dy = ty - y; tv = block_cmp(src, sstride, prev + dx + dy*pstride, pstride, bw, bh, xored); if(tv < bv){ bv = tv; *mx = dx; *my = dy; if(!bv) return 0; } } } return bv; } static int encode_frame(AVCodecContext *avctx, uint8_t *buf, int buf_size, void *data) { ZmbvEncContext * const c = avctx->priv_data; AVFrame *pict = data; AVFrame * const p = &c->pic; uint8_t *src, *prev; uint32_t *palptr; int len = 0; int keyframe, chpal; int fl; int work_size = 0; int bw, bh; int i, j; keyframe = !c->curfrm; c->curfrm++; if(c->curfrm == c->keyint) c->curfrm = 0; *p = *pict; p->pict_type= keyframe ? FF_I_TYPE : FF_P_TYPE; p->key_frame= keyframe; chpal = !keyframe && memcmp(p->data[1], c->pal2, 1024); fl = (keyframe ? ZMBV_KEYFRAME : 0) | (chpal ? ZMBV_DELTAPAL : 0); *buf++ = fl; len++; if(keyframe){ deflateReset(&c->zstream); *buf++ = 0; len++; // hi ver *buf++ = 1; len++; // lo ver *buf++ = 1; len++; // comp *buf++ = 4; len++; // format - 8bpp *buf++ = ZMBV_BLOCK; len++; // block width *buf++ = ZMBV_BLOCK; len++; // block height } palptr = (uint32_t*)p->data[1]; src = p->data[0]; prev = c->prev; if(chpal){ uint8_t tpal[3]; for(i = 0; i < 256; i++){ AV_WB24(tpal, palptr[i]); c->work_buf[work_size++] = tpal[0] ^ c->pal[i * 3 + 0]; c->work_buf[work_size++] = tpal[1] ^ c->pal[i * 3 + 1]; c->work_buf[work_size++] = tpal[2] ^ c->pal[i * 3 + 2]; c->pal[i * 3 + 0] = tpal[0]; c->pal[i * 3 + 1] = tpal[1]; c->pal[i * 3 + 2] = tpal[2]; } memcpy(c->pal2, p->data[1], 1024); } if(keyframe){ for(i = 0; i < 256; i++){ AV_WB24(c->pal+(i*3), palptr[i]); } memcpy(c->work_buf, c->pal, 768); memcpy(c->pal2, p->data[1], 1024); work_size = 768; for(i = 0; i < avctx->height; i++){ memcpy(c->work_buf + work_size, src, avctx->width); src += p->linesize[0]; work_size += avctx->width; } }else{ int x, y, bh2, bw2, xored; uint8_t *tsrc, *tprev; uint8_t *mv; int mx, my, bv; bw = (avctx->width + ZMBV_BLOCK - 1) / ZMBV_BLOCK; bh = (avctx->height + ZMBV_BLOCK - 1) / ZMBV_BLOCK; mv = c->work_buf + work_size; memset(c->work_buf + work_size, 0, (bw * bh * 2 + 3) & ~3); work_size += (bw * bh * 2 + 3) & ~3; /* for now just XOR'ing */ for(y = 0; y < avctx->height; y += ZMBV_BLOCK) { bh2 = FFMIN(avctx->height - y, ZMBV_BLOCK); for(x = 0; x < avctx->width; x += ZMBV_BLOCK, mv += 2) { bw2 = FFMIN(avctx->width - x, ZMBV_BLOCK); tsrc = src + x; tprev = prev + x; bv = zmbv_me(c, tsrc, p->linesize[0], tprev, c->pstride, x, y, &mx, &my, &xored); mv[0] = (mx << 1) | !!xored; mv[1] = my << 1; tprev += mx + my * c->pstride; if(xored){ for(j = 0; j < bh2; j++){ for(i = 0; i < bw2; i++) c->work_buf[work_size++] = tsrc[i] ^ tprev[i]; tsrc += p->linesize[0]; tprev += c->pstride; } } } src += p->linesize[0] * ZMBV_BLOCK; prev += c->pstride * ZMBV_BLOCK; } } /* save the previous frame */ src = p->data[0]; prev = c->prev; for(i = 0; i < avctx->height; i++){ memcpy(prev, src, avctx->width); prev += c->pstride; src += p->linesize[0]; } c->zstream.next_in = c->work_buf; c->zstream.avail_in = work_size; c->zstream.total_in = 0; c->zstream.next_out = c->comp_buf; c->zstream.avail_out = c->comp_size; c->zstream.total_out = 0; if(deflate(&c->zstream, Z_SYNC_FLUSH) != Z_OK){ av_log(avctx, AV_LOG_ERROR, "Error compressing data\n"); return -1; } memcpy(buf, c->comp_buf, c->zstream.total_out); return len + c->zstream.total_out; } /** * Init zmbv encoder */ static av_cold int encode_init(AVCodecContext *avctx) { ZmbvEncContext * const c = avctx->priv_data; int zret; // Zlib return code int i; int lvl = 9; for(i=1; i<256; i++) score_tab[i]= -i * log(i/(double)(ZMBV_BLOCK*ZMBV_BLOCK)) * (256/M_LN2); c->avctx = avctx; c->curfrm = 0; c->keyint = avctx->keyint_min; c->range = 8; if(avctx->me_range > 0) c->range = FFMIN(avctx->me_range, 127); if(avctx->compression_level >= 0) lvl = avctx->compression_level; if(lvl < 0 || lvl > 9){ av_log(avctx, AV_LOG_ERROR, "Compression level should be 0-9, not %i\n", lvl); return -1; } // Needed if zlib unused or init aborted before deflateInit memset(&(c->zstream), 0, sizeof(z_stream)); c->comp_size = avctx->width * avctx->height + 1024 + ((avctx->width + ZMBV_BLOCK - 1) / ZMBV_BLOCK) * ((avctx->height + ZMBV_BLOCK - 1) / ZMBV_BLOCK) * 2 + 4; if ((c->work_buf = av_malloc(c->comp_size)) == NULL) { av_log(avctx, AV_LOG_ERROR, "Can't allocate work buffer.\n"); return -1; } /* Conservative upper bound taken from zlib v1.2.1 source via lcl.c */ c->comp_size = c->comp_size + ((c->comp_size + 7) >> 3) + ((c->comp_size + 63) >> 6) + 11; /* Allocate compression buffer */ if ((c->comp_buf = av_malloc(c->comp_size)) == NULL) { av_log(avctx, AV_LOG_ERROR, "Can't allocate compression buffer.\n"); return -1; } c->pstride = FFALIGN(avctx->width, 16); if ((c->prev = av_malloc(c->pstride * avctx->height)) == NULL) { av_log(avctx, AV_LOG_ERROR, "Can't allocate picture.\n"); return -1; } c->zstream.zalloc = Z_NULL; c->zstream.zfree = Z_NULL; c->zstream.opaque = Z_NULL; zret = deflateInit(&(c->zstream), lvl); if (zret != Z_OK) { av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret); return -1; } avctx->coded_frame = (AVFrame*)&c->pic; return 0; } /** * Uninit zmbv encoder */ static av_cold int encode_end(AVCodecContext *avctx) { ZmbvEncContext * const c = avctx->priv_data; av_freep(&c->comp_buf); av_freep(&c->work_buf); deflateEnd(&(c->zstream)); av_freep(&c->prev); return 0; } AVCodec zmbv_encoder = { "zmbv", AVMEDIA_TYPE_VIDEO, CODEC_ID_ZMBV, sizeof(ZmbvEncContext), encode_init, encode_frame, encode_end, .pix_fmts = (const enum PixelFormat[]){PIX_FMT_PAL8, PIX_FMT_NONE}, .long_name = NULL_IF_CONFIG_SMALL("Zip Motion Blocks Video"), };