;****************************************************************************** ;* VP8 MMXEXT optimizations ;* Copyright (c) 2010 Ronald S. Bultje <rsbultje@gmail.com> ;* Copyright (c) 2010 Jason Garrett-Glaser <darkshikari@gmail.com> ;* ;* This file is part of Libav. ;* ;* Libav is free software; you can redistribute it and/or ;* modify it under the terms of the GNU Lesser General Public ;* License as published by the Free Software Foundation; either ;* version 2.1 of the License, or (at your option) any later version. ;* ;* Libav is distributed in the hope that it will be useful, ;* but WITHOUT ANY WARRANTY; without even the implied warranty of ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;* Lesser General Public License for more details. ;* ;* You should have received a copy of the GNU Lesser General Public ;* License along with Libav; if not, write to the Free Software ;* 51, Inc., Foundation Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;****************************************************************************** %include "x86inc.asm" %include "x86util.asm" SECTION_RODATA fourtap_filter_hw_m: times 4 dw -6, 123 times 4 dw 12, -1 times 4 dw -9, 93 times 4 dw 50, -6 times 4 dw -6, 50 times 4 dw 93, -9 times 4 dw -1, 12 times 4 dw 123, -6 sixtap_filter_hw_m: times 4 dw 2, -11 times 4 dw 108, 36 times 4 dw -8, 1 times 4 dw 3, -16 times 4 dw 77, 77 times 4 dw -16, 3 times 4 dw 1, -8 times 4 dw 36, 108 times 4 dw -11, 2 fourtap_filter_hb_m: times 8 db -6, 123 times 8 db 12, -1 times 8 db -9, 93 times 8 db 50, -6 times 8 db -6, 50 times 8 db 93, -9 times 8 db -1, 12 times 8 db 123, -6 sixtap_filter_hb_m: times 8 db 2, 1 times 8 db -11, 108 times 8 db 36, -8 times 8 db 3, 3 times 8 db -16, 77 times 8 db 77, -16 times 8 db 1, 2 times 8 db -8, 36 times 8 db 108, -11 fourtap_filter_v_m: times 8 dw -6 times 8 dw 123 times 8 dw 12 times 8 dw -1 times 8 dw -9 times 8 dw 93 times 8 dw 50 times 8 dw -6 times 8 dw -6 times 8 dw 50 times 8 dw 93 times 8 dw -9 times 8 dw -1 times 8 dw 12 times 8 dw 123 times 8 dw -6 sixtap_filter_v_m: times 8 dw 2 times 8 dw -11 times 8 dw 108 times 8 dw 36 times 8 dw -8 times 8 dw 1 times 8 dw 3 times 8 dw -16 times 8 dw 77 times 8 dw 77 times 8 dw -16 times 8 dw 3 times 8 dw 1 times 8 dw -8 times 8 dw 36 times 8 dw 108 times 8 dw -11 times 8 dw 2 bilinear_filter_vw_m: times 8 dw 1 times 8 dw 2 times 8 dw 3 times 8 dw 4 times 8 dw 5 times 8 dw 6 times 8 dw 7 bilinear_filter_vb_m: times 8 db 7, 1 times 8 db 6, 2 times 8 db 5, 3 times 8 db 4, 4 times 8 db 3, 5 times 8 db 2, 6 times 8 db 1, 7 %ifdef PIC %define fourtap_filter_hw r11 %define sixtap_filter_hw r11 %define fourtap_filter_hb r11 %define sixtap_filter_hb r11 %define fourtap_filter_v r11 %define sixtap_filter_v r11 %define bilinear_filter_vw r11 %define bilinear_filter_vb r11 %else %define fourtap_filter_hw fourtap_filter_hw_m %define sixtap_filter_hw sixtap_filter_hw_m %define fourtap_filter_hb fourtap_filter_hb_m %define sixtap_filter_hb sixtap_filter_hb_m %define fourtap_filter_v fourtap_filter_v_m %define sixtap_filter_v sixtap_filter_v_m %define bilinear_filter_vw bilinear_filter_vw_m %define bilinear_filter_vb bilinear_filter_vb_m %endif filter_h2_shuf: db 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 filter_h4_shuf: db 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 filter_h6_shuf1: db 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 10, 6, 11, 7, 12 filter_h6_shuf2: db 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9 filter_h6_shuf3: db 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11 pw_20091: times 4 dw 20091 pw_17734: times 4 dw 17734 pb_27_63: times 8 db 27, 63 pb_18_63: times 8 db 18, 63 pb_9_63: times 8 db 9, 63 cextern pb_1 cextern pw_3 cextern pb_3 cextern pw_4 cextern pb_4 cextern pw_9 cextern pw_18 cextern pw_27 cextern pw_63 cextern pw_64 cextern pb_80 cextern pb_F8 cextern pb_FE SECTION .text ;----------------------------------------------------------------------------- ; subpel MC functions: ; ; void put_vp8_epel<size>_h<htap>v<vtap>_<opt>(uint8_t *dst, int deststride, ; uint8_t *src, int srcstride, ; int height, int mx, int my); ;----------------------------------------------------------------------------- %macro FILTER_SSSE3 3 cglobal put_vp8_epel%1_h6_ssse3, 6, 6, %2 lea r5d, [r5*3] mova m3, [filter_h6_shuf2] mova m4, [filter_h6_shuf3] %ifdef PIC lea r11, [sixtap_filter_hb_m] %endif mova m5, [sixtap_filter_hb+r5*8-48] ; set up 6tap filter in bytes mova m6, [sixtap_filter_hb+r5*8-32] mova m7, [sixtap_filter_hb+r5*8-16] .nextrow movu m0, [r2-2] mova m1, m0 mova m2, m0 %ifidn %1, 4 ; For epel4, we need 9 bytes, but only 8 get loaded; to compensate, do the ; shuffle with a memory operand punpcklbw m0, [r2+3] %else pshufb m0, [filter_h6_shuf1] %endif pshufb m1, m3 pshufb m2, m4 pmaddubsw m0, m5 pmaddubsw m1, m6 pmaddubsw m2, m7 paddsw m0, m1 paddsw m0, m2 paddsw m0, [pw_64] psraw m0, 7 packuswb m0, m0 movh [r0], m0 ; store ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET cglobal put_vp8_epel%1_h4_ssse3, 6, 6, %3 shl r5d, 4 mova m2, [pw_64] mova m3, [filter_h2_shuf] mova m4, [filter_h4_shuf] %ifdef PIC lea r11, [fourtap_filter_hb_m] %endif mova m5, [fourtap_filter_hb+r5-16] ; set up 4tap filter in bytes mova m6, [fourtap_filter_hb+r5] .nextrow movu m0, [r2-1] mova m1, m0 pshufb m0, m3 pshufb m1, m4 pmaddubsw m0, m5 pmaddubsw m1, m6 paddsw m0, m2 paddsw m0, m1 psraw m0, 7 packuswb m0, m0 movh [r0], m0 ; store ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET cglobal put_vp8_epel%1_v4_ssse3, 7, 7, %2 shl r6d, 4 %ifdef PIC lea r11, [fourtap_filter_hb_m] %endif mova m5, [fourtap_filter_hb+r6-16] mova m6, [fourtap_filter_hb+r6] mova m7, [pw_64] ; read 3 lines sub r2, r3 movh m0, [r2] movh m1, [r2+ r3] movh m2, [r2+2*r3] add r2, r3 .nextrow movh m3, [r2+2*r3] ; read new row mova m4, m0 mova m0, m1 punpcklbw m4, m1 mova m1, m2 punpcklbw m2, m3 pmaddubsw m4, m5 pmaddubsw m2, m6 paddsw m4, m2 mova m2, m3 paddsw m4, m7 psraw m4, 7 packuswb m4, m4 movh [r0], m4 ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET cglobal put_vp8_epel%1_v6_ssse3, 7, 7, %2 lea r6d, [r6*3] %ifdef PIC lea r11, [sixtap_filter_hb_m] %endif lea r6, [sixtap_filter_hb+r6*8] ; read 5 lines sub r2, r3 sub r2, r3 movh m0, [r2] movh m1, [r2+r3] movh m2, [r2+r3*2] lea r2, [r2+r3*2] add r2, r3 movh m3, [r2] movh m4, [r2+r3] .nextrow movh m5, [r2+2*r3] ; read new row mova m6, m0 punpcklbw m6, m5 mova m0, m1 punpcklbw m1, m2 mova m7, m3 punpcklbw m7, m4 pmaddubsw m6, [r6-48] pmaddubsw m1, [r6-32] pmaddubsw m7, [r6-16] paddsw m6, m1 paddsw m6, m7 mova m1, m2 paddsw m6, [pw_64] mova m2, m3 psraw m6, 7 mova m3, m4 packuswb m6, m6 mova m4, m5 movh [r0], m6 ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET %endmacro INIT_MMX FILTER_SSSE3 4, 0, 0 INIT_XMM FILTER_SSSE3 8, 8, 7 ; 4x4 block, H-only 4-tap filter cglobal put_vp8_epel4_h4_mmxext, 6, 6 shl r5d, 4 %ifdef PIC lea r11, [fourtap_filter_hw_m] %endif movq mm4, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words movq mm5, [fourtap_filter_hw+r5] movq