/* * WavPack lossless audio decoder * Copyright (c) 2006,2011 Konstantin Shishkov * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define BITSTREAM_READER_LE #include "libavutil/channel_layout.h" #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "unary.h" #include "bytestream.h" /** * @file * WavPack lossless audio decoder */ #define WV_MONO 0x00000004 #define WV_JOINT_STEREO 0x00000010 #define WV_FALSE_STEREO 0x40000000 #define WV_HYBRID_MODE 0x00000008 #define WV_HYBRID_SHAPE 0x00000008 #define WV_HYBRID_BITRATE 0x00000200 #define WV_HYBRID_BALANCE 0x00000400 #define WV_FLT_SHIFT_ONES 0x01 #define WV_FLT_SHIFT_SAME 0x02 #define WV_FLT_SHIFT_SENT 0x04 #define WV_FLT_ZERO_SENT 0x08 #define WV_FLT_ZERO_SIGN 0x10 enum WP_ID_Flags { WP_IDF_MASK = 0x1F, WP_IDF_IGNORE = 0x20, WP_IDF_ODD = 0x40, WP_IDF_LONG = 0x80 }; enum WP_ID { WP_ID_DUMMY = 0, WP_ID_ENCINFO, WP_ID_DECTERMS, WP_ID_DECWEIGHTS, WP_ID_DECSAMPLES, WP_ID_ENTROPY, WP_ID_HYBRID, WP_ID_SHAPING, WP_ID_FLOATINFO, WP_ID_INT32INFO, WP_ID_DATA, WP_ID_CORR, WP_ID_EXTRABITS, WP_ID_CHANINFO }; typedef struct SavedContext { int offset; int size; int bits_used; uint32_t crc; } SavedContext; #define MAX_TERMS 16 typedef struct Decorr { int delta; int value; int weightA; int weightB; int samplesA[8]; int samplesB[8]; } Decorr; typedef struct WvChannel { int median[3]; int slow_level, error_limit; int bitrate_acc, bitrate_delta; } WvChannel; typedef struct WavpackFrameContext { AVCodecContext *avctx; int frame_flags; int stereo, stereo_in; int joint; uint32_t CRC; GetBitContext gb; int got_extra_bits; uint32_t crc_extra_bits; GetBitContext gb_extra_bits; int data_size; // in bits int samples; int terms; Decorr decorr[MAX_TERMS]; int zero, one, zeroes; int extra_bits; int and, or, shift; int post_shift; int hybrid, hybrid_bitrate; int hybrid_maxclip, hybrid_minclip; int float_flag; int float_shift; int float_max_exp; WvChannel ch[2]; int pos; SavedContext sc, extra_sc; } WavpackFrameContext; #define WV_MAX_FRAME_DECODERS 14 typedef struct WavpackContext { AVCodecContext *avctx; WavpackFrameContext *fdec[WV_MAX_FRAME_DECODERS]; int fdec_num; int multichannel; int mkv_mode; int block; int samples; int ch_offset; } WavpackContext; // exponent table copied from WavPack source static const uint8_t wp_exp2_table[256] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x03, 0x04, 0x05, 0x06, 0x06, 0x07, 0x08, 0x08, 0x09, 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0e, 0x0f, 0x10, 0x10, 0x11, 0x12, 0x13, 0x13, 0x14, 0x15, 0x16, 0x16, 0x17, 0x18, 0x19, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1d, 0x1e, 0x1f, 0x20, 0x20, 0x21, 0x22, 0x23, 0x24, 0x24, 0x25, 0x26, 0x27, 0x28, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc8, 0xc9, 0xca, 0xcb, 0xcd, 0xce, 0xcf, 0xd0, 0xd2, 0xd3, 0xd4, 0xd6, 0xd7, 0xd8, 0xd9, 0xdb, 0xdc, 0xdd, 0xde, 0xe0, 0xe1, 0xe2, 0xe4, 0xe5, 0xe6, 0xe8, 0xe9, 0xea, 0xec, 0xed, 0xee, 0xf0, 0xf1, 0xf2, 0xf4, 0xf5, 0xf6, 0xf8, 0xf9, 0xfa, 0xfc, 0xfd, 0xff }; static const uint8_t wp_log2_table [] = { 0x00, 0x01, 0x03, 0x04, 0x06, 0x07, 0x09, 0x0a, 0x0b, 0x0d, 0x0e, 0x10, 0x11, 0x12, 0x14, 0x15, 0x16, 0x18, 0x19, 0x1a, 0x1c, 0x1d, 0x1e, 0x20, 0x21, 0x22, 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2c, 0x2d, 0x2e, 0x2f, 0x31, 0x32, 0x33, 0x34, 0x36, 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x41, 0x42, 0x43, 0x44, 0x45, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe4, 0xe5, 0xe6, 0xe7, 0xe7, 0xe8, 0xe9, 0xea, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xee, 0xef, 0xf0, 0xf1, 0xf1, 0xf2, 0xf3, 0xf4, 0xf4, 0xf5, 0xf6, 0xf7, 0xf7, 0xf8, 0xf9, 0xf9, 0xfa, 0xfb, 0xfc, 0xfc, 0xfd, 0xfe, 0xff, 0xff }; static av_always_inline int wp_exp2(int16_t val) { int res, neg = 0; if (val < 0) { val = -val; neg = 1; } res = wp_exp2_table[val & 0xFF] | 0x100; val >>= 8; res = (val > 9) ? (res << (val - 9)) : (res >> (9 - val)); return neg ? -res : res; } static av_always_inline int wp_log2(int32_t val) { int bits; if (!val) return 0; if (val == 1) return 256; val += val >> 9; bits = av_log2(val) + 1; if (bits < 9) return (bits << 8) + wp_log2_table[(val << (9 - bits)) & 0xFF]; else return (bits << 8) + wp_log2_table[(val >> (bits - 9)) & 0xFF]; } #define LEVEL_DECAY(a) ((a + 0x80) >> 8) // macros for manipulating median values #define GET_MED(n) ((c->median[n] >> 4) + 1) #define DEC_MED(n) c->median[n] -= ((c->median[n] + (128 >> n) - 2) / (128 >> n)) * 2 #define INC_MED(n) c->median[n] += ((c->median[n] + (128 >> n) ) / (128 >> n)) * 5 // macros for applying weight #define UPDATE_WEIGHT_CLIP(weight, delta, samples, in) \ if (samples && in) { \ if ((samples ^ in) < 0) { \ weight -= delta; \ if (weight < -1024) \ weight = -1024; \ } else { \ weight += delta; \ if (weight > 1024) \ weight = 1024; \ } \ } static av_always_inline int get_tail(GetBitContext *gb, int k) { int p, e, res; if (k < 1) return 0; p = av_log2(k); e = (1 << (p + 1)) - k - 1; res = p ? get_bits(gb, p) : 0; if (res >= e) res = (res << 1) - e + get_bits1(gb); return res; } static void update_error_limit(WavpackFrameContext *ctx) { int i, br[2], sl[2]; for (i = 0; i <= ctx->stereo_in; i++) { ctx->ch[i].bitrate_acc += ctx->ch[i].bitrate_delta; br[i] = ctx->ch[i].bitrate_acc >> 16; sl[i] = LEVEL_DECAY(ctx->ch[i].slow_level); } if (ctx->stereo_in && ctx->hybrid_bitrate) { int balance = (sl[1] - sl[0] + br[1] + 1) >> 1; if (balance > br[0]) { br[1] = br[0] << 1; br[0] = 0; } else if (-balance > br[0]) { br[0] <<= 1; br[1] = 0; } else { br[1] = br[0] + balance; br[0] = br[0] - balance; } } for (i = 0; i <= ctx->stereo_in; i++) { if (ctx->hybrid_bitrate) { if (sl[i] - br[i] > -0x100) ctx->ch[i].error_limit = wp_exp2(sl[i] - br[i] + 0x100); else ctx->ch[i].error_limit = 0; } else { ctx->ch[i].error_limit = wp_exp2(br[i]); } } } static int wv_get_value(WavpackFrameContext *ctx, GetBitContext *gb, int channel, int *last) { int t, t2; int sign, base, add, ret; WvChannel *c = &ctx->ch[channel]; *last = 0; if ((ctx->ch[0].median[0] < 2U) && (ctx->ch[1].median[0] < 2U) && !ctx->zero && !ctx->one) { if (ctx->zeroes) { ctx->zeroes--; if (ctx->zeroes) { c->slow_level -= LEVEL_DECAY(c->slow_level); return 0; } } else { t = get_unary_0_33(gb); if (t >= 2) { if (get_bits_left(gb) < t - 1) goto error; t = get_bits(gb, t - 1) | (1 << (t - 1)); } else { if (get_bits_left(gb) < 0) goto error; } ctx->zeroes = t; if (ctx->zeroes) { memset(ctx->ch[0].median, 0, sizeof(ctx->ch[0].median)); memset(ctx->ch[1].median, 0, sizeof(ctx->ch[1].median)); c->slow_level -= LEVEL_DECAY(c->slow_level); return 0; } } } if (ctx->zero) { t = 0; ctx->zero = 0; } else { t = get_unary_0_33(gb); if (get_bits_left(gb) < 0) goto error; if (t == 16) { t2 = get_unary_0_33(gb); if (t2 < 2) { if (get_bits_left(gb) < 0) goto error; t += t2; } else { if (get_bits_left(gb) < t2 - 1) goto error; t += get_bits(gb, t2 - 1) | (1 << (t2 - 1)); } } if (ctx->one) { ctx->one = t & 1; t = (t >> 1) + 1; } else { ctx->one = t & 1; t >>= 1; } ctx->zero = !ctx->one; } if (ctx->hybrid && !channel) update_error_limit(ctx); if (!t) { base = 0; add = GET_MED(0) - 1; DEC_MED(0); } else if (t == 1) { base = GET_MED(0); add = GET_MED(1) - 1; INC_MED(0); DEC_MED(1); } else if (t == 2) { base = GET_MED(0) + GET_MED(1); add = GET_MED(2) - 1; INC_MED(0); INC_MED(1); DEC_MED(2); } else { base = GET_MED(0) + GET_MED(1) + GET_MED(2) * (t - 2); add = GET_MED(2) - 1; INC_MED(0); INC_MED(1); INC_MED(2); } if (!c->error_limit) { ret = base + get_tail(gb, add); if (get_bits_left(gb) <= 0) goto error; } else { int mid = (base * 2 + add + 1) >> 1; while (add > c->error_limit) { if (get_bits_left(gb) <= 0) goto error; if (get_bits1(gb)) { add -= (mid - base); base = mid; } else add = mid - base - 1; mid = (base * 2 + add + 1) >> 1; } ret = mid; } sign = get_bits1(gb); if (ctx->hybrid_bitrate) c->slow_level += wp_log2(ret) - LEVEL_DECAY(c->slow_level); return sign ? ~ret : ret; error: *last = 1; return 0; } static inline int wv_get_value_integer(WavpackFrameContext *s, uint32_t *crc, int S) { int bit; if (s->extra_bits) { S <<= s->extra_bits; if (s->got_extra_bits && get_bits_left(&s->gb_extra_bits) >= s->extra_bits) { S |= get_bits(&s->gb_extra_bits, s->extra_bits); *crc = *crc * 9 + (S & 0xffff) * 3 + ((unsigned)S >> 16); } } bit = (S & s->and) | s->or; bit = ((S + bit) << s->shift) - bit; if (s->hybrid) bit = av_clip(bit, s->hybrid_minclip, s->hybrid_maxclip); return bit << s->post_shift; } static float wv_get_value_float(WavpackFrameContext *s, uint32_t *crc, int S) { union { float f; uint32_t u; } value; unsigned int sign; int exp = s->float_max_exp; if (s->got_extra_bits) { const int max_bits = 1 + 23 + 8 + 1; const int left_bits = get_bits_left(&s->gb_extra_bits); if (left_bits + 8 * FF_INPUT_BUFFER_PADDING_SIZE < max_bits) return 0.0; } if (S) { S <<= s->float_shift; sign = S < 0; if (sign) S = -S; if (S >= 0x1000000) { if (s->got_extra_bits && get_bits1(&s->gb_extra_bits)) S = get_bits(&s->gb_extra_bits, 23); else S = 0; exp = 255; } else if (exp) { int shift = 23 - av_log2(S); exp = s->float_max_exp; if (exp <= shift) shift = --exp; exp -= shift; if (shift) { S <<= shift; if ((s->float_flag & WV_FLT_SHIFT_ONES) || (s->got_extra_bits && (s->float_flag & WV_FLT_SHIFT_SAME) && get_bits1(&s->gb_extra_bits))) { S |= (1 << shift) - 1; } else if (s->got_extra_bits && (s->float_flag & WV_FLT_SHIFT_SENT)) { S |= get_bits(&s->gb_extra_bits, shift); } } } else { exp = s->float_max_exp; } S &= 0x7fffff; } else { sign = 0; exp = 0; if (s->got_extra_bits && (s->float_flag & WV_FLT_ZERO_SENT)) { if (get_bits1(&s->gb_extra_bits)) { S = get_bits(&s->gb_extra_bits, 23); if (s->float_max_exp >= 25) exp = get_bits(&s->gb_extra_bits, 8); sign = get_bits1(&s->gb_extra_bits); } else { if (s->float_flag & WV_FLT_ZERO_SIGN) sign = get_bits1(&s->gb_extra_bits); } } } *crc = *crc * 27 + S * 9 + exp * 3 + sign; value.u = (sign << 31) | (exp << 23) | S; return value.f; } static void wv_reset_saved_context(WavpackFrameContext *s) { s->pos = 0; s->sc.crc = s->extra_sc.crc = 0xFFFFFFFF; } static inline int wv_check_crc(WavpackFrameContext *s, uint32_t crc, uint32_t crc_extra_bits) { if (crc != s->CRC) { av_log(s->avctx, AV_LOG_ERROR, "CRC error\n"); return AVERROR_INVALIDDATA; } if (s->got_extra_bits && crc_extra_bits != s->crc_extra_bits) { av_log(s->avctx, AV_LOG_ERROR, "Extra bits CRC error\n"); return AVERROR_INVALIDDATA; } return 0; } static inline int wv_unpack_stereo(WavpackFrameContext *s, GetBitContext *gb, void *dst, const int type) { int i, j, count = 0; int last, t; int A, B, L, L2, R, R2; int pos = s->pos; uint32_t crc = s->sc.crc; uint32_t crc_extra_bits = s->extra_sc.crc; int16_t *dst16 = dst; int32_t *dst32 = dst; float *dstfl = dst; const int channel_pad = s->avctx->channels - 2; s->one = s->zero = s->zeroes = 0; do { L = wv_get_value(s, gb, 0, &last); if (last) break; R = wv_get_value(s, gb, 1, &last); if (last) break; for (i = 0; i < s->terms; i++) { t = s->decorr[i].value; if (t > 0) { if (t > 8) { if (t & 1) { A = 2 * s->decorr[i].samplesA[0] - s->decorr[i].samplesA[1]; B = 2 * s->decorr[i].samplesB[0] - s->decorr[i].samplesB[1]; } else { A = (3 * s->decorr[i].samplesA[0] - s->decorr[i].samplesA[1]) >> 1; B = (3 * s->decorr[i].samplesB[0] - s->decorr[i].samplesB[1]) >> 