/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com> * Copyright (C) 2013 Clément Bœsch <u pkh me> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "vp56.h" #include "vp9.h" #include "vp9data.h" #include "vp9dec.h" static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1, int max_count, int update_factor) { unsigned ct = ct0 + ct1, p2, p1; if (!ct) return; update_factor = FASTDIV(update_factor * FFMIN(ct, max_count), max_count); p1 = *p; p2 = ((((int64_t) ct0) << 8) + (ct >> 1)) / ct; p2 = av_clip(p2, 1, 255); // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8 *p = p1 + (((p2 - p1) * update_factor + 128) >> 8); } void ff_vp9_adapt_probs(VP9Context *s) { int i, j, k, l, m; ProbContext *p = &s->prob_ctx[s->s.h.framectxid].p; int uf = (s->s.h.keyframe || s->s.h.intraonly || !s->last_keyframe) ? 112 : 128; // coefficients for (i = 0; i < 4; i++) for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *pp = s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m]; unsigned *e = s->counts.eob[i][j][k][l][m]; unsigned *c = s->counts.coef[i][j][k][l][m]; if (l == 0 && m >= 3) // dc only has 3 pt break; adapt_prob(&pp[0], e[0], e[1], 24, uf); adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf); adapt_prob(&pp[2], c[1], c[2], 24, uf); } if (s->s.h.keyframe || s->s.h.intraonly) { memcpy(p->skip, s->prob.p.skip, sizeof(p->skip)); memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p)); memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p)); memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p)); return; } // skip flag for (i = 0; i < 3; i++) adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128); // intra/inter flag for (i = 0; i < 4; i++) adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128); // comppred flag if (s->s.h.comppredmode == PRED_SWITCHABLE) { for (i = 0; i < 5; i++) adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128); } // reference frames if (s->s.h.comppredmode != PRED_SINGLEREF) { for (i = 0; i < 5; i++) adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0], s->counts.comp_ref[i][1], 20, 128); } if (s->s.h.comppredmode != PRED_COMPREF) { for (i = 0; i < 5; i++) { uint8_t *pp = p->single_ref[i]; unsigned (*c)[2] = s->counts.single_ref[i]; adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128); adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128); } } // block partitioning for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) { uint8_t *pp = p->partition[i][j]; unsigned *c = s->counts.partition[i][j]; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); } // tx size if (s->s.h.txfmmode == TX_SWITCHABLE) { for (i = 0; i < 2; i++) { unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i]; adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128); adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128); adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128); adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128); adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128); adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128); } } // interpolation filter if (s->s.h.filtermode == FILTER_SWITCHABLE) { for (i = 0; i < 4; i++) { uint8_t *pp = p->filter[i]; unsigned *c = s->counts.filter[i]; adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128); adapt_prob(&pp[1], c[1], c[2], 20, 128); } } // inter modes for (i = 0; i < 7; i++) { uint8_t *pp = p->mv_mode[i]; unsigned *c = s->counts.mv_mode[i]; adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128); adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128); adapt_prob(&pp[2], c[1], c[3], 20, 128); } // mv joints { uint8_t *pp = p->mv_joint; unsigned *c = s->counts.mv_joint; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); } // mv components for (i = 0; i < 2; i++) { uint8_t *pp; unsigned *c, (*c2)[2], sum; adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0], s->counts.mv_comp[i].sign[1], 20, 128); pp = p->mv_comp[i].classes; c = s->counts.mv_comp[i].classes; sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10]; adapt_prob(&pp[0], c[0], sum, 20, 128); sum -= c[1]; adapt_prob(&pp[1], c[1], sum, 20, 128); sum -= c[2] + c[3]; adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128); adapt_prob(&pp[3], c[2], c[3], 20, 128); sum -= c[4] + c[5]; adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128); adapt_prob(&pp[5], c[4], c[5], 20, 128); sum -= c[6]; adapt_prob(&pp[6], c[6], sum, 20, 128); adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128); adapt_prob(&pp[8], c[7], c[8], 20, 128); adapt_prob(&pp[9], c[9], c[10], 20, 128); adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0], s->counts.mv_comp[i].class0[1], 20, 128); pp = p->mv_comp[i].bits; c2 = s->counts.mv_comp[i].bits; for (j = 0; j < 10; j++) adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128); for (j = 0; j < 2; j++) { pp = p->mv_comp[i].class0_fp[j]; c = s->counts.mv_comp[i].class0_fp[j]; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); } pp = p->mv_comp[i].fp; c = s->counts.mv_comp[i].fp; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); if (s->s.h.highprecisionmvs) { adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0], s->counts.mv_comp[i].class0_hp[1], 20, 128); adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0], s->counts.mv_comp[i].hp[1], 20, 128); } } // y intra modes for (i = 0; i < 4; i++) { uint8_t *pp = p->y_mode[i]; unsigned *c = s->counts.y_mode[i], sum, s2; sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9]; adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128); sum -= c[TM_VP8_PRED]; adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128); sum -= c[VERT_PRED]; adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128); s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED]; sum -= s2; adapt_prob(&pp[3], s2, sum, 20, 128); s2 -= c[HOR_PRED]; adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128); adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128); sum -= c[DIAG_DOWN_LEFT_PRED]; adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128); sum -= c[VERT_LEFT_PRED]; adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128); adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128); } // uv intra modes for (i = 0; i < 10; i++) { uint8_t *pp = p->uv_mode[i]; unsigned *c = s->counts.uv_mode[i], sum, s2; sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9]; adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128); sum -= c[TM_VP8_PRED]; adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128); sum -= c[VERT_PRED]; adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128); s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED]; sum -= s2; adapt_prob(&pp[3], s2, sum, 20, 128); s2 -= c[HOR_PRED]; adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128); adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128); sum -= c[DIAG_DOWN_LEFT_PRED]; adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128); sum -= c[VERT_LEFT_PRED]; adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128); adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128); } }