mm7, [pw_64] pxor mm6, mm6 .nextrow movq mm1, [r2-1] ; (ABCDEFGH) load 8 horizontal pixels ; first set of 2 pixels movq mm2, mm1 ; byte ABCD.. punpcklbw mm1, mm6 ; byte->word ABCD pshufw mm0, mm2, 9 ; byte CDEF.. punpcklbw mm0, mm6 ; byte->word CDEF pshufw mm3, mm1, 0x94 ; word ABBC pshufw mm1, mm0, 0x94 ; word CDDE pmaddwd mm3, mm4 ; multiply 2px with F0/F1 movq mm0, mm1 ; backup for second set of pixels pmaddwd mm1, mm5 ; multiply 2px with F2/F3 paddd mm3, mm1 ; finish 1st 2px ; second set of 2 pixels, use backup of above punpckhbw mm2, mm6 ; byte->word EFGH pmaddwd mm0, mm4 ; multiply backed up 2px with F0/F1 pshufw mm1, mm2, 0x94 ; word EFFG pmaddwd mm1, mm5 ; multiply 2px with F2/F3 paddd mm0, mm1 ; finish 2nd 2px ; merge two sets of 2 pixels into one set of 4, round/clip/store packssdw mm3, mm0 ; merge dword->word (4px) paddsw mm3, mm7 ; rounding psraw mm3, 7 packuswb mm3, mm6 ; clip and word->bytes movd [r0], mm3 ; store ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET ; 4x4 block, H-only 6-tap filter cglobal put_vp8_epel4_h6_mmxext, 6, 6 lea r5d, [r5*3] %ifdef PIC lea r11, [sixtap_filter_hw_m] %endif movq mm4, [sixtap_filter_hw+r5*8-48] ; set up 4tap filter in words movq mm5, [sixtap_filter_hw+r5*8-32] movq mm6, [sixtap_filter_hw+r5*8-16] movq mm7, [pw_64] pxor mm3, mm3 .nextrow movq mm1, [r2-2] ; (ABCDEFGH) load 8 horizontal pixels ; first set of 2 pixels movq mm2, mm1 ; byte ABCD.. punpcklbw mm1, mm3 ; byte->word ABCD pshufw mm0, mm2, 0x9 ; byte CDEF.. punpckhbw mm2, mm3 ; byte->word EFGH punpcklbw mm0, mm3 ; byte->word CDEF pshufw mm1, mm1, 0x94 ; word ABBC pshufw mm2, mm2, 0x94 ; word EFFG pmaddwd mm1, mm4 ; multiply 2px with F0/F1 pshufw mm3, mm0, 0x94 ; word CDDE movq mm0, mm3 ; backup for second set of pixels pmaddwd mm3, mm5 ; multiply 2px with F2/F3 paddd mm1, mm3 ; add to 1st 2px cache movq mm3, mm2 ; backup for second set of pixels pmaddwd mm2, mm6 ; multiply 2px with F4/F5 paddd mm1, mm2 ; finish 1st 2px ; second set of 2 pixels, use backup of above movd mm2, [r2+3] ; byte FGHI (prevent overreads) pmaddwd mm0, mm4 ; multiply 1st backed up 2px with F0/F1 pmaddwd mm3, mm5 ; multiply 2nd backed up 2px with F2/F3 paddd mm0, mm3 ; add to 2nd 2px cache pxor mm3, mm3 punpcklbw mm2, mm3 ; byte->word FGHI pshufw mm2, mm2, 0xE9 ; word GHHI pmaddwd mm2, mm6 ; multiply 2px with F4/F5 paddd mm0, mm2 ; finish 2nd 2px ; merge two sets of 2 pixels into one set of 4, round/clip/store packssdw mm1, mm0 ; merge dword->word (4px) paddsw mm1, mm7 ; rounding psraw mm1, 7 packuswb mm1, mm3 ; clip and word->bytes movd [r0], mm1 ; store ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET INIT_XMM cglobal put_vp8_epel8_h4_sse2, 6, 6, 10 shl r5d, 5 %ifdef PIC lea r11, [fourtap_filter_v_m] %endif lea r5, [fourtap_filter_v+r5-32] pxor m7, m7 mova m4, [pw_64] mova m5, [r5+ 0] mova m6, [r5+16] %ifdef m8 mova m8, [r5+32] mova m9, [r5+48] %endif .nextrow movq m0, [r2-1] movq m1, [r2-0] movq m2, [r2+1] movq m3, [r2+2] punpcklbw m0, m7 punpcklbw m1, m7 punpcklbw m2, m7 punpcklbw m3, m7 pmullw m0, m5 pmullw m1, m6 %ifdef m8 pmullw m2, m8 pmullw m3, m9 %else pmullw m2, [r5+32] pmullw m3, [r5+48] %endif paddsw m0, m1 paddsw m2, m3 paddsw m0, m2 paddsw m0, m4 psraw m0, 7 packuswb m0, m7 movh [r0], m0 ; store ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET cglobal put_vp8_epel8_h6_sse2, 6, 6, 14 lea r5d, [r5*3] shl r5d, 4 %ifdef PIC lea r11, [sixtap_filter_v_m] %endif lea r5, [sixtap_filter_v+r5-96] pxor m7, m7 mova m6, [pw_64] %ifdef m8 mova m8, [r5+ 0] mova m9, [r5+16] mova m10, [r5+32] mova m11, [r5+48] mova m12, [r5+64] mova m13, [r5+80] %endif .nextrow movq m0, [r2-2] movq m1, [r2-1] movq m2, [r2-0] movq m3, [r2+1] movq m4, [r2+2] movq m5, [r2+3] punpcklbw m0, m7 punpcklbw m1, m7 punpcklbw m2, m7 punpcklbw m3, m7 punpcklbw m4, m7 punpcklbw m5, m7 %ifdef m8 pmullw m0, m8 pmullw m1, m9 pmullw m2, m10 pmullw m3, m11 pmullw m4, m12 pmullw m5, m13 %else pmullw m0, [r5+ 0] pmullw m1, [r5+16] pmullw m2, [r5+32] pmullw m3, [r5+48] pmullw m4, [r5+64] pmullw m5, [r5+80] %endif paddsw m1, m4 paddsw m0, m5 paddsw m1, m2 paddsw m0, m3 paddsw m0, m1 paddsw m0, m6 psraw m0, 7 packuswb m0, m7 movh [r0], m0 ; store ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET %macro FILTER_V 3 ; 4x4 block, V-only 4-tap filter cglobal put_vp8_epel%2_v4_%1, 7, 7, %3 shl r6d, 5 %ifdef PIC lea r11, [fourtap_filter_v_m] %endif lea r6, [fourtap_filter_v+r6-32] mova m6, [pw_64] pxor m7, m7 mova m5, [r6+48] ; read 3 lines sub r2, r3 movh m0, [r2] movh m1, [r2+ r3] movh m2, [r2+2*r3] add r2, r3 punpcklbw m0, m7 punpcklbw m1, m7 punpcklbw m2, m7 .nextrow ; first calculate negative taps (to prevent losing positive overflows) movh m4, [r2+2*r3] ; read new row punpcklbw m4, m7 mova m3, m4 pmullw m0, [r6+0] pmullw m4, m5 paddsw m4, m0 ; then calculate positive taps mova m0, m1 pmullw m1, [r6+16] paddsw m4, m1 mova m1, m2 pmullw m2, [r6+32] paddsw m4, m2 mova m2, m3 ; round/clip/store paddsw m4, m6 psraw m4, 7 packuswb m4, m7 movh [r0], m4 ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET ; 4x4 block, V-only 6-tap filter cglobal put_vp8_epel%2_v6_%1, 7, 7, %3 shl r6d, 4 lea r6, [r6*3] %ifdef PIC lea r11, [sixtap_filter_v_m] %endif lea r6, [sixtap_filter_v+r6-96] pxor m7, m7 ; read 5 lines sub r2, r3 sub r2, r3 movh m0, [r2] movh m1, [r2+r3] movh m2, [r2+r3*2] lea r2, [r2+r3*2] add r2, r3 movh m3, [r2] movh m4, [r2+r3] punpcklbw m0, m7 punpcklbw m1, m7 punpcklbw m2, m7 punpcklbw m3, m7 punpcklbw m4, m7 .nextrow ; first calculate negative taps (to prevent losing positive overflows) mova m5, m1 pmullw m5, [r6+16] mova m6, m4 pmullw m6, [r6+64] paddsw m6, m5 ; then calculate positive taps movh m5, [r2+2*r3] ; read new row punpcklbw m5, m7 pmullw m0, [r6+0] paddsw m6, m0 mova m0, m1 mova m1, m2 pmullw m2, [r6+32] paddsw m6, m2 mova m2, m3 pmullw m3, [r6+48] paddsw m6, m3 mova m3, m4 mova m4, m5 pmullw m5, [r6+80] paddsw m6, m5 ; round/clip/store paddsw m6, [pw_64] psraw m6, 7 packuswb m6, m7 movh [r0], m6 ; go to next line add r0, r1 add r2, r3 dec r4d ; next row jg .nextrow REP_RET %endmacro INIT_MMX FILTER_V mmxext, 4, 0 INIT_XMM FILTER_V sse2, 8, 8 %macro FILTER_BILINEAR 3 cglobal put_vp8_bilinear%2_v_%1, 7,7,%3 mov r5d, 8*16 shl r6d, 4 sub r5d, r6d %ifdef PIC lea r11, [bilinear_filter_vw_m] %endif pxor m6, m6 mova m4, [bilinear_filter_vw+r5-16] mova m5, [bilinear_filter_vw+r6-16] .nextrow movh m0, [r2+r3*0] movh m1, [r2+r3*1] movh m3, [r2+r3*2] punpcklbw m0, m6 punpcklbw m1, m6 punpcklbw m3, m6 mova m2, m1 pmullw m0, m4 pmullw m1, m5 pmullw m2, m4 pmullw m3, m5 paddsw m0, m1 paddsw m2, m3 psraw m0, 2 psraw m2, 2 pavgw m0, m6 pavgw m2, m6 %ifidn %1, mmxext packuswb m0, m0 packuswb m2, m2 movh [r0+r1*0], m0 movh [r0+r1*1], m2 %else packuswb m0, m2 movh [r0+r1*0], m0 movhps [r0+r1*1], m0 %endif lea r0, [r0+r1*2] lea r2, [r2+r3*2] sub r4d, 2 jg .nextrow REP_RET cglobal put_vp8_bilinear%2_h_%1, 7,7,%3 mov r6d, 8*16 shl r5d, 4 sub r6d, r5d %ifdef PIC lea r11, [bilinear_filter_vw_m] %endif pxor m6, m6 mova m4, [bilinear_filter_vw+r6-16] mova