1; } s->decorr[i].samplesA[1] = s->decorr[i].samplesA[0]; s->decorr[i].samplesB[1] = s->decorr[i].samplesB[0]; j = 0; } else { A = s->decorr[i].samplesA[pos]; B = s->decorr[i].samplesB[pos]; j = (pos + t) & 7; } if (type != AV_SAMPLE_FMT_S16) { L2 = L + ((s->decorr[i].weightA * (int64_t)A + 512) >> 10); R2 = R + ((s->decorr[i].weightB * (int64_t)B + 512) >> 10); } else { L2 = L + ((s->decorr[i].weightA * A + 512) >> 10); R2 = R + ((s->decorr[i].weightB * B + 512) >> 10); } if (A && L) s->decorr[i].weightA -= ((((L ^ A) >> 30) & 2) - 1) * s->decorr[i].delta; if (B && R) s->decorr[i].weightB -= ((((R ^ B) >> 30) & 2) - 1) * s->decorr[i].delta; s->decorr[i].samplesA[j] = L = L2; s->decorr[i].samplesB[j] = R = R2; } else if (t == -1) { if (type != AV_SAMPLE_FMT_S16) L2 = L + ((s->decorr[i].weightA * (int64_t)s->decorr[i].samplesA[0] + 512) >> 10); else L2 = L + ((s->decorr[i].weightA * s->decorr[i].samplesA[0] + 512) >> 10); UPDATE_WEIGHT_CLIP(s->decorr[i].weightA, s->decorr[i].delta, s->decorr[i].samplesA[0], L); L = L2; if (type != AV_SAMPLE_FMT_S16) R2 = R + ((s->decorr[i].weightB * (int64_t)L2 + 512) >> 10); else R2 = R + ((s->decorr[i].weightB * L2 + 512) >> 10); UPDATE_WEIGHT_CLIP(s->decorr[i].weightB, s->decorr[i].delta, L2, R); R = R2; s->decorr[i].samplesA[0] = R; } else { if (type != AV_SAMPLE_FMT_S16) R2 = R + ((s->decorr[i].weightB * (int64_t)s->decorr[i].samplesB[0] + 512) >> 10); else R2 = R + ((s->decorr[i].weightB * s->decorr[i].samplesB[0] + 512) >> 10); UPDATE_WEIGHT_CLIP(s->decorr[i].weightB, s->decorr[i].delta, s->decorr[i].samplesB[0], R); R = R2; if (t == -3) { R2 = s->decorr[i].samplesA[0]; s->decorr[i].samplesA[0] = R; } if (type != AV_SAMPLE_FMT_S16) L2 = L + ((s->decorr[i].weightA * (int64_t)R2 + 512) >> 10); else L2 = L + ((s->decorr[i].weightA * R2 + 512) >> 10); UPDATE_WEIGHT_CLIP(s->decorr[i].weightA, s->decorr[i].delta, R2, L); L = L2; s->decorr[i].samplesB[0] = L; } } pos = (pos + 1) & 7; if (s->joint) L += (R -= (L >> 1)); crc = (crc * 3 + L) * 3 + R; if (type == AV_SAMPLE_FMT_FLT) { *dstfl++ = wv_get_value_float(s, &crc_extra_bits, L); *dstfl++ = wv_get_value_float(s, &crc_extra_bits, R); dstfl += channel_pad; } else if (type == AV_SAMPLE_FMT_S32) { *dst32++ = wv_get_value_integer(s, &crc_extra_bits, L); *dst32++ = wv_get_value_integer(s, &crc_extra_bits, R); dst32 += channel_pad; } else { *dst16++ = wv_get_value_integer(s, &crc_extra_bits, L); *dst16++ = wv_get_value_integer(s, &crc_extra_bits, R); dst16 += channel_pad; } count++; } while (!last && count < s->samples); wv_reset_saved_context(s); if ((s->avctx->err_recognition & AV_EF_CRCCHECK) && wv_check_crc(s, crc, crc_extra_bits)) return AVERROR_INVALIDDATA; return count * 2; } static inline int wv_unpack_mono(WavpackFrameContext *s, GetBitContext *gb, void *dst, const int type) { int i, j, count = 0; int last, t; int A, S, T; int pos = s->pos; uint32_t crc = s->sc.crc; uint32_t crc_extra_bits = s->extra_sc.crc; int16_t *dst16 = dst; int32_t *dst32 = dst; float *dstfl = dst; const int channel_stride = s->avctx->channels; s->one = s->zero = s->zeroes = 0; do { T = wv_get_value(s, gb, 0, &last); S = 0; if (last) break; for (i = 0; i < s->terms; i++) { t = s->decorr[i].value; if (t > 8) { if (t & 1) A = 2 * s->decorr[i].samplesA[0] - s->decorr[i].samplesA[1]; else A = (3 * s->decorr[i].samplesA[0] - s->decorr[i].samplesA[1]) >> 1; s->decorr[i].samplesA[1] = s->decorr[i].samplesA[0]; j = 0; } else { A = s->decorr[i].samplesA[pos]; j = (pos + t) & 7; } if (type != AV_SAMPLE_FMT_S16) S = T + ((s->decorr[i].weightA * (int64_t)A + 512) >> 10); else S = T + ((s->decorr[i].weightA * A + 512) >> 10); if (A && T) s->decorr[i].weightA -= ((((T ^ A) >> 30) & 2) - 1) * s->decorr[i].delta; s->decorr[i].samplesA[j] = T = S; } pos = (pos + 