m5, [bilinear_filter_vw+r5-16] .nextrow movh m0, [r2+r3*0+0] movh m1, [r2+r3*0+1] movh m2, [r2+r3*1+0] movh m3, [r2+r3*1+1] punpcklbw m0, m6 punpcklbw m1, m6 punpcklbw m2, m6 punpcklbw m3, m6 pmullw m0, m4 pmullw m1, m5 pmullw m2, m4 pmullw m3, m5 paddsw m0, m1 paddsw m2, m3 psraw m0, 2 psraw m2, 2 pavgw m0, m6 pavgw m2, m6 %ifidn %1, mmxext packuswb m0, m0 packuswb m2, m2 movh [r0+r1*0], m0 movh [r0+r1*1], m2 %else packuswb m0, m2 movh [r0+r1*0], m0 movhps [r0+r1*1], m0 %endif lea r0, [r0+r1*2] lea r2, [r2+r3*2] sub r4d, 2 jg .nextrow REP_RET %endmacro INIT_MMX FILTER_BILINEAR mmxext, 4, 0 INIT_XMM FILTER_BILINEAR sse2, 8, 7 %macro FILTER_BILINEAR_SSSE3 1 cglobal put_vp8_bilinear%1_v_ssse3, 7,7 shl r6d, 4 %ifdef PIC lea r11, [bilinear_filter_vb_m] %endif pxor m4, m4 mova m3, [bilinear_filter_vb+r6-16] .nextrow movh m0, [r2+r3*0] movh m1, [r2+r3*1] movh m2, [r2+r3*2] punpcklbw m0, m1 punpcklbw m1, m2 pmaddubsw m0, m3 pmaddubsw m1, m3 psraw m0, 2 psraw m1, 2 pavgw m0, m4 pavgw m1, m4 %if mmsize==8 packuswb m0, m0 packuswb m1, m1 movh [r0+r1*0], m0 movh [r0+r1*1], m1 %else packuswb m0, m1 movh [r0+r1*0], m0 movhps [r0+r1*1], m0 %endif lea r0, [r0+r1*2] lea r2, [r2+r3*2] sub r4d, 2 jg .nextrow REP_RET cglobal put_vp8_bilinear%1_h_ssse3, 7,7 shl r5d, 4 %ifdef PIC lea r11, [bilinear_filter_vb_m] %endif pxor m4, m4 mova m2, [filter_h2_shuf] mova m3, [bilinear_filter_vb+r5-16] .nextrow movu m0, [r2+r3*0] movu m1, [r2+r3*1] pshufb m0, m2 pshufb m1, m2 pmaddubsw m0, m3 pmaddubsw m1, m3 psraw m0, 2 psraw m1, 2 pavgw m0, m4 pavgw m1, m4 %if mmsize==8 packuswb m0, m0 packuswb m1, m1 movh [r0+r1*0], m0 movh [r0+r1*1], m1 %else packuswb m0, m1 movh [r0+r1*0], m0 movhps [r0+r1*1], m0 %endif lea r0, [r0+r1*2] lea r2, [r2+r3*2] sub r4d, 2 jg .nextrow REP_RET %endmacro INIT_MMX FILTER_BILINEAR_SSSE3 4 INIT_XMM FILTER_BILINEAR_SSSE3 8 cglobal put_vp8_pixels8_mmx, 5,5 .nextrow: movq mm0, [r2+r3*0] movq mm1, [r2+r3*1] lea r2, [r2+r3*2] movq [r0+r1*0], mm0 movq [r0+r1*1], mm1 lea r0, [r0+r1*2] sub r4d, 2 jg .nextrow REP_RET cglobal put_vp8_pixels16_mmx, 5,5 .nextrow: movq mm0, [r2+r3*0+0] movq mm1, [r2+r3*0+8] movq mm2, [r2+r3*1+0] movq mm3, [r2+r3*1+8] lea r2, [r2+r3*2] movq [r0+r1*0+0], mm0 movq [r0+r1*0+8], mm1 movq [r0+r1*1+0], mm2 movq [r0+r1*1+8], mm3 lea r0, [r0+r1*2] sub r4d, 2 jg .nextrow REP_RET cglobal put_vp8_pixels16_sse, 5,5,2 .nextrow: movups xmm0, [r2+r3*0] movups xmm1, [r2+r3*1] lea r2, [r2+r3*2] movaps [r0+r1*0], xmm0 movaps [r0+r1*1], xmm1 lea r0, [r0+r1*2] sub r4d, 2 jg .nextrow REP_RET ;----------------------------------------------------------------------------- ; void vp8_idct_dc_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride); ;----------------------------------------------------------------------------- %macro ADD_DC 4 %4 m2, [r0+%3] %4 m3, [r0+r2+%3] %4 m4, [r1+%3] %4 m5, [r1+r2+%3] paddusb m2, %1 paddusb m3, %1 paddusb m4, %1 paddusb m5, %1 psubusb m2, %2 psubusb m3, %2 psubusb m4, %2 psubusb m5, %2 %4 [r0+%3], m2 %4 [r0+r2+%3], m3 %4 [r1+%3], m4 %4 [r1+r2+%3], m5 %endmacro INIT_MMX cglobal vp8_idct_dc_add_mmx, 3, 3 ; load data movd m0, [r1] ; calculate DC paddw m0, [pw_4] pxor m1, m1 psraw m0, 3 movd [r1], m1 psubw m1, m0 packuswb m0, m0 packuswb m1, m1 punpcklbw m0, m0 punpcklbw m1, m1 punpcklwd m0, m0 punpcklwd m1, m1 ; add DC lea r1, [r0+r2*2] ADD_DC m0, m1, 0, movh RET INIT_XMM cglobal vp8_idct_dc_add_sse4, 3, 3, 6 ; load data movd m0, [r1] pxor m1, m1 ; calculate DC paddw m0, [pw_4] movd [r1], m1 lea r1, [r0+r2*2] movd m2, [r0] movd m3, [r0+r2] movd m4, [r1] movd m5, [r1+r2] psraw m0, 3 pshuflw m0, m0, 0 punpcklqdq m0, m0 punpckldq m2, m3 punpckldq m4, m5 punpcklbw m2, m1 punpcklbw m4, m1 paddw m2, m0 paddw m4, m0 packuswb m2, m4 movd [r0], m2 pextrd [r0+r2], m2, 1 pextrd [r1], m2, 2 pextrd [r1+r2], m2, 3 RET ;----------------------------------------------------------------------------- ; void vp8_idct_dc_add4y_<opt>(uint8_t *dst, DCTELEM block[4][16], int stride); ;----------------------------------------------------------------------------- INIT_MMX cglobal vp8_idct_dc_add4y_mmx, 3, 3 ; load data movd m0, [r1+32*0] ; A movd m1, [r1+32*2] ; C punpcklwd m0, [r1+32*1] ; A B punpcklwd m1, [r1+32*3] ; C D punpckldq m0, m1 ; A B C D pxor m6, m6 ; calculate DC paddw m0, [pw_4] movd [r1+32*0], m6 movd [r1+32*1], m6 movd [r1+32*2], m6 movd [r1+32*3], m6 psraw m0, 3 psubw m6, m0 packuswb m0, m0 packuswb m6, m6 punpcklbw m0, m0 ; AABBCCDD punpcklbw m6, m6 ; AABBCCDD movq m1, m0 movq m7, m6 punpcklbw m0, m0 ; AAAABBBB punpckhbw m1, m1 ; CCCCDDDD punpcklbw m6, m6 ; AAAABBBB punpckhbw m7, m7 ; CCCCDDDD ; add DC lea r1, [r0+r2*2] ADD_DC m0, m6, 0, mova ADD_DC m1, m7, 8, mova RET INIT_XMM cglobal vp8_idct_dc_add4y_sse2, 3, 3, 6 ; load data movd m0, [r1+32*0] ; A movd m1, [r1+32*2] ; C punpcklwd m0, [r1+32*1] ; A B punpcklwd m1, [r1+32*3] ; C D punpckldq m0, m1 ; A B C D pxor m1, m1 ; calculate DC paddw m0, [pw_4] movd [r1+32*0], m1 movd [r1+32*1], m1 movd [r1+32*2], m1 movd [r1+32*3], m1 psraw m0, 3 psubw m1, m0 packuswb m0, m0 packuswb m1, m1 punpcklbw m0, m0 punpcklbw m1, m1 punpcklbw m0, m0 punpcklbw m1, m1 ; add DC lea r1, [r0+r2*2] ADD_DC m0, m1, 0, mova RET ;----------------------------------------------------------------------------- ; void vp8_idct_dc_add4uv_<opt>(uint8_t *dst, DCTELEM block[4][16], int stride); ;----------------------------------------------------------------------------- INIT_MMX cglobal vp8_idct_dc_add4uv_mmx, 3, 3 ; load data movd m0, [r1+32*0] ; A movd m1, [r1+32*2] ; C punpcklwd m0, [r1+32*1] ; A B punpcklwd m1, [r1+32*3] ; C D punpckldq m0, m1 ; A B C D pxor m6, m6 ; calculate DC paddw m0, [pw_4] movd [r1+32*0], m6 movd [r1+32*1], m6 movd [r1+32*2], m6 movd [r1+32*3], m6 psraw m0, 3 psubw m6, m0 packuswb m0, m0 packuswb m6, m6 punpcklbw m0, m0 ; AABBCCDD punpcklbw m6, m6 ; AABBCCDD movq m1, m0 movq m7, m6 punpcklbw m0, m0 ; AAAABBBB punpckhbw m1, m1 ; CCCCDDDD punpcklbw m6, m6 ; AAAABBBB punpckhbw m7, m7 ; CCCCDDDD ; add DC lea r1, [r0+r2*2] ADD_DC m0, m6, 0, mova lea r0, [r0+r2*4] lea r1, [r1+r2*4] ADD_DC m1, m7, 0, mova RET ;----------------------------------------------------------------------------- ; void vp8_idct_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride); ;----------------------------------------------------------------------------- ; calculate %1=mul_35468(%1)-mul_20091(%2); %2=mul_20091(%1)+mul_35468(%2) ; this macro assumes that m6/m7 have words for 20091/17734 loaded %macro VP8_MULTIPLY_SUMSUB 4 mova %3, %1 mova %4, %2 pmulhw %3, m6 ;20091(1) pmulhw %4, m6 ;20091(2) paddw %3, %1 paddw %4, %2 paddw %1, %1 paddw %2, %2 pmulhw %1, m7 ;35468(1) pmulhw %2, m7 ;35468(2) psubw %1, %4 paddw %2, %3 %endmacro ; calculate x0=%1+%3; x1=%1-%3 ; x2=mul_35468(%2)-mul_20091(%4); x3=mul_20091(%2)+mul_35468(%4) ; %1=x0+x3 (tmp0); %2=x1+x2 (tmp1); %3=x1-x2 (tmp2); %4=x0-x3 (tmp3) ; %5/%6 are temporary registers ; we assume m6/m7 have constant words 20091/17734 loaded in them %macro VP8_IDCT_TRANSFORM4x4_1D 6 SUMSUB_BA m%3, m%1, m%5 ;t0, t1 VP8_MULTIPLY_SUMSUB m%2, m%4, m%5,m%6 ;t2, t3 SUMSUB_BA m%4, m%3, m%5 ;tmp0, tmp3 SUMSUB_BA m%2, m%1, m%5 ;tmp1, tmp2 SWAP %4, %1 SWAP %4, %3 %endmacro INIT_MMX %macro VP8_IDCT_ADD 1 cglobal vp8_idct_add_%1, 3, 3 ; load block data movq m0, [r1+ 0] movq m1, [r1+ 8] movq m2, [r1+16] movq m3, [r1+24] movq m6, [pw_20091] movq m7, [pw_17734] %ifidn %1, sse xorps xmm0, xmm0 movaps [r1+ 0], xmm0 movaps [r1+16], xmm0 %else pxor m4, m4 movq [r1+ 0], m4 movq [r1+ 8], m4 movq [r1+16], m4 movq [r1+24], m4 %endif ; actual IDCT VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5 TRANSPOSE4x4W 0, 1, 2, 3, 4 paddw m0, [pw_4] VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5 TRANSPOSE4x4W 0, 1, 2, 3, 4 ; store pxor m4, m4 lea r1, [r0+2*r2] STORE_DIFFx2 m0, m1, m6, m7, m4, 3, r0, r2 STORE_DIFFx2 m2, m3, m6, m7, m4, 3, r1, r2 RET %endmacro VP8_IDCT_ADD mmx VP8_IDCT_ADD sse ;----------------------------------------------------------------------------- ; void vp8_luma_dc_wht_mmxext(DCTELEM block[4][4][16], DCTELEM dc[16]) ;----------------------------------------------------------------------------- %macro SCATTER_WHT 3 movd r1d, m%1 movd r2d, m%2 mov [r0+2*16*(0+%3)], r1w mov [r0+2*16*(1+%3)], r2w shr r1d, 16 shr r2d, 16 psrlq m%1, 32 psrlq m%2, 32 mov [r0+2*16*(4+%3)], r1w mov [r0+2*16*(5+%3)], r2w movd r1d, m%1 movd r2d, m%2 mov [r0+2*16*(8+%3)], r1w mov [r0+2*16*(9+%3)], r2w shr r1d, 16 shr r2d, 16 mov [r0+2*16*(12+%3)], r1w mov [r0+2*16*(13+%3)], r2w %endmacro %macro HADAMARD4_1D 4 SUMSUB_BADC m%2, m%1, m%4, m%3 SUMSUB_BADC m%4, m%2, m%3, m%1 SWAP %1, %4, %3 %endmacro %macro VP8_DC_WHT 1 cglobal vp8_luma_dc_wht_%1, 2,3 movq m0, [r1] movq m1, [r1+8] movq m2, [r1+16] movq m3, [r1+24] %ifidn %1, sse xorps xmm0, xmm0 movaps [r1+ 0], xmm0 movaps [r1+16], xmm0 %else pxor m4, m4 movq [r1+ 0], m4 movq [r1+ 8], m4 movq [r1+16], m4 movq [r1+24], m4 %endif HADAMARD4_1D 0, 1, 2, 3 TRANSPOSE4x4W 0, 1, 2, 3, 4 paddw m0, [pw_3] HADAMARD4_1D 0, 1, 2, 3 psraw m0, 3 psraw m1, 3 psraw m2, 3 psraw m3, 3 SCATTER_WHT 0, 1, 0 SCATTER_WHT 2, 3, 2 RET %endmacro INIT_MMX VP8_DC_WHT mmx VP8_DC_WHT sse ;----------------------------------------------------------------------------- ; void vp8_h/v_loop_filter_simple_<opt>(uint8_t *dst, int stride, int flim); ;----------------------------------------------------------------------------- ; macro called with 7 mm register indexes as argument, and 4 regular registers ; ; first 4 mm registers will carry the transposed pixel data ; the other three are scratchspace (one would be sufficient, but this allows ; for more spreading/pipelining and thus faster execution on OOE CPUs) ; ; first two regular registers are buf+4*stride and buf+5*stride ; third is -stride, fourth is +stride %macro READ_8x4_INTERLEAVED 11 ; interleave 8 (A-H) rows of 4 pixels each movd m%1, [%8+%10*4] ; A0-3 movd m%5, [%9+%10*4] ; B0-3 movd m%2, [%8+%10*2] ; C0-3 movd m%6, [%8+%10] ; D0-3 movd m%3, [%8] ; E0-3 movd m%7, [%9] ; F0-3 movd m%4, [%9+%11] ; G0-3 punpcklbw m%1, m%5 ; A/B interleaved movd m%5, [%9+%11*2] ; H0-3 punpcklbw m%2, m%6 ; C/D interleaved punpcklbw m%3, m%7 ; E/F interleaved punpcklbw m%4, m%5 ; G/H interleaved %endmacro ; macro called with 7 mm register indexes as argument, and 5 regular registers ; first 11 mean the same as READ_8x4_TRANSPOSED above ; fifth regular register is scratchspace to reach the bottom 8 rows, it ; will be set to second regular register + 8*stride at the end %macro READ_16x4_INTERLEAVED 12 ; transpose 16 (A-P) rows of 4 pixels each lea %12, [r0+8*r2] ; read (and interleave) those addressable by %8 (=r0), A/C/D/E/I/K/L/M movd m%1, [%8+%10*4] ; A0-3 movd m%3, [%12+%10*4] ; I0-3 movd m%2, [%8+%10*2] ; C0-3 movd m%4, [%12+%10*2] ; K0-3 movd m%6, [%8+%10] ; D0-3 movd m%5, [%12+%10] ; L0-3 movd m%7, [%12] ; M0-3 add %12, %11 punpcklbw m%1, m%3 ; A/I movd m%3, [%8] ; E0-3 punpcklbw m%2, m%4 ; C/K punpcklbw m%6, m%5 ; D/L punpcklbw m%3, m%7 ; E/M punpcklbw m%2, m%6 ; C/D/K/L interleaved ; read (and interleave) those addressable by %9 (=r4), B/F/G/H/J/N/O/P movd m%5, [%9+%10*4] ; B0-3 movd m%4, [%12+%10*4] ; J0-3 movd m%7, [%9] ; F0-3 movd m%6, [%12] ; N0-3 punpcklbw m%5, m%4 ; B/J punpcklbw m%7, m%6 ; F/N punpcklbw m%1, m%5 ; A/B/I/J interleaved punpcklbw m%3, m%7 ; E/F/M/N interleaved movd m%4, [%9+%11] ; G0-3 movd m%6, [%12+%11] ; O0-3 movd m%5, [%9+%11*2] ; H0-3 movd m%7, [%12+%11*2] ; P0-3 punpcklbw m%4, m%6 ; G/O punpcklbw m%5, m%7 ; H/P punpcklbw m%4, m%5 ; G/H/O/P interleaved %endmacro ; write 4 mm registers of 2 dwords each ; first four arguments are mm register indexes containing source data ; last four are registers containing buf+4*stride, buf+5*stride, ; -stride and +stride %macro WRITE_4x2D 8 ; write out (2 dwords per register) movd [%5+%7*4], m%1 movd [%5+%7*2], m%2 movd [%5], m%3 movd [%6+%8], m%4 punpckhdq m%1, m%1 punpckhdq m%2, m%2 punpckhdq m%3, m%3 punpckhdq m%4, m%4 movd [%6+%7*4], m%1 movd [%5+%7], m%2 movd [%6], m%3 movd [%6+%8*2], m%4 %endmacro ; write 4 xmm registers of 4 dwords each ; arguments same as WRITE_2x4D, but with an extra register, so that the 5 regular ; registers contain buf+4*stride, buf+5*stride, buf+12*stride, -stride and +stride ; we add 1*stride to the third regular registry in the process ; the 10th argument is 16 if it's a Y filter (i.e. all regular registers cover the ; same memory region), or 8 if they cover two separate buffers (third one points to ; a different memory region than the first two), allowing for more optimal code for ; the 16-width case %macro WRITE_4x4D 10 ; write out (4 dwords per register), start with dwords zero movd [%5+%8*4], m%1 movd [%5], m%2 movd [%7+%8*4], m%3 movd [%7], m%4 ; store dwords 1 psrldq m%1, 4 psrldq m%2, 4 psrldq m%3, 4 psrldq m%4, 4 movd [%6+%8*4], m%1 movd [%6], m%2 %if %10 == 16 movd [%6+%9*4], m%3 %endif movd [%7+%9], m%4 ; write dwords 2 psrldq m%1, 4 psrldq m%2, 4 %if %10 == 8 movd [%5+%8*2], m%1 movd %5d, m%3 %endif psrldq m%3, 4 psrldq m%4, 4 %if %10 == 16 movd [%5+%8*2], m%1 %endif movd [%6+%9], m%2 movd [%7+%8*2], m%3 movd [%7+%9*2], m%4 add %7, %9 ; store dwords 3 psrldq m%1, 4 psrldq m%2, 4 psrldq m%3, 4 psrldq m%4, 4 %if %10 == 8 mov [%7+%8*4], %5d movd [%6+%8*2], m%1 %else movd [%5+%8], m%1 %endif movd [%6+%9*2], m%2 movd [%7+%8*2], m%3 movd [%7+%9*2], m%4 %endmacro ; write 4 or 8 words in the mmx/xmm registers as 8 lines ; 1 and 2 are the registers to write, this can be the same (for SSE2) ; for pre-SSE4: ; 3 is a general-purpose register that we will clobber ; for SSE4: ; 3 is a pointer to the destination's 5th line ; 4 is a pointer to the destination's 4th line ; 5/6 is -stride and +stride %macro WRITE_2x4W 6 movd %3d, %1 punpckhdq %1, %1 mov [%4+%5*4], %3w shr %3, 16 add %4, %6 mov [%4+%5*4], %3w movd %3d, %1 add %4, %5 mov [%4+%5*2], %3w shr %3, 16 mov [%4+%5 ], %3w movd %3d, %2 punpckhdq %2, %2 mov [%4 ], %3w shr %3, 16 mov [%4+%6 ], %3w movd %3d, %2 add %4, %6 mov [%4+%6 ], %3w shr %3, 16 mov [%4+%6*2], %3w add %4, %5 %endmacro %macro WRITE_8W_SSE2 5 movd %2d, %1 psrldq %1, 4 mov [%3+%4*4], %2w shr %2, 