1) & 7; crc = crc * 3 + S; if (type == AV_SAMPLE_FMT_FLT) { *dstfl = wv_get_value_float(s, &crc_extra_bits, S); dstfl += channel_stride; } else if (type == AV_SAMPLE_FMT_S32) { *dst32 = wv_get_value_integer(s, &crc_extra_bits, S); dst32 += channel_stride; } else { *dst16 = wv_get_value_integer(s, &crc_extra_bits, S); dst16 += channel_stride; } count++; } while (!last && count < s->samples); wv_reset_saved_context(s); if ((s->avctx->err_recognition & AV_EF_CRCCHECK) && wv_check_crc(s, crc, crc_extra_bits)) return AVERROR_INVALIDDATA; return count; } static av_cold int wv_alloc_frame_context(WavpackContext *c) { if (c->fdec_num == WV_MAX_FRAME_DECODERS) return -1; c->fdec[c->fdec_num] = av_mallocz(sizeof(**c->fdec)); if (!c->fdec[c->fdec_num]) return -1; c->fdec_num++; c->fdec[c->fdec_num - 1]->avctx = c->avctx; wv_reset_saved_context(c->fdec[c->fdec_num - 1]); return 0; } static av_cold int wavpack_decode_init(AVCodecContext *avctx) { WavpackContext *s = avctx->priv_data; s->avctx = avctx; if (avctx->bits_per_coded_sample <= 16) avctx->sample_fmt = AV_SAMPLE_FMT_S16; else avctx->sample_fmt = AV_SAMPLE_FMT_S32; if (avctx->channels <= 2 && !avctx->channel_layout) avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO; s->multichannel = avctx->channels > 2; /* lavf demuxer does not provide extradata, Matroska stores 0x403 * there, use this to detect decoding mode for multichannel */ s->mkv_mode = 0; if (s->multichannel && avctx->extradata && avctx->extradata_size == 2) { int ver = AV_RL16(avctx->extradata); if (ver >= 0x402 && ver <= 0x410) s->mkv_mode = 1; } s->fdec_num = 0; return 0; } static av_cold int wavpack_decode_end(AVCodecContext *avctx) { WavpackContext *s = avctx->priv_data; int i; for (i = 0; i < s->fdec_num; i++) av_freep(&s->fdec[i]); s->fdec_num = 0; return 0; } static int wavpack_decode_block(AVCodecContext *avctx, int block_no, void *data, int *got_frame_ptr, const uint8_t *buf, int buf_size) { WavpackContext *wc = avctx->priv_data; WavpackFrameContext *s; GetByteContext gb; void *samples = data; int samplecount; int got_terms = 0, got_weights = 0, got_samples = 0, got_entropy = 0, got_bs = 0, got_float = 0, got_hybrid = 0; int i, j, id, size, ssize, weights, t; int bpp, chan, chmask, orig_bpp; if (buf_size == 0) { *got_frame_ptr = 0; return 0; } if (block_no >= wc->fdec_num && wv_alloc_frame_context(wc) < 0) { av_log(avctx, AV_LOG_ERROR, "Error creating frame decode context\n"); return AVERROR_INVALIDDATA; } s = wc->fdec[block_no]; if (!s) { av_log(avctx, AV_LOG_ERROR, "Context for block %d is not present\n", block_no); return AVERROR_INVALIDDATA; } memset(s->decorr, 0, MAX_TERMS * sizeof(Decorr)); memset(s->ch, 0, sizeof(s->ch)); s->extra_bits = 0; s->and = s->or = s->shift = 0; s->got_extra_bits = 0; bytestream2_init(&gb, buf, buf_size); if (!wc->mkv_mode) { s->samples = bytestream2_get_le32(&gb); if (s->samples != wc->samples) return AVERROR_INVALIDDATA; if (!s->samples) { *got_frame_ptr = 0; return 0; } } else { s->samples = wc->samples; } s->frame_flags = bytestream2_get_le32(&gb); bpp = av_get_bytes_per_sample(avctx->sample_fmt); samples = (uint8_t *)samples + bpp * wc->ch_offset; orig_bpp = ((s->frame_flags & 0x03) + 1) << 3; s->stereo = !(s->frame_flags & WV_MONO); s->stereo_in = (s->frame_flags & WV_FALSE_STEREO) ? 