16 add %3, %5 mov [%3+%4*4], %2w movd %2d, %1 psrldq %1, 4 add %3, %4 mov [%3+%4*2], %2w shr %2, 16 mov [%3+%4 ], %2w movd %2d, %1 psrldq %1, 4 mov [%3 ], %2w shr %2, 16 mov [%3+%5 ], %2w movd %2d, %1 add %3, %5 mov [%3+%5 ], %2w shr %2, 16 mov [%3+%5*2], %2w %endmacro %macro WRITE_8W_SSE4 5 pextrw [%3+%4*4], %1, 0 pextrw [%2+%4*4], %1, 1 pextrw [%3+%4*2], %1, 2 pextrw [%3+%4 ], %1, 3 pextrw [%3 ], %1, 4 pextrw [%2 ], %1, 5 pextrw [%2+%5 ], %1, 6 pextrw [%2+%5*2], %1, 7 %endmacro %macro SPLATB_REG_MMX 2-3 movd %1, %2d punpcklbw %1, %1 punpcklwd %1, %1 punpckldq %1, %1 %endmacro %macro SPLATB_REG_MMXEXT 2-3 movd %1, %2d punpcklbw %1, %1 pshufw %1, %1, 0x0 %endmacro %macro SPLATB_REG_SSE2 2-3 movd %1, %2d punpcklbw %1, %1 pshuflw %1, %1, 0x0 punpcklqdq %1, %1 %endmacro %macro SPLATB_REG_SSSE3 3 movd %1, %2d pshufb %1, %3 %endmacro %macro SIMPLE_LOOPFILTER 4 cglobal vp8_%2_loop_filter_simple_%1, 3, %3, %4 %if mmsize == 8 ; mmx/mmxext mov r3, 2 %endif %ifnidn %1, sse2 %if mmsize == 16 pxor m0, m0 %endif %endif SPLATB_REG m7, r2, m0 ; splat "flim" into register ; set up indexes to address 4 rows mov r2, r1 neg r1 %ifidn %2, h lea r0, [r0+4*r2-2] %endif %if mmsize == 8 ; mmx / mmxext .next8px %endif %ifidn %2, v ; read 4 half/full rows of pixels mova m0, [r0+r1*2] ; p1 mova m1, [r0+r1] ; p0 mova m2, [r0] ; q0 mova m3, [r0+r2] ; q1 %else ; h lea r4, [r0+r2] %if mmsize == 8 ; mmx/mmxext READ_8x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2 %else ; sse2 READ_16x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2, r3 %endif TRANSPOSE4x4W 0, 1, 2, 3, 4 %endif ; simple_limit mova m5, m2 ; m5=backup of q0 mova m6, m1 ; m6=backup of p0 psubusb m1, m2 ; p0-q0 psubusb m2, m6 ; q0-p0 por m1, m2 ; FFABS(p0-q0) paddusb m1, m1 ; m1=FFABS(p0-q0)*2 mova m4, m3 mova m2, m0 psubusb m3, m0 ; q1-p1 psubusb m0, m4 ; p1-q1 por m3, m0 ; FFABS(p1-q1) mova m0, [pb_80] pxor m2, m0 pxor m4, m0 psubsb m2, m4 ; m2=p1-q1 (signed) backup for below pand m3, [pb_FE] psrlq m3, 1 ; m3=FFABS(p1-q1)/2, this can be used signed paddusb m3, m1 psubusb m3, m7 pxor m1, m1 pcmpeqb m3, m1 ; abs(p0-q0)*2+abs(p1-q1)/2<=flim mask(0xff/0x0) ; filter_common (use m2/p1-q1, m4=q0, m6=p0, m5/q0-p0 and m3/mask) mova m4, m5 pxor m5, m0 pxor m0, m6 psubsb m5, m0 ; q0-p0 (signed) paddsb m2, m5 paddsb m2, m5 paddsb m2, m5 ; a=(p1-q1) + 3*(q0-p0) pand m2, m3 ; apply filter mask (m3) mova m3, [pb_F8] mova m1, m2 paddsb m2, [pb_4] ; f1<<3=a+4 paddsb m1, [pb_3] ; f2<<3=a+3 pand m2, m3 pand m1, m3 ; cache f2<<3 pxor m0, m0 pxor m3, m3 pcmpgtb m0, m2 ; which values are <0? psubb m3, m2 ; -f1<<3 psrlq m2, 3 ; +f1 psrlq m3, 3 ; -f1 pand m3, m0 pandn m0, m2 psubusb m4, m0 paddusb m4, m3 ; q0-f1 pxor m0, m0 pxor m3, m3 pcmpgtb m0, m1 ; which values are <0? psubb m3, m1 ; -f2<<3 psrlq m1, 3 ; +f2 psrlq m3, 3 ; -f2 pand m3, m0 pandn m0, m1 paddusb m6, m0 psubusb m6, m3 ; p0+f2 ; store %ifidn %2, v mova [r0], m4 mova [r0+r1], m6 %else ; h inc r0 SBUTTERFLY bw, 6, 4, 0 %if mmsize == 16 ; sse2 %ifidn %1, sse4 inc r4 %endif WRITE_8W m6, r4, r0, r1, r2 lea r4, [r3+r1+1] %ifidn %1, sse4 inc r3 %endif WRITE_8W m4, r3, r4, r1, r2 %else ; mmx/mmxext WRITE_2x4W m6, m4, r4, r0, r1, r2 %endif %endif %if mmsize == 8 ; mmx/mmxext ; next 8 pixels %ifidn %2, v add r0, 8 ; advance 8 cols = pixels %else ; h lea r0, [r0+r2*8-1] ; advance 8 rows = lines %endif dec r3 jg .next8px REP_RET %else ; sse2 RET %endif %endmacro INIT_MMX %define SPLATB_REG SPLATB_REG_MMX SIMPLE_LOOPFILTER mmx, v, 4, 0 SIMPLE_LOOPFILTER mmx, h, 5, 0 %define SPLATB_REG SPLATB_REG_MMXEXT SIMPLE_LOOPFILTER mmxext, v, 4, 0 SIMPLE_LOOPFILTER mmxext, h, 5, 0 INIT_XMM %define SPLATB_REG SPLATB_REG_SSE2 %define WRITE_8W WRITE_8W_SSE2 SIMPLE_LOOPFILTER sse2, v, 3, 8 SIMPLE_LOOPFILTER sse2, h, 5, 8 %define SPLATB_REG SPLATB_REG_SSSE3 SIMPLE_LOOPFILTER ssse3, v, 3, 8 SIMPLE_LOOPFILTER ssse3, h, 5, 8 %define WRITE_8W WRITE_8W_SSE4 SIMPLE_LOOPFILTER sse4, h, 5, 8 ;----------------------------------------------------------------------------- ; void vp8_h/v_loop_filter<size>_inner_<opt>(uint8_t *dst, [uint8_t *v,] int stride, ; int flimE, int flimI, int hev_thr); ;----------------------------------------------------------------------------- %macro INNER_LOOPFILTER 5 %if %4 == 8 ; chroma cglobal vp8_%2_loop_filter8uv_inner_%1, 6, %3, %5 %define dst8_reg r1 %define mstride_reg r2 %define E_reg r3 %define I_reg r4 %define hev_thr_reg r5 %else ; luma cglobal vp8_%2_loop_filter16y_inner_%1, 5, %3, %5 %define mstride_reg r1 %define E_reg r2 %define I_reg r3 %define hev_thr_reg r4 %ifdef m8 ; x86-64, sse2 %define dst8_reg r4 %elif mmsize == 16 ; x86-32, sse2 %define dst8_reg r5 %else ; x86-32, mmx/mmxext %define cnt_reg r5 %endif %endif %define dst_reg r0 %define stride_reg E_reg %define dst2_reg I_reg %ifndef m8 %define stack_reg hev_thr_reg %endif %ifnidn %1, sse2 %if mmsize == 16 pxor m7, m7 %endif %endif %ifndef m8 ; mmx/mmxext or sse2 on x86-32 ; splat function arguments SPLATB_REG m0, E_reg, m7 ; E SPLATB_REG m1, I_reg, m7 ; I SPLATB_REG m2, hev_thr_reg, m7 ; hev_thresh ; align stack mov stack_reg, rsp ; backup stack pointer and rsp, ~(mmsize-1) ; align stack %ifidn %2, v sub rsp, mmsize * 4 ; stack layout: [0]=E, [1]=I, [2]=hev_thr ; [3]=hev() result %else ; h sub rsp, mmsize * 5 ; extra storage space for transposes %endif %define flim_E [rsp] %define flim_I [rsp+mmsize] %define hev_thr [rsp+mmsize*2] %define mask_res [rsp+mmsize*3] %define p0backup [rsp+mmsize*3] %define q0backup [rsp+mmsize*4] mova flim_E, m0 mova flim_I, m1 mova hev_thr, m2 %else ; sse2 on x86-64 %define flim_E m9 %define flim_I m10 %define hev_thr m11 %define mask_res m12 %define p0backup m12 %define q0backup m8 ; splat function arguments SPLATB_REG flim_E, E_reg, m7 ; E SPLATB_REG flim_I, I_reg, m7 ; I SPLATB_REG hev_thr, hev_thr_reg, m7 ; hev_thresh %endif %if mmsize == 8 && %4 == 16 ; mmx/mmxext mov cnt_reg, 2 %endif mov stride_reg, mstride_reg neg mstride_reg %ifidn %2, h lea dst_reg, [dst_reg + stride_reg*4-4] %if %4 == 8 lea dst8_reg, [dst8_reg+ stride_reg*4-4] %endif %endif %if mmsize == 8 .next8px %endif ; read lea dst2_reg, [dst_reg + stride_reg] %ifidn %2, v %if %4 == 8 && mmsize == 16 %define movrow movh %else %define movrow mova %endif movrow m0, [dst_reg +mstride_reg*4] ; p3 movrow m1, [dst2_reg+mstride_reg*4] ; p2 movrow m2, [dst_reg +mstride_reg*2] ; p1 movrow m5, [dst2_reg] ; q1 movrow m6, [dst2_reg+ stride_reg] ; q2 movrow m7, [dst2_reg+ stride_reg*2] ; q3 %if mmsize == 16 && %4 == 8 movhps m0, [dst8_reg+mstride_reg*4] movhps m2, [dst8_reg+mstride_reg*2] add dst8_reg, stride_reg movhps m1, [dst8_reg+mstride_reg*4] movhps m5, [dst8_reg] movhps m6, [dst8_reg+ stride_reg] movhps m7, [dst8_reg+ stride_reg*2] add dst8_reg, mstride_reg %endif %elif mmsize == 8 ; mmx/mmxext (h) ; read 8 rows of 8px each movu m0, [dst_reg +mstride_reg*4] movu m1, [dst2_reg+mstride_reg*4] movu m2, [dst_reg +mstride_reg*2] movu m3, [dst_reg +mstride_reg] movu m4, [dst_reg] movu m5, [dst2_reg] movu m6, [dst2_reg+ stride_reg] ; 8x8 transpose TRANSPOSE4x4B 0, 1, 2, 3, 7 mova q0backup, m1 movu m7, [dst2_reg+ stride_reg*2] TRANSPOSE4x4B 4, 5, 6, 7, 1 SBUTTERFLY dq, 0, 4, 1 ; p3/p2 SBUTTERFLY dq, 2, 6, 1 ; q0/q1 SBUTTERFLY dq, 3, 7, 1 ; q2/q3 mova m1, q0backup mova q0backup, m2 ; store q0 SBUTTERFLY dq, 1, 5, 2 ; p1/p0 mova p0backup, m5 ; store p0 SWAP 1, 4 SWAP 2, 4 SWAP 6, 3 SWAP 5, 3 %else ; sse2 (h) %if %4 == 16 lea dst8_reg, [dst_reg + stride_reg*8] %endif ; read 16 rows of 8px each, interleave movh m0, [dst_reg +mstride_reg*4] movh m1, [dst8_reg+mstride_reg*4] movh m2, [dst_reg +mstride_reg*2] movh m5, [dst8_reg+mstride_reg*2] movh m3, [dst_reg +mstride_reg] movh m6, [dst8_reg+mstride_reg] movh m4, [dst_reg] movh m7, [dst8_reg] punpcklbw m0, m1 ; A/I punpcklbw m2, m5 ; C/K punpcklbw m3, m6 ; D/L punpcklbw m4, m7 ; E/M add dst8_reg, stride_reg movh m1, [dst2_reg+mstride_reg*4] movh m6, [dst8_reg+mstride_reg*4] movh m5, [dst2_reg] movh m7, [dst8_reg] punpcklbw m1, m6 ; B/J punpcklbw m5, m7 ; F/N movh m6, [dst2_reg+ stride_reg] movh m7, [dst8_reg+ stride_reg] punpcklbw m6, m7 ; G/O ; 8x16 transpose TRANSPOSE4x4B 0, 1, 2, 3, 7 %ifdef m8 SWAP 1, 8 %else mova q0backup, m1 %endif movh m7, [dst2_reg+ stride_reg*2] movh m1, [dst8_reg+ stride_reg*2] punpcklbw m7, m1 ; H/P TRANSPOSE4x4B 4, 5, 6, 7, 1 SBUTTERFLY dq, 0, 4, 1 ; p3/p2 SBUTTERFLY dq, 2, 6, 1 ; q0/q1 SBUTTERFLY dq, 3, 7, 1 ; q2/q3 %ifdef m8 SWAP 1, 8 SWAP 2, 8 %else mova m1, q0backup mova q0backup, m2 ; store q0 %endif SBUTTERFLY dq, 1, 5, 2 ; p1/p0 %ifdef m12 SWAP 5, 12 %else mova p0backup, m5 ; store p0 %endif SWAP 1, 4 SWAP 2, 4 SWAP 6, 3 SWAP 5, 3 %endif ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1 mova m4, m1 SWAP 4, 1 psubusb m4, m0 ; p2-p3 psubusb m0, m1 ; p3-p2 por m0, m4 ; abs(p3-p2) mova m4, m2 SWAP 4, 2 psubusb m4, m1 ; p1-p2 psubusb m1, m2 ; p2-p1 por m1, m4 ; abs(p2-p1) mova m4, m6 SWAP 4, 6 psubusb m4, m7 ; q2-q3 psubusb m7, m6 ; q3-q2 por m7, m4 ; abs(q3-q2) mova m4, m5 SWAP 4, 5 psubusb m4, m6 ; q1-q2 psubusb m6, m5 ; q2-q1 por m6, m4 ; abs(q2-q1) %ifidn %1, mmx mova m4, flim_I pxor m3, m3 psubusb m0, m4 psubusb m1, m4 psubusb m7, m4 psubusb m6, m4 pcmpeqb m0, m3 ; abs(p3-p2) <= I pcmpeqb m1, m3 ; abs(p2-p1) <= I pcmpeqb m7, m3 ; abs(q3-q2) <= I pcmpeqb m6, m3 ; abs(q2-q1) <= I pand m0, m1 pand m7, m6 pand m0, m7 %else ; mmxext/sse2 pmaxub m0, m1 pmaxub m6, m7 pmaxub m0, m6 %endif ; normal_limit and high_edge_variance for p1-p0, q1-q0 SWAP 7, 3 ; now m7 is zero %ifidn %2, v movrow m3, [dst_reg +mstride_reg] ; p0 %if mmsize == 16 && %4 == 8 movhps m3, [dst8_reg+mstride_reg] %endif %elifdef m12 SWAP 3, 12 %else mova m3, p0backup %endif mova m1, m2 SWAP 1, 2 mova m6, m3 SWAP 3, 6 psubusb m1, m3 ; p1-p0 psubusb m6, m2 ; p0-p1 por m1, m6 ; abs(p1-p0) %ifidn %1, mmx mova m6, m1 psubusb m1, m4 psubusb m6, hev_thr pcmpeqb m1, m7 ; abs(p1-p0) <= I pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh pand m0, m1 mova mask_res, m6 %else ; mmxext/sse2 pmaxub m0, m1 ; max_I SWAP 1, 4 ; max_hev_thresh %endif SWAP 6, 4 ; now m6 is I %ifidn %2, v movrow m4, [dst_reg] ; q0 %if mmsize == 16 && %4 == 8 movhps m4, [dst8_reg] %endif %elifdef m8 SWAP 4, 8 %else mova m4, q0backup %endif mova m1, m4 SWAP 1, 4 mova m7, m5 SWAP 7, 5 psubusb m1, m5 ; q0-q1 psubusb m7, m4 ; q1-q0 por m1, m7 ; abs(q1-q0) %ifidn %1, mmx mova m7, m1 psubusb m1, m6 psubusb m7, hev_thr pxor m6, m6 pcmpeqb m1, m6 ; abs(q1-q0) <= I pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh mova m6, mask_res pand m0, m1 ; abs([pq][321]-[pq][210]) <= I pand m6, m7 %else ; mmxext/sse2 pxor m7, m7 pmaxub m0, m1 pmaxub m6, m1 psubusb m0, flim_I psubusb m6, hev_thr pcmpeqb m0, m7 ; max(abs(..)) <= I pcmpeqb m6, m7 ; !(max(abs..) > thresh) %endif %ifdef m12 SWAP 6, 12 %else mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t) %endif ; simple_limit mova m1, m3 SWAP 1, 3 mova m6, m4 ; keep copies of p0/q0 around for later use SWAP 6, 4 psubusb m1, m4 ; p0-q0 psubusb m6, m3 ; q0-p0 por m1, m6 ; abs(q0-p0) paddusb m1, m1 ; m1=2*abs(q0-p0) mova m7, m2 SWAP 7, 2 mova m6, m5 SWAP 6, 5 psubusb m7, m5 ; p1-q1 psubusb m6, m2 ; q1-p1 por m7, m6 ; abs(q1-p1) pxor m6, m6 pand m7, [pb_FE] psrlq m7, 1 ; abs(q1-p1)/2 paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2 psubusb m7, flim_E pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E pand m0, m7 ; normal_limit result ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask %ifdef m8 ; x86-64 && sse2 mova m8, [pb_80] %define pb_80_var m8 %else ; x86-32 or mmx/mmxext %define pb_80_var [pb_80] %endif mova m1, m4 mova m7, m3 pxor m1, pb_80_var pxor m7, pb_80_var psubsb m1, m7 ; (signed) q0-p0 mova m6, m2 mova m7, m5 pxor m6, pb_80_var pxor m7, pb_80_var psubsb m6, m7 ; (signed) p1-q1 mova m7, mask_res pandn m7, m6 paddsb m7, m1 paddsb m7, m1 paddsb m7, m1 ; 3*(q0-p0)+is4tap?(p1-q1) pand m7, m0 mova m1, [pb_F8] mova m6, m7 paddsb m7, [pb_3] paddsb m6, [pb_4] pand m7, m1 pand m6, m1 pxor m1, m1 pxor m0, m0 pcmpgtb m1, m7 psubb m0, m7 psrlq m7, 3 ; +f2 psrlq m0, 3 ; -f2 pand m0, m1 pandn m1, m7 psubusb m3, m0 paddusb m3, m1 ; p0+f2 pxor m1, m1 pxor m0, m0 pcmpgtb m0, m6 psubb m1, m6 psrlq m6, 3 ; +f1 psrlq m1, 3 ; -f1 pand m1, m0 pandn m0, m6 psubusb m4, m0 paddusb m4, m1 ; q0-f1 %ifdef m12 SWAP 6, 12 %else mova m6, mask_res %endif %ifidn %1, mmx mova m7, [pb_1] %else ; mmxext/sse2 pxor m7, m7 %endif pand m0, m6 pand m1, m6 %ifidn %1, mmx paddusb m0, m7 pand m1, [pb_FE] pandn m7, m0 psrlq m1, 1 psrlq m7, 1 SWAP 0, 7 %else ; mmxext/sse2 psubusb m1, [pb_1] pavgb m0, m7 ; a pavgb m1, m7 ; -a %endif psubusb m5, m0 psubusb m2, m1 paddusb m5, m1 ; q1-a paddusb m2, m0 ; p1+a ; store %ifidn %2, v movrow [dst_reg +mstride_reg*2], m2 movrow [dst_reg +mstride_reg ], m3 movrow [dst_reg], m4 movrow [dst_reg + stride_reg ], m5 %if mmsize == 16 && %4 == 8 movhps [dst8_reg+mstride_reg*2], m2 movhps [dst8_reg+mstride_reg ], m3 movhps [dst8_reg], m4 movhps [dst8_reg+ stride_reg ], m5 %endif %else ; h add dst_reg, 2 add dst2_reg, 2 ; 4x8/16 transpose TRANSPOSE4x4B 2, 3, 4, 5, 6 %if mmsize == 8 ; mmx/mmxext (h) WRITE_4x2D 2, 3, 4, 5, dst_reg, dst2_reg, mstride_reg, stride_reg %else ; sse2 (h) lea dst8_reg, [dst8_reg+mstride_reg+2] WRITE_4x4D 2, 3, 4, 5, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4 %endif %endif %if mmsize == 8 %if %4 == 8 ; chroma %ifidn %2, h sub dst_reg, 2 %endif cmp dst_reg, dst8_reg mov dst_reg, dst8_reg jnz .next8px %else %ifidn %2, h lea dst_reg, [dst_reg + stride_reg*8-2] %else ; v add dst_reg, 8 %endif dec cnt_reg jg .next8px %endif %endif %ifndef m8 ; sse2 on x86-32 or mmx/mmxext mov rsp, stack_reg ; restore stack pointer %endif RET %endmacro INIT_MMX %define SPLATB_REG SPLATB_REG_MMX INNER_LOOPFILTER mmx, v, 6, 16, 0 INNER_LOOPFILTER mmx, h, 6, 16, 0 INNER_LOOPFILTER mmx, v, 6, 8, 0 INNER_LOOPFILTER mmx, h, 6, 8, 0 %define SPLATB_REG SPLATB_REG_MMXEXT INNER_LOOPFILTER mmxext, v, 6, 16, 0 INNER_LOOPFILTER mmxext, h, 6, 16, 0 INNER_LOOPFILTER mmxext, v, 6, 8, 0 INNER_LOOPFILTER mmxext, h, 6, 8, 0 INIT_XMM %define SPLATB_REG SPLATB_REG_SSE2 INNER_LOOPFILTER sse2, v, 5, 16, 13 %ifdef m8 INNER_LOOPFILTER