0 : s->stereo; s->joint = s->frame_flags & WV_JOINT_STEREO; s->hybrid = s->frame_flags & WV_HYBRID_MODE; s->hybrid_bitrate = s->frame_flags & WV_HYBRID_BITRATE; s->post_shift = bpp * 8 - orig_bpp + ((s->frame_flags >> 13) & 0x1f); s->hybrid_maxclip = ((1LL << (orig_bpp - 1)) - 1); s->hybrid_minclip = ((-1LL << (orig_bpp - 1))); s->CRC = bytestream2_get_le32(&gb); if (wc->mkv_mode) bytestream2_skip(&gb, 4); // skip block size; wc->ch_offset += 1 + s->stereo; // parse metadata blocks while (bytestream2_get_bytes_left(&gb)) { id = bytestream2_get_byte(&gb); size = bytestream2_get_byte(&gb); if (id & WP_IDF_LONG) { size |= (bytestream2_get_byte(&gb)) << 8; size |= (bytestream2_get_byte(&gb)) << 16; } size <<= 1; // size is specified in words ssize = size; if (id & WP_IDF_ODD) size--; if (size < 0) { av_log(avctx, AV_LOG_ERROR, "Got incorrect block %02X with size %i\n", id, size); break; } if (bytestream2_get_bytes_left(&gb) < ssize) { av_log(avctx, AV_LOG_ERROR, "Block size %i is out of bounds\n", size); break; } if (id & WP_IDF_IGNORE) { bytestream2_skip(&gb, ssize); continue; } switch (id & WP_IDF_MASK) { case WP_ID_DECTERMS: if (size > MAX_TERMS) { av_log(avctx, AV_LOG_ERROR, "Too many decorrelation terms\n"); s->terms = 0; bytestream2_skip(&gb, ssize); continue; } s->terms = size; for (i = 0; i < s->terms; i++) { uint8_t val = bytestream2_get_byte(&gb); s->decorr[s->terms - i - 1].value = (val & 0x1F) - 5; s->decorr[s->terms - i - 1].delta = val >> 5; } got_terms = 1; break; case WP_ID_DECWEIGHTS: if (!got_terms) { av_log(avctx, AV_LOG_ERROR, "No decorrelation terms met\n"); continue; } weights = size >> s->stereo_in; if (weights > MAX_TERMS || weights > s->terms) { av_log(avctx, AV_LOG_ERROR, "Too many decorrelation weights\n"); bytestream2_skip(&gb, ssize); continue; } for (i = 0; i < weights; i++) { t = (int8_t)bytestream2_get_byte(&gb); s->decorr[s->terms - i - 1].weightA = t << 3; if (s->decorr[s->terms - i - 1].weightA > 0) s->decorr[s->terms - i - 1].weightA += (s->decorr[s->terms - i - 1].weightA + 64) >> 7; if (s->stereo_in) { t = (int8_t)bytestream2_get_byte(&gb); s->decorr[s->terms - i - 1].weightB = t << 3; if (s->decorr[s->terms - i - 1].weightB > 0) s->decorr[s->terms - i - 1].weightB += (s->decorr[s->terms - i - 1].weightB + 64) >> 7; } } got_weights = 1; break; case WP_ID_DECSAMPLES: if (!got_terms) { av_log(avctx, AV_LOG_ERROR, "No decorrelation terms met\n"); continue; } t = 0; for (i = s->terms - 1; (i >= 0) && (t < size); i--) { if (s->decorr[i].value > 8) { s->decorr[i].samplesA[0] = wp_exp2(bytestream2_get_le16(&gb)); s->decorr[i].samplesA[1] = wp_exp2(bytestream2_get_le16(&gb)); if (s->stereo_in) { s->decorr[i].samplesB[0] = wp_exp2(bytestream2_get_le16(&gb)); s->decorr[i].samplesB[1] = wp_exp2(bytestream2_get_le16(&gb)); t += 4; } t += 4; } else if (s->decorr[i].value < 0) { s->decorr[i].samplesA[0] = wp_exp2(bytestream2_get_le16(&gb)); s->decorr[i].samplesB[0] = wp_exp2(bytestream2_get_le16(&gb)); t += 4; } else { for (j = 0; j < s->decorr[i].value; j++) { s->decorr[i].samplesA[j] = wp_exp2(bytestream2_get_le16(&gb)); if (s->stereo_in) { s->decorr[i].samplesB[j] = wp_exp2(bytestream2_get_le16(&gb)); } } t += s->decorr[i].value * 2 * (s->stereo_in + 1); } } got_samples = 1; break; case WP_ID_ENTROPY: if (size != 6 * (s->stereo_in + 1)) { av_log(avctx, AV_LOG_ERROR, "Entropy vars size should be %i, got %i", 6 * (s->stereo_in + 1), size); bytestream2_skip(&gb, ssize); continue; } for (j = 0; j <= s->stereo_in; j++) for (i = 0; i < 3; i++) { s->ch[j].median[i] = wp_exp2(bytestream2_get_le16(&gb)); } got_entropy = 1; break; case WP_ID_HYBRID: if (s->hybrid_bitrate) { for (i = 0; i <= s->stereo_in; i++) { s->ch[i].slow_level = wp_exp2(bytestream2_get_le16(&gb)); size -= 2; } } for (i = 0; i < (s->stereo_in + 1); i++) { s->ch[i].bitrate_acc = bytestream2_get_le16(&gb) << 16; size -= 2; } if (size > 0) { for (i = 0; i < (s->stereo_in + 1); i++) { s->ch[i].bitrate_delta = wp_exp2((int16_t)bytestream2_get_le16(&gb)); } } else { for (i = 0; i < (s->stereo_in + 1); i++) s->ch[i].bitrate_delta = 0; } got_hybrid = 1; break; case WP_ID_INT32INFO: { uint8_t val[4]; if (size != 4) { av_log(avctx, AV_LOG_ERROR, "Invalid INT32INFO, size = %i\n", size); bytestream2_skip(&gb, ssize - 4); continue; } bytestream2_get_buffer(&gb, val, 4); if (val[0]) { s->extra_bits = val[0]; } else if (val[1]) { s->shift = val[1]; } else if (val[2]) { s->and = s->or = 1; s->shift = val[2]; } else if (val[3]) { s->and = 1; s->shift = val[3]; } /* original WavPack decoder forces 32-bit lossy sound to be treated * as 24-bit one in order to have proper clipping */ if (s->hybrid && bpp == 4 && s->post_shift < 8 && s->shift > 8) { s->post_shift += 8; s->shift -= 8; s->hybrid_maxclip >>= 8; s->hybrid_minclip >>= 8; } break; } case WP_ID_FLOATINFO: if (size != 4) { av_log(avctx, AV_LOG_ERROR, "Invalid FLOATINFO, size = %i\n", size); bytestream2_skip(&gb, ssize); continue; } s->float_flag = bytestream2_get_byte(&gb); s->float_shift = bytestream2_get_byte(&gb); s->float_max_exp = bytestream2_get_byte(&gb); got_float = 1; bytestream2_skip(&gb, 1); break; case WP_ID_DATA: s->sc.offset = bytestream2_tell(&gb); s->sc.size = size * 8; init_get_bits(&s->gb, gb.buffer, size * 8); s->data_size = size * 8; bytestream2_skip(&gb, size); got_bs = 1; break; case WP_ID_EXTRABITS: if (size <= 4) { av_log(avctx, AV_LOG_ERROR, "Invalid EXTRABITS, size = %i\n", size); bytestream2_skip(&gb, size); continue; } s->extra_sc.offset = bytestream2_tell(&gb); s->extra_sc.size = size * 8; init_get_bits(&s->gb_extra_bits, gb.buffer, size * 8); s->crc_extra_bits = get_bits_long(&s->gb_extra_bits, 32); bytestream2_skip(&gb, size); s->got_extra_bits = 1; break; case WP_ID_CHANINFO: if (size <= 1) { av_log(avctx, AV_LOG_ERROR, "Insufficient channel information\n"); return AVERROR_INVALIDDATA; } chan = bytestream2_get_byte(&gb); switch (size - 2) { case 0: chmask = bytestream2_get_byte(&gb); break; case 1: chmask = bytestream2_get_le16(&gb); break; case 2: chmask = bytestream2_get_le24(&gb); break; case 3: chmask = bytestream2_get_le32(&gb);; break; case 5: bytestream2_skip(&gb, 1); chan |= (bytestream2_get_byte(&gb) & 0xF) << 8; chmask = bytestream2_get_le16(&gb); break; default: av_log(avctx, AV_LOG_ERROR, "Invalid channel info size %d\n", size); chan = avctx->channels; chmask = avctx->channel_layout; } if (chan != avctx->channels) { av_log(avctx, AV_LOG_ERROR, "Block reports total %d channels, " "decoder believes it's %d channels\n", chan, avctx->channels); return AVERROR_INVALIDDATA; } if (!avctx->channel_layout) avctx->channel_layout = chmask; break; default: bytestream2_skip(&gb, size); } if (id & WP_IDF_ODD) bytestream2_skip(&gb, 1); } if (!got_terms) { av_log(avctx, AV_LOG_ERROR, "No block with decorrelation terms\n"); return AVERROR_INVALIDDATA; } if (!got_weights) { av_log(avctx, AV_LOG_ERROR, "No block with decorrelation weights\n"); return AVERROR_INVALIDDATA; } if (!got_samples) { av_log(avctx, AV_LOG_ERROR, "No block with decorrelation samples\n"); return AVERROR_INVALIDDATA; } if (!got_entropy) { av_log(avctx, AV_LOG_ERROR, "No block with entropy info\n"); return AVERROR_INVALIDDATA; } if (s->hybrid && !got_hybrid) { av_log(avctx, AV_LOG_ERROR, "Hybrid config not found\n"); return AVERROR_INVALIDDATA; } if (!got_bs) { av_log(avctx, AV_LOG_ERROR, "Packed samples not found\n"); return AVERROR_INVALIDDATA; } if (!got_float && avctx->sample_fmt == AV_SAMPLE_FMT_FLT) { av_log(avctx, AV_LOG_ERROR, "Float information not found\n"); return AVERROR_INVALIDDATA; } if (s->got_extra_bits && avctx->sample_fmt != AV_SAMPLE_FMT_FLT) { const int size = get_bits_left(&s->gb_extra_bits); const int wanted = s->samples * s->extra_bits << s->stereo_in; if (size < wanted) { av_log(avctx, AV_LOG_ERROR, "Too small EXTRABITS\n"); s->got_extra_bits = 0; } } if (s->stereo_in) { if (avctx->sample_fmt == AV_SAMPLE_FMT_S16) samplecount = wv_unpack_stereo(s, &s->gb, samples, AV_SAMPLE_FMT_S16); else