sse2, h, 5, 16, 13 %else INNER_LOOPFILTER sse2, h, 6, 16, 13 %endif INNER_LOOPFILTER sse2, v, 6, 8, 13 INNER_LOOPFILTER sse2, h, 6, 8, 13 %define SPLATB_REG SPLATB_REG_SSSE3 INNER_LOOPFILTER ssse3, v, 5, 16, 13 %ifdef m8 INNER_LOOPFILTER ssse3, h, 5, 16, 13 %else INNER_LOOPFILTER ssse3, h, 6, 16, 13 %endif INNER_LOOPFILTER ssse3, v, 6, 8, 13 INNER_LOOPFILTER ssse3, h, 6, 8, 13 ;----------------------------------------------------------------------------- ; void vp8_h/v_loop_filter<size>_mbedge_<opt>(uint8_t *dst, [uint8_t *v,] int stride, ; int flimE, int flimI, int hev_thr); ;----------------------------------------------------------------------------- %macro MBEDGE_LOOPFILTER 5 %if %4 == 8 ; chroma cglobal vp8_%2_loop_filter8uv_mbedge_%1, 6, %3, %5 %define dst8_reg r1 %define mstride_reg r2 %define E_reg r3 %define I_reg r4 %define hev_thr_reg r5 %else ; luma cglobal vp8_%2_loop_filter16y_mbedge_%1, 5, %3, %5 %define mstride_reg r1 %define E_reg r2 %define I_reg r3 %define hev_thr_reg r4 %ifdef m8 ; x86-64, sse2 %define dst8_reg r4 %elif mmsize == 16 ; x86-32, sse2 %define dst8_reg r5 %else ; x86-32, mmx/mmxext %define cnt_reg r5 %endif %endif %define dst_reg r0 %define stride_reg E_reg %define dst2_reg I_reg %ifndef m8 %define stack_reg hev_thr_reg %endif %define ssse3_or_higher 0 %ifnidn %1, sse2 %if mmsize == 16 %define ssse3_or_higher 1 %endif %endif %if ssse3_or_higher pxor m7, m7 %endif %ifndef m8 ; mmx/mmxext or sse2 on x86-32 ; splat function arguments SPLATB_REG m0, E_reg, m7 ; E SPLATB_REG m1, I_reg, m7 ; I SPLATB_REG m2, hev_thr_reg, m7 ; hev_thresh ; align stack mov stack_reg, rsp ; backup stack pointer and rsp, ~(mmsize-1) ; align stack %if mmsize == 16 sub rsp, mmsize * 7 %else sub rsp, mmsize * 8 ; stack layout: [0]=E, [1]=I, [2]=hev_thr ; [3]=hev() result ; [4]=filter tmp result ; [5]/[6] = p2/q2 backup ; [7]=lim_res sign result %endif %define flim_E [rsp] %define flim_I [rsp+mmsize] %define hev_thr [rsp+mmsize*2] %define mask_res [rsp+mmsize*3] %define lim_res [rsp+mmsize*4] %define p0backup [rsp+mmsize*3] %define q0backup [rsp+mmsize*4] %define p2backup [rsp+mmsize*5] %define q2backup [rsp+mmsize*6] %if mmsize == 16 %define lim_sign [rsp] %else %define lim_sign [rsp+mmsize*7] %endif mova flim_E, m0 mova flim_I, m1 mova hev_thr, m2 %else ; sse2 on x86-64 %define flim_E m9 %define flim_I m10 %define hev_thr m11 %define mask_res m12 %define lim_res m8 %define p0backup m12 %define q0backup m8 %define p2backup m13 %define q2backup m14 %define lim_sign m9 ; splat function arguments SPLATB_REG flim_E, E_reg, m7 ; E SPLATB_REG flim_I, I_reg, m7 ; I SPLATB_REG hev_thr, hev_thr_reg, m7 ; hev_thresh %endif %if mmsize == 8 && %4 == 16 ; mmx/mmxext mov cnt_reg, 2 %endif mov stride_reg, mstride_reg neg mstride_reg %ifidn %2, h lea dst_reg, [dst_reg + stride_reg*4-4] %if %4 == 8 lea dst8_reg, [dst8_reg+ stride_reg*4-4] %endif %endif %if mmsize == 8 .next8px %endif ; read lea dst2_reg, [dst_reg + stride_reg] %ifidn %2, v %if %4 == 8 && mmsize == 16 %define movrow movh %else %define movrow mova %endif movrow m0, [dst_reg +mstride_reg*4] ; p3 movrow m1, [dst2_reg+mstride_reg*4] ; p2 movrow m2, [dst_reg +mstride_reg*2] ; p1 movrow m5, [dst2_reg] ; q1 movrow m6, [dst2_reg+ stride_reg] ; q2 movrow m7, [dst2_reg+ stride_reg*2] ; q3 %if mmsize == 16 && %4 == 8 movhps m0, [dst8_reg+mstride_reg*4] movhps m2, [dst8_reg+mstride_reg*2] add dst8_reg, stride_reg movhps m1, [dst8_reg+mstride_reg*4] movhps m5, [dst8_reg] movhps m6, [dst8_reg+ stride_reg] movhps m7, [dst8_reg+ stride_reg*2] add dst8_reg, mstride_reg %endif %elif mmsize == 8 ; mmx/mmxext (h) ; read 8 rows of 8px each movu m0, [dst_reg +mstride_reg*4] movu m1, [dst2_reg+mstride_reg*4] movu m2, [dst_reg +mstride_reg*2] movu m3, [dst_reg +mstride_reg] movu m4, [dst_reg] movu m5, [dst2_reg] movu m6, [dst2_reg+ stride_reg] ; 8x8 transpose TRANSPOSE4x4B 0, 1, 2, 3, 7 mova q0backup, m1 movu m7, [dst2_reg+ stride_reg*2] TRANSPOSE4x4B 4, 5, 6, 7, 1 SBUTTERFLY dq, 0, 4, 1 ; p3/p2 SBUTTERFLY dq, 2, 6, 1 ; q0/q1 SBUTTERFLY dq, 3, 7, 1 ; q2/q3 mova m1, q0backup mova q0backup, m2 ; store q0 SBUTTERFLY dq, 1, 5, 2 ; p1/p0 mova p0backup, m5 ; store p0 SWAP 1, 4 SWAP 2, 4 SWAP 6, 3 SWAP 5, 3 %else ; sse2 (h) %if %4 == 16 lea dst8_reg, [dst_reg + stride_reg*8] %endif ; read 16 rows of 8px each, interleave movh m0, [dst_reg +mstride_reg*4] movh m1, [dst8_reg+mstride_reg*4] movh m2, [dst_reg +mstride_reg*2] movh m5, [dst8_reg+mstride_reg*2] movh m3, [dst_reg +mstride_reg] movh m6, [dst8_reg+mstride_reg] movh m4, [dst_reg] movh m7, [dst8_reg] punpcklbw m0, m1 ; A/I punpcklbw m2, m5 ; C/K punpcklbw m3, m6 ; D/L punpcklbw m4, m7 ; E/M add dst8_reg, stride_reg movh m1, [dst2_reg+mstride_reg*4] movh m6, [dst8_reg+mstride_reg*4] movh m5, [dst2_reg] movh m7, [dst8_reg] punpcklbw m1, m6 ; B/J punpcklbw m5, m7 ; F/N movh m6, [dst2_reg+ stride_reg] movh m7, [dst8_reg+ stride_reg] punpcklbw m6, m7 ; G/O ; 8x16 transpose TRANSPOSE4x4B 0, 1, 2, 3, 7 %ifdef m8 SWAP 1, 8 %else mova q0backup, m1 %endif movh m7, [dst2_reg+ stride_reg*2] movh m1, [dst8_reg+ stride_reg*2] punpcklbw m7, m1 ; H/P TRANSPOSE4x4B 4, 5, 6, 7, 1 SBUTTERFLY dq, 0, 4, 1 ; p3/p2 SBUTTERFLY dq, 2, 6, 1 ; q0/q1 SBUTTERFLY dq, 3, 7, 1 ; q2/q3 %ifdef m8 SWAP 1, 8 SWAP 2, 8 %else mova m1, q0backup mova q0backup, m2 ; store q0 %endif SBUTTERFLY dq, 1, 5, 2 ; p1/p0 %ifdef m12 SWAP 5, 12 %else mova p0backup, m5 ; store p0 %endif SWAP 1, 4 SWAP 2, 4 SWAP 6, 3 SWAP 5, 3 %endif ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1 mova m4, m1 SWAP 4, 1 psubusb m4, m0 ; p2-p3 psubusb m0, m1 ; p3-p2 por m0, m4 ; abs(p3-p2) mova m4, m2 SWAP 4, 2 psubusb m4, m1 ; p1-p2 mova p2backup, m1 psubusb m1, m2 ; p2-p1 por m1, m4 ; abs(p2-p1) mova m4, m6 SWAP 4, 6 psubusb m4, m7 ; q2-q3 psubusb m7, m6 ; q3-q2 por m7, m4 ; abs(q3-q2) mova m4, m5 SWAP 4, 5 psubusb m4, m6 ; q1-q2 mova q2backup, m6 psubusb m6, m5 ; q2-q1 por m6, m4 ; abs(q2-q1) %ifidn %1, mmx mova m4, flim_I pxor m3, m3 psubusb m0, m4 psubusb m1, m4 psubusb m7, m4 psubusb m6, m4 pcmpeqb m0, m3 ; abs(p3-p2) <= I pcmpeqb m1, m3 ; abs(p2-p1) <= I pcmpeqb m7, m3 ; abs(q3-q2) <= I pcmpeqb m6, m3 ; abs(q2-q1) <= I pand m0, m1 pand m7, m6 pand m0, m7 %else ; mmxext/sse2 pmaxub m0, m1 pmaxub m6, m7 pmaxub m0, m6 %endif ; normal_limit and high_edge_variance for p1-p0, q1-q0 SWAP 7, 3 ; now m7 is zero %ifidn %2, v movrow m3, [dst_reg +mstride_reg] ; p0 %if mmsize == 16 && %4 == 8 movhps m3, [dst8_reg+mstride_reg] %endif %elifdef m12 SWAP 3, 12 %else mova m3, p0backup %endif mova m1, m2 SWAP 1, 2 mova m6, m3 SWAP 3, 6 psubusb m1, m3 ; p1-p0 psubusb m6, m2 ; p0-p1 por m1, m6 ; abs(p1-p0) %ifidn %1, mmx mova m6, m1 psubusb m1, m4 psubusb m6, hev_thr pcmpeqb m1, m7 ; abs(p1-p0) <= I pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh pand m0, m1 mova mask_res, m6 %else ; mmxext/sse2 pmaxub m0, m1 ; max_I SWAP 1, 4 ; max_hev_thresh %endif SWAP 6, 4 ; now m6 is I %ifidn %2, v movrow m4, [dst_reg] ; q0 %if mmsize == 16 && %4 == 8 movhps m4, [dst8_reg] %endif %elifdef m8 SWAP 4, 8 %else mova m4, q0backup %endif mova m1, m4 SWAP 1, 4 mova m7, m5 SWAP 7, 5 psubusb m1, m5 ; q0-q1 psubusb m7, m4 ; q1-q0 por m1, m7 ; abs(q1-q0) %ifidn %1, mmx mova m7, m1 psubusb m1, m6 psubusb m7, hev_thr pxor m6, m6 pcmpeqb m1, m6 ; abs(q1-q0) <= I pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh mova m6, mask_res pand m0, m1 ; abs([pq][321]-[pq][210]) <= I pand m6, m7 %else ; mmxext/sse2 pxor m7, m7 pmaxub m0, m1 pmaxub m6, m1 psubusb m0, flim_I psubusb m6, hev_thr pcmpeqb m0, m7 ; max(abs(..)) <= I pcmpeqb m6, m7 ; !(max(abs..) > thresh) %endif %ifdef m12 SWAP 6, 12 %else mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t) %endif ; simple_limit mova m1, m3 SWAP 1, 3 mova m6, m4 ; keep copies of p0/q0 around for later use SWAP 6, 4 psubusb m1, m4 ; p0-q0 psubusb m6, m3 ; q0-p0 por m1, m6 ; abs(q0-p0) paddusb m1, m1 ; m1=2*abs(q0-p0) mova m7, m2 SWAP 7, 2 mova m6, m5 SWAP 6, 5 psubusb m7, m5 ; p1-q1 psubusb m6, m2 ; q1-p1 por m7, m6 ; abs(q1-p1) pxor m6, m6 pand m7, [pb_FE] psrlq m7, 1 ; abs(q1-p1)/2 paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2 psubusb m7, flim_E pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E pand m0, m7 ; normal_limit result ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask %ifdef m8 ; x86-64 && sse2 mova m8, [pb_80] %define pb_80_var m8 %else ; x86-32 or mmx/mmxext %define pb_80_var [pb_80] %endif mova m1, m4 mova m7, m3 pxor m1, pb_80_var pxor m7, pb_80_var psubsb m1, m7 ; (signed) q0-p0 mova m6, m2 mova m7, m5 pxor m6, pb_80_var pxor m7, pb_80_var psubsb m6, m7 ; (signed) p1-q1 mova m7, mask_res paddsb m6, m1 paddsb m6, m1 paddsb m6, m1 pand m6, m0 %ifdef m8 mova lim_res, m6 ; 3*(qp-p0)+(p1-q1) masked for filter_mbedge pand lim_res, m7 %else mova m0, m6 pand m0, m7 mova lim_res, m0 %endif pandn m7, m6 ; 3*(q0-p0)+(p1-q1) masked for filter_common mova m1, [pb_F8] mova m6, m7 paddsb m7, [pb_3] paddsb m6, [pb_4] pand m7, m1 pand m6, m1 pxor m1, m1 pxor m0, m0 pcmpgtb m1, m7 psubb m0, m7 psrlq m7, 3 ; +f2 psrlq m0, 3 ; -f2 pand m0, m1 pandn m1, m7 psubusb m3, m0 paddusb m3, m1 ; p0+f2 pxor m1, m1 pxor m0, m0 pcmpgtb m0, m6 psubb m1, m6 psrlq m6, 3 ; +f1 psrlq m1, 3 ; -f1 pand m1, m0 pandn m0, m6 psubusb m4, m0 paddusb m4, m1 ; q0-f1 ; filter_mbedge (m2-m5 = p1-q1; lim_res carries w) %if ssse3_or_higher mova m7, [pb_1] %else mova m7, [pw_63] %endif %ifdef m8 SWAP 1, 8 %else mova m1, lim_res %endif pxor m0, m0 mova m6, m1 pcmpgtb m0, m1 ; which are negative %if ssse3_or_higher punpcklbw m6, m7 ; interleave with "1" for rounding punpckhbw m1, m7 %else punpcklbw m6, m0 ; signed byte->word punpckhbw m1, m0 %endif mova lim_sign, m0 %if ssse3_or_higher mova m7, [pb_27_63] %ifndef m8 mova lim_res, m1 %endif %ifdef m10 SWAP 0, 10 ; don't lose lim_sign copy %endif mova m0, m7 pmaddubsw m7, m6 SWAP 6, 7 pmaddubsw m0, m1 SWAP 1, 0 %ifdef m10 SWAP 0, 10 %else mova m0, lim_sign %endif %else mova mask_res, m6 ; backup for later in filter mova lim_res, m1 pmullw m6, [pw_27] pmullw m1, [pw_27] paddw m6, m7 paddw m1, m7 %endif psraw m6, 7 psraw m1, 7 packsswb m6, m1 ; a0 pxor m1, m1 psubb m1, m6 pand m1, m0 ; -a0 pandn m0, m6 ; +a0 %if ssse3_or_higher mova m6, [pb_18_63] ; pipelining %endif psubusb m3, m1 paddusb m4, m1 paddusb m3, m0 ; p0+a0 psubusb m4, m0 ; q0-a0 %if ssse3_or_higher SWAP 6, 7 %ifdef m10 SWAP 1, 10 %else mova m1, lim_res %endif mova m0, m7 pmaddubsw m7, m6 SWAP 6, 7 pmaddubsw m0, m1 SWAP 1, 0 %ifdef m10 SWAP 0, 10 %endif mova m0, lim_sign %else mova m6, mask_res mova m1, lim_res pmullw m6, [pw_18] pmullw m1, [pw_18] paddw m6, m7 paddw m1, m7 %endif mova m0, lim_sign psraw m6, 7 psraw m1, 7 packsswb m6, m1 ; a1 pxor m1, m1 psubb m1, m6 pand m1, m0 ; -a1 pandn m0, m6 ; +a1 %if ssse3_or_higher mova m6, [pb_9_63] %endif psubusb m2, m1 paddusb m5, m1 paddusb m2, m0 ; p1+a1 psubusb m5, m0 ; q1-a1 %if ssse3_or_higher SWAP 6, 7 %ifdef m10 SWAP 1, 10 %else mova m1, lim_res %endif mova m0, m7 pmaddubsw m7, m6 SWAP 6, 7 pmaddubsw m0, m1 SWAP 1, 0 %else %ifdef m8 SWAP 6, 12 SWAP 1, 8 %else mova m6, mask_res mova m1, lim_res %endif pmullw m6, [pw_9] pmullw m1, [pw_9] paddw m6, m7 paddw m1, m7 %endif %ifdef m9 SWAP 7, 9 %else mova m7, lim_sign %endif psraw m6, 7 psraw m1, 7 packsswb m6, m1 ; a1 pxor m0, m0 psubb m0, m6 pand m0, m7 ; -a1 pandn m7, m6 ; +a1 %ifdef m8 SWAP 1, 13 SWAP 6, 14 %else mova m1, p2backup mova m6, q2backup %endif psubusb m1, m0 paddusb m6, m0 paddusb m1, m7 ; p1+a1 psubusb m6, m7 ; q1-a1 ; store %ifidn %2, v movrow [dst2_reg+mstride_reg*4], m1 movrow [dst_reg +mstride_reg*2], m2 movrow [dst_reg +mstride_reg ], m3 movrow [dst_reg], m4 movrow [dst2_reg], m5 movrow [dst2_reg+ stride_reg ], m6 %if mmsize == 16 && %4 == 8 add dst8_reg, mstride_reg movhps [dst8_reg+mstride_reg*2], m1 movhps [dst8_reg+mstride_reg ], m2 movhps [dst8_reg], m3 add dst8_reg, stride_reg movhps [dst8_reg], m4 movhps [dst8_reg+ stride_reg ], m5 movhps [dst8_reg+ stride_reg*2], m6 %endif %else ; h inc dst_reg inc dst2_reg ; 4x8/16 transpose TRANSPOSE4x4B 1, 2, 3, 4, 0 SBUTTERFLY bw, 5, 6, 0 %if mmsize == 8 ; mmx/mmxext (h) WRITE_4x2D 1, 2, 3, 4, dst_reg, dst2_reg, mstride_reg, stride_reg add dst_reg, 4 WRITE_2x4W m5, m6, dst2_reg, dst_reg, mstride_reg, stride_reg %else ; sse2 (h) lea dst8_reg, [dst8_reg+mstride_reg+1] WRITE_4x4D 1, 2, 3, 4, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4 lea dst_reg, [dst2_reg+mstride_reg+4] lea dst8_reg, [dst8_reg+mstride_reg+4] %ifidn %1, sse4 add dst2_reg, 4 %endif WRITE_8W m5, dst2_reg, dst_reg, mstride_reg, stride_reg %ifidn %1, sse4 lea dst2_reg, [dst8_reg+ stride_reg] %endif WRITE_8W m6, dst2_reg, dst8_reg, mstride_reg, stride_reg %endif %endif %if mmsize == 8 %if %4 == 8 ; chroma %ifidn %2, h sub dst_reg, 5 %endif cmp dst_reg, dst8_reg mov dst_reg, dst8_reg jnz .next8px %else %ifidn %2, h lea dst_reg, [dst_reg + stride_reg*8-5] %else ; v add dst_reg, 8 %endif dec cnt_reg jg .next8px %endif %endif %ifndef m8 ; sse2 on x86-32 or mmx/mmxext mov rsp, stack_reg ; restore stack pointer %endif RET %endmacro INIT_MMX %define SPLATB_REG SPLATB_REG_MMX MBEDGE_LOOPFILTER mmx, v, 6, 16, 0 MBEDGE_LOOPFILTER mmx, h, 6, 16, 0 MBEDGE_LOOPFILTER mmx, v, 6, 8, 0 MBEDGE_LOOPFILTER mmx, h, 6, 8, 0 %define SPLATB_REG SPLATB_REG_MMXEXT MBEDGE_LOOPFILTER mmxext, v, 6, 16, 0 MBEDGE_LOOPFILTER mmxext, h, 6, 16, 0 MBEDGE_LOOPFILTER mmxext, v, 6, 8, 0 MBEDGE_LOOPFILTER mmxext, h, 6, 8, 0 INIT_XMM %define SPLATB_REG SPLATB_REG_SSE2 %define WRITE_8W WRITE_8W_SSE2 MBEDGE_LOOPFILTER sse2, v, 5, 16, 15 %ifdef m8 MBEDGE_LOOPFILTER sse2, h, 5, 16, 15 %else MBEDGE_LOOPFILTER sse2, h, 6, 16, 15 %endif MBEDGE_LOOPFILTER sse2, v, 6, 8, 15 MBEDGE_LOOPFILTER sse2, h, 6, 8, 15 %define SPLATB_REG SPLATB_REG_SSSE3 MBEDGE_LOOPFILTER ssse3, v, 5, 16, 15 %ifdef m8 MBEDGE_LOOPFILTER ssse3, h, 5, 16, 15 %else MBEDGE_LOOPFILTER ssse3, h, 6, 16, 15 %endif MBEDGE_LOOPFILTER ssse3, v, 6, 8, 15 MBEDGE_LOOPFILTER ssse3, h, 6, 8, 15 %define WRITE_8W WRITE_8W_SSE4 %ifdef m8 MBEDGE_LOOPFILTER sse4, h, 5, 16, 15 %else MBEDGE_LOOPFILTER sse4, h, 6, 16, 15 %endif MBEDGE_LOOPFILTER sse4, h, 6, 8, 15