if (avctx->sample_fmt == AV_SAMPLE_FMT_S32) samplecount = wv_unpack_stereo(s, &s->gb, samples, AV_SAMPLE_FMT_S32); else samplecount = wv_unpack_stereo(s, &s->gb, samples, AV_SAMPLE_FMT_FLT); if (samplecount < 0) return samplecount; samplecount >>= 1; } else { const int channel_stride = avctx->channels; if (avctx->sample_fmt == AV_SAMPLE_FMT_S16) samplecount = wv_unpack_mono(s, &s->gb, samples, AV_SAMPLE_FMT_S16); else if (avctx->sample_fmt == AV_SAMPLE_FMT_S32) samplecount = wv_unpack_mono(s, &s->gb, samples, AV_SAMPLE_FMT_S32); else samplecount = wv_unpack_mono(s, &s->gb, samples, AV_SAMPLE_FMT_FLT); if (samplecount < 0) return samplecount; if (s->stereo && avctx->sample_fmt == AV_SAMPLE_FMT_S16) { int16_t *dst = (int16_t *)samples + 1; int16_t *src = (int16_t *)samples; int cnt = samplecount; while (cnt--) { *dst = *src; src += channel_stride; dst += channel_stride; } } else if (s->stereo && avctx->sample_fmt == AV_SAMPLE_FMT_S32) { int32_t *dst = (int32_t *)samples + 1; int32_t *src = (int32_t *)samples; int cnt = samplecount; while (cnt--) { *dst = *src; src += channel_stride; dst += channel_stride; } } else if (s->stereo) { float *dst = (float *)samples + 1; float *src = (float *)samples; int cnt = samplecount; while (cnt--) { *dst = *src; src += channel_stride; dst += channel_stride; } } } *got_frame_ptr = 1; return samplecount * bpp; } static void wavpack_decode_flush(AVCodecContext *avctx) { WavpackContext *s = avctx->priv_data; int i; for (i = 0; i < s->fdec_num; i++) wv_reset_saved_context(s->fdec[i]); } static int wavpack_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { WavpackContext *s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; AVFrame *frame = data; int frame_size, ret, frame_flags; int samplecount = 0; if (avpkt->size < 12 + s->multichannel * 4) return AVERROR_INVALIDDATA; s->block = 0; s->ch_offset = 0; /* determine number of samples */ if (s->mkv_mode) { s->samples = AV_RL32(buf); buf += 4; frame_flags = AV_RL32(buf); } else { if (s->multichannel) { s->samples = AV_RL32(buf + 4); frame_flags = AV_RL32(buf + 8); } else { s->samples = AV_RL32(buf); frame_flags = AV_RL32(buf + 4); } } if (s->samples <= 0) { av_log(avctx, AV_LOG_ERROR, "Invalid number of samples: %d\n", s->samples); return AVERROR_INVALIDDATA; } if (frame_flags & 0x80) { avctx->sample_fmt = AV_SAMPLE_FMT_FLT; } else if ((frame_flags & 0x03) <= 1) { avctx->sample_fmt = AV_SAMPLE_FMT_S16; } else { avctx->sample_fmt = AV_SAMPLE_FMT_S32; avctx->bits_per_raw_sample = ((frame_flags & 0x03) + 1) << 3; } /* get output buffer */ frame->nb_samples = s->samples; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } while (buf_size > 0) { if (!s->multichannel) { frame_size = buf_size; } else { if (!s->mkv_mode) { frame_size = AV_RL32(buf) - 12; buf += 4; buf_size -= 4; } else { if (buf_size < 12) // MKV files can have zero flags after last block break; frame_size = AV_RL32(buf + 8) + 12; } } if (frame_size < 0 || frame_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "Block %d has invalid size (size %d vs. %d bytes left)\n", s->block, frame_size, buf_size); wavpack_decode_flush(avctx); return AVERROR_INVALIDDATA; } if ((samplecount = wavpack_decode_block(avctx, s->block, frame->data[0], got_frame_ptr, buf, frame_size)) < 0) { wavpack_decode_flush(avctx); return samplecount; } s->block++; buf += frame_size; buf_size -= frame_size; } return avpkt->size; } AVCodec ff_wavpack_decoder = { .name = "wavpack", .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_WAVPACK, .priv_data_size = sizeof(WavpackContext), .init = wavpack_decode_init, .close = wavpack_decode_end, .decode = wavpack_decode_frame, .flush = wavpack_decode_flush, .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("WavPack"), };