/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com> * Copyright (C) 2013 Clément Bœsch <u pkh me> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "videodsp.h" #include "vp56.h" #include "vp9.h" #include "vp9data.h" #define VP9_SYNCCODE 0x498342 #define MAX_PROB 255 static void vp9_frame_unref(AVCodecContext *avctx, VP9Frame *f) { ff_thread_release_buffer(avctx, &f->tf); av_buffer_unref(&f->segmentation_map_buf); av_buffer_unref(&f->mv_buf); f->segmentation_map = NULL; f->mv = NULL; } static int vp9_frame_alloc(AVCodecContext *avctx, VP9Frame *f) { VP9Context *s = avctx->priv_data; int ret, sz; ret = ff_thread_get_buffer(avctx, &f->tf, AV_GET_BUFFER_FLAG_REF); if (ret < 0) return ret; sz = 64 * s->sb_cols * s->sb_rows; f->segmentation_map_buf = av_buffer_allocz(sz * sizeof(*f->segmentation_map)); f->mv_buf = av_buffer_allocz(sz * sizeof(*f->mv)); if (!f->segmentation_map_buf || !f->mv_buf) { vp9_frame_unref(avctx, f); return AVERROR(ENOMEM); } f->segmentation_map = f->segmentation_map_buf->data; f->mv = (VP9MVRefPair*)f->mv_buf->data; if (s->segmentation.enabled && !s->segmentation.update_map && !s->keyframe && !s->intraonly && !s->errorres) memcpy(f->segmentation_map, s->frames[LAST_FRAME].segmentation_map, sz); return 0; } static int vp9_frame_ref(VP9Frame *dst, VP9Frame *src) { int ret; dst->segmentation_map_buf = av_buffer_ref(src->segmentation_map_buf); dst->mv_buf = av_buffer_ref(src->mv_buf); if (!dst->segmentation_map_buf || !dst->mv_buf) { ret = AVERROR(ENOMEM); goto fail; } ret = ff_thread_ref_frame(&dst->tf, &src->tf); if (ret < 0) goto fail; dst->segmentation_map = src->segmentation_map; dst->mv = src->mv; return 0; fail: av_buffer_unref(&dst->segmentation_map_buf); av_buffer_unref(&dst->mv_buf); return ret; } static void vp9_decode_flush(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i; for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) vp9_frame_unref(avctx, &s->frames[i]); for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++) ff_thread_release_buffer(avctx, &s->refs[i]); s->use_last_frame_mvs = 0; s->alloc_width = 0; s->alloc_height = 0; } static int update_size(AVCodecContext *avctx, int w, int h) { VP9Context *s = avctx->priv_data; uint8_t *p; int nb_blocks, nb_superblocks; if (s->above_partition_ctx && w == s->alloc_width && h == s->alloc_height) return 0; vp9_decode_flush(avctx); if (w <= 0 || h <= 0) return AVERROR_INVALIDDATA; avctx->width = w; avctx->height = h; s->sb_cols = (w + 63) >> 6; s->sb_rows = (h + 63) >> 6; s->cols = (w + 7) >> 3; s->rows = (h + 7) >> 3; #define assign(var, type, n) var = (type)p; p += s->sb_cols * n * sizeof(*var) av_free(s->above_partition_ctx); p = av_malloc(s->sb_cols * (240 + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx))); if (!p) return AVERROR(ENOMEM); assign(s->above_partition_ctx, uint8_t *, 8); assign(s->above_skip_ctx, uint8_t *, 8); assign(s->above_txfm_ctx, uint8_t *, 8); assign(s->above_mode_ctx, uint8_t *, 16); assign(s->above_y_nnz_ctx, uint8_t *, 16); assign(s->above_uv_nnz_ctx[0], uint8_t *, 8); assign(s->above_uv_nnz_ctx[1], uint8_t *, 8); assign(s->intra_pred_data[0], uint8_t *, 64); assign(s->intra_pred_data[1], uint8_t *, 32); assign(s->intra_pred_data[2], uint8_t *, 32); assign(s->above_segpred_ctx, uint8_t *, 8); assign(s->above_intra_ctx, uint8_t *, 8); assign(s->above_comp_ctx, uint8_t *, 8); assign(s->above_ref_ctx, uint8_t *, 8); assign(s->above_filter_ctx, uint8_t *, 8); assign(s->lflvl, VP9Filter *, 1); assign(s->above_mv_ctx, VP56mv(*)[2], 16); #undef assign av_freep(&s->b_base); av_freep(&s->block_base); if (avctx->active_thread_type & FF_THREAD_FRAME) { nb_blocks = s->cols * s->rows; nb_superblocks = s->sb_cols * s->sb_rows; } else { nb_blocks = nb_superblocks = 1; } s->b_base = av_malloc_array(nb_blocks, sizeof(*s->b_base)); s->block_base = av_mallocz_array(nb_superblocks, (64 * 64 + 128) * 3); if (!s->b_base || !s->block_base) return AVERROR(ENOMEM); s->uvblock_base[0] = s->block_base + nb_superblocks * 64 * 64; s->uvblock_base[1] = s->uvblock_base[0] + nb_superblocks * 32 * 32; s->eob_base = (uint8_t *)(s->uvblock_base[1] + nb_superblocks * 32 * 32); s->uveob_base[0] = s->eob_base + nb_superblocks * 256; s->uveob_base[1] = s->uveob_base[0] + nb_superblocks * 64; s->alloc_width = w; s->alloc_height = h; return 0; } // The sign bit is at the end, not the start, of a bit sequence static av_always_inline int get_bits_with_sign(GetBitContext *gb, int n) { int v = get_bits(gb, n); return get_bits1(gb) ? -v : v; } static av_always_inline int inv_recenter_nonneg(int v, int m) { if (v > 2 * m) return v; if (v & 1) return m - ((v + 1) >> 1); return m + (v >> 1); } // differential forward probability updates static int update_prob(VP56RangeCoder *c, int p) { static const int inv_map_table[MAX_PROB - 1] = { 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, }; int d; /* This code is trying to do a differential probability update. For a * current probability A in the range [1, 255], the difference to a new * probability of any value can be expressed differentially as 1-A, 255-A * where some part of this (absolute range) exists both in positive as * well as the negative part, whereas another part only exists in one * half. We're trying to code this shared part differentially, i.e. * times two where the value of the lowest bit specifies the sign, and * the single part is then coded on top of this. This absolute difference * then again has a value of [0, 254], but a bigger value in this range * indicates that we're further away from the original value A, so we * can code this as a VLC code, since higher values are increasingly * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough' * updates vs. the 'fine, exact' updates further down the range, which * adds one extra dimension to this differential update model. */ if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 4) + 0; } else if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 4) + 16; } else if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 5) + 32; } else { d = vp8_rac_get_uint(c, 7); if (d >= 65) { d = (d << 1) - 65 + vp8_rac_get(c); d = av_clip(d, 0, MAX_PROB - 65 - 1); } d += 64; } return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) : 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p); } static int decode_frame_header(AVCodecContext *avctx, const uint8_t *data, int size, int *ref) { VP9Context *s = avctx->priv_data; int c, i, j, k, l, m, n, w, h, max, size2, ret, sharp; int last_invisible; const uint8_t *data2; /* general header */ if ((ret = init_get_bits8(&s->gb, data, size)) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n"); return ret; } if (get_bits(&s->gb, 2) != 0x2) { // frame marker av_log(avctx, AV_LOG_ERROR, "Invalid frame marker\n"); return AVERROR_INVALIDDATA; } s->profile = get_bits1(&s->gb); if (get_bits1(&s->gb)) { // reserved bit av_log(avctx, AV_LOG_ERROR, "Reserved bit should be zero\n"); return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { *ref = get_bits(&s->gb, 3); return 0; } s->last_keyframe = s->keyframe; s->keyframe = !get_bits1(&s->gb); last_invisible = s->invisible; s->invisible = !get_bits1(&s->gb); s->errorres = get_bits1(&s->gb); s->use_last_frame_mvs = !s->errorres && !last_invisible; if (s->keyframe) { if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n"); return AVERROR_INVALIDDATA; } s->colorspace = get_bits(&s->gb, 3); if (s->colorspace == 7) { // RGB = profile 1 av_log(avctx, AV_LOG_ERROR, "RGB not supported in profile 0\n"); return AVERROR_INVALIDDATA; } s->fullrange = get_bits1(&s->gb); // subsampling bits if (s->profile == 1 || s->profile == 3) { s->sub_x = get_bits1(&s->gb); s->sub_y = get_bits1(&s->gb); if (s->sub_x && s->sub_y) { av_log(avctx, AV_LOG_ERROR, "4:2:0 color not supported in profile 1 or 3\n"); return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { // reserved bit av_log(avctx, AV_LOG_ERROR, "Reserved bit should be zero\n"); return AVERROR_INVALIDDATA; } } else { s->sub_x = s->sub_y = 1; } if (!s->sub_x || !s->sub_y) { avpriv_report_missing_feature(avctx, "Subsampling %d:%d", s->sub_x, s->sub_y); return AVERROR_PATCHWELCOME; } s->refreshrefmask = 0xff; w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); } else { s->intraonly = s->invisible ? get_bits1(&s->gb) : 0; s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2); if (s->intraonly) { if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n"); return AVERROR_INVALIDDATA; } s->refreshrefmask = get_bits(&s->gb, 8); w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); } else { s->refreshrefmask = get_bits(&s->gb, 8); s->refidx[0] = get_bits(&s->gb, 3); s->signbias[0] = get_bits1(&s->gb); s->refidx[1] = get_bits(&s->gb, 3); s->signbias[1] = get_bits1(&s->gb); s->refidx[2] = get_bits(&s->gb, 3); s->signbias[2] = get_bits1(&s->gb); if (!s->refs[s->refidx[0]].f->buf[0] || !s->refs[s->refidx[1]].f->buf[0] || !s->refs[s->refidx[2]].f->buf[0]) { av_log(avctx, AV_LOG_ERROR, "Not all references are available\n"); return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { w = s->refs[s->refidx[0]].f->width; h = s->refs[s->refidx[0]].f->height; } else if (get_bits1(&s->gb)) { w = s->refs[s->refidx[1]].f->width; h = s->refs[s->refidx[1]].f->height; } else if (get_bits1(&s->gb)) { w = s->refs[s->refidx[2]].f->width; h = s->refs[s->refidx[2]].f->height; } else { w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; } if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); s->highprecisionmvs = get_bits1(&s->gb); s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE : get_bits(&s->gb, 2); s->allowcompinter = s->signbias[0] != s->signbias[1] || s->signbias[0] != s->signbias[2]; if (s->allowcompinter) { if (s->signbias[0] == s->signbias[1]) { s->fixcompref = 2; s->varcompref[0] = 0; s->varcompref[1] = 1; } else if (s->signbias[0] == s->signbias[2]) { s->fixcompref = 1; s->varcompref[0] = 0; s->varcompref[1] = 2; } else { s->fixcompref = 0; s->varcompref[0] = 1; s->varcompref[1] = 2; } } } } s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb); s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb); s->framectxid = c = get_bits(&s->gb, 2); /* loopfilter header data */ s->filter.level = get_bits(&s->gb, 6); sharp = get_bits(&s->gb, 3); /* If sharpness changed, reinit lim/mblim LUTs. if it didn't change, * keep the old cache values since they are still valid. */ if (s->filter.sharpness != sharp) memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut)); s->filter.sharpness = sharp; if ((s->lf_delta.enabled = get_bits1(&s->gb))) { if (get_bits1(&s->gb)) { for (i = 0; i < 4; i++) if (get_bits1(&s->gb)) s->lf_delta.ref[i] = get_bits_with_sign(&s->gb, 6); for (i = 0; i < 2; i++) if (get_bits1(&s->gb)) s->lf_delta.mode[i] = get_bits_with_sign(&s->gb, 6); } } else { memset(&s->lf_delta, 0, sizeof(s->lf_delta)); } /* quantization header data */ s->yac_qi = get_bits(&s->gb, 8); s->ydc_qdelta = get_bits1(&s->gb) ? get_bits_with_sign(&s->gb, 4) : 0; s->uvdc_qdelta = get_bits1(&s->gb) ? get_bits_with_sign(&s->gb, 4) : 0; s->uvac_qdelta = get_bits1(&s->gb) ? get_bits_with_sign(&s->gb, 4) : 0; s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 && s->uvdc_qdelta == 0 && s->uvac_qdelta == 0; /* segmentation header info */ if ((s->segmentation.enabled = get_bits1(&s->gb))) { if ((s->segmentation.update_map = get_bits1(&s->gb))) { for (i = 0; i < 7; i++) s->prob.seg[i] = get_bits1(&s->gb) ? get_bits(&s->gb, 8) : 255; if ((s->segmentation.temporal = get_bits1(&s->gb))) for (i = 0; i < 3; i++) s->prob.segpred[i] = get_bits1(&s->gb) ? get_bits(&s->gb, 8) : 255; } if (get_bits1(&s->gb)) { s->segmentation.absolute_vals = get_bits1(&s->gb); for (i = 0; i < 8; i++) { if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb))) s->segmentation.feat[i].q_val = get_bits_with_sign(&s->gb, 8); if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb))) s->segmentation.feat[i].lf_val = get_bits_with_sign(&s->gb, 6); if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb))) s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2); s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb); } } } else { s->segmentation.feat[0].q_enabled = 0; s->segmentation.feat[0].lf_enabled = 0; s->segmentation.feat[0].skip_enabled = 0; s->segmentation.feat[0].ref_enabled = 0; } // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) { int qyac, qydc, quvac, quvdc, lflvl, sh; if (s->segmentation.feat[i].q_enabled) { if (s->segmentation.absolute_vals) qyac = s->segmentation.feat[i].q_val; else qyac = s->yac_qi + s->segmentation.feat[i].q_val; } else { qyac = s->yac_qi; } qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8); quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8); quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8); qyac = av_clip_uintp2(qyac, 8); s->segmentation.feat[i].qmul[0][0] = ff_vp9_dc_qlookup[qydc]; s->segmentation.feat[i].qmul[0][1] = ff_vp9_ac_qlookup[qyac]; s->segmentation.feat[i].qmul[1][0] = ff_vp9_dc_qlookup[quvdc]; s->segmentation.feat[i].qmul[1][1] = ff_vp9_ac_qlookup[quvac]; sh = s->filter.level >= 32; if (s->segmentation.feat[i].lf_enabled) { if (s->segmentation.absolute_vals) lflvl = s->segmentation.feat[i].lf_val; else lflvl = s->filter.level + s->segmentation.feat[i].lf_val; } else { lflvl = s->filter.level; } s->segmentation.feat[i].lflvl[0][0] = s->segmentation.feat[i].lflvl[0][1] = av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6); for (j = 1; j < 4; j++) { s->segmentation.feat[i].lflvl[j][0] = av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] + s->lf_delta.mode[0]) << sh), 6); s->segmentation.feat[i].lflvl[j][1] = av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] + s->lf_delta.mode[1]) << sh), 6); } } /* tiling info */ if ((ret = update_size(avctx, w, h)) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d\n", w, h); return ret; } for (s->tiling.log2_tile_cols = 0; (s->sb_cols >> s->tiling.log2_tile_cols) > 64; s->tiling.log2_tile_cols++) ; for (max = 0; (s->sb_cols >> max) >= 4; max++) ; max = FFMAX(0, max - 1); while (max > s->tiling.log2_tile_cols) { if (get_bits1(&s->gb)) s->tiling.log2_tile_cols++; else break; } s->tiling.log2_tile_rows = decode012(&s->gb); s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows; if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) { s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols; s->c_b = av_fast_realloc(s->c_b, &s->c_b_size, sizeof(VP56RangeCoder) * s->tiling.tile_cols); if (!s->c_b) { av_log(avctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n"); return AVERROR(ENOMEM); } } if (s->keyframe || s->errorres || s->intraonly) { s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p = s->prob_ctx[3].p = ff_vp9_default_probs; memcpy(s->prob_ctx[0].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); memcpy(s->prob_ctx[1].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); memcpy(s->prob_ctx[2].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); memcpy(s->prob_ctx[3].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); } // next 16 bits is size of the rest of the header (arith-coded) size2 = get_bits(&s->gb, 16); data2 = align_get_bits(&s->gb); if (size2 > size - (data2 - data)) { av_log(avctx, AV_LOG_ERROR, "Invalid compressed header size\n"); return AVERROR_INVALIDDATA; } ff_vp56_init_range_decoder(&s->c, data2, size2); if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit av_log(avctx, AV_LOG_ERROR, "Marker bit was set\n"); return AVERROR_INVALIDDATA; } if (s->keyframe || s->intraonly) memset(s->counts.coef, 0, sizeof(s->counts.coef) + sizeof(s->counts.eob)); else memset(&s->counts, 0, sizeof(s->counts)); /* FIXME is it faster to not copy here, but do it down in the fw updates * as explicit copies if the fw update is missing (and skip the copy upon * fw update)? */ s->prob.p = s->prob_ctx[c].p; // txfm updates if (s->lossless) { s->txfmmode = TX_4X4; } else { s->txfmmode = vp8_rac_get_uint(&s->c, 2); if (s->txfmmode == 3) s->txfmmode += vp8_rac_get(&s->c); if (s->txfmmode == TX_SWITCHABLE) { for (i = 0; i < 2; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]); for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx16p[i][j] = update_prob(&s->c, s->prob.p.tx16p[i][j]); for (i = 0; i < 2; i++) for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx32p[i][j] = update_prob(&s->c, s->prob.p.tx32p[i][j]); } } // coef updates for (i = 0; i < 4; i++) { uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i]; if (vp8_rac_get(&s->c)) { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *p = s->prob.coef[i][j][k][l][m]; uint8_t *r = ref[j][k][l][m]; if (m >= 3 && l == 0) // dc only has 3 pt break; for (n = 0; n < 3; n++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) p[n] = update_prob(&s->c, r[n]); else p[n] = r[n]; } p[3] = 0; } } else { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *p = s->prob.coef[i][j][k][l][m]; uint8_t *r = ref[j][k][l][m]; if (m > 3 && l == 0) // dc only has 3 pt break; memcpy(p, r, 3); p[3] = 0; } } if (s->txfmmode == i) break; } // mode updates for (i = 0; i < 3; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]); if (!s->keyframe && !s->intraonly) { for (i = 0; i < 7; i++) for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_mode[i][j] = update_prob(&s->c, s->prob.p.mv_mode[i][j]); if (s->filtermode == FILTER_SWITCHABLE) for (i = 0; i < 4; i++) for (j = 0; j < 2; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.filter[i][j] = update_prob(&s->c, s->prob.p.filter[i][j]); for (i = 0; i < 4; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]); if (s->allowcompinter) { s->comppredmode = vp8_rac_get(&s->c); if (s->comppredmode) s->comppredmode += vp8_rac_get(&s->c); if (s->comppredmode == PRED_SWITCHABLE) for (i = 0; i < 5; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.comp[i] = update_prob(&s->c, s->prob.p.comp[i]); } else { s->comppredmode = PRED_SINGLEREF; } if (s->comppredmode != PRED_COMPREF) { for (i = 0; i < 5; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.single_ref[i][0] = update_prob(&s->c, s->prob.p.single_ref[i][0]); if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.single_ref[i][1] = update_prob(&s->c, s->prob.p.single_ref[i][1]); } } if (s->comppredmode != PRED_SINGLEREF) { for (i = 0; i < 5; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.comp_ref[i] = update_prob(&s->c, s->prob.p.comp_ref[i]); } for (i = 0; i < 4; i++) for (j = 0; j < 9; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.y_mode[i][j] = update_prob(&s->c, s->prob.p.y_mode[i][j]); for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) for (k = 0; k < 3; k++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.partition[3 - i][j][k] = update_prob(&s->c, s->prob.p.partition[3 - i][j][k]); // mv fields don't use the update_prob subexp model for some reason for (i = 0; i < 3; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (i = 0; i < 2; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 10; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].classes[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 10; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].bits[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) for (k = 0; k < 3; k++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0_fp[j][k] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].fp[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } if (s->highprecisionmvs) { for (i = 0; i < 2; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0_hp = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].hp = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } } } return (data2 - data) + size2; } static int decode_subblock(AVCodecContext *avctx, int row, int col, VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl) { VP9Context *s = avctx->priv_data; AVFrame *f = s->frames[CUR_FRAME].tf.f; int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) | (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1); int ret; const uint8_t *p = s->keyframe ? ff_vp9_default_kf_partition_probs[bl][c] : s->prob.p.partition[bl][c]; enum BlockPartition bp; ptrdiff_t hbs = 4 >> bl; if (bl == BL_8X8) { bp = vp8_rac_get_tree(&s->c, ff_vp9_partition_tree, p); ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); } else if (col + hbs < s->cols) { if (row + hbs < s->rows) { bp = vp8_rac_get_tree(&s->c, ff_vp9_partition_tree, p); switch (bp) { case PARTITION_NONE: ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_H: ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); if (!ret) { yoff += hbs * 8 * f->linesize[0]; uvoff += hbs * 4 * f->linesize[1]; ret = ff_vp9_decode_block(avctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp); } break; case PARTITION_V: ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); if (!ret) { yoff += hbs * 8; uvoff += hbs * 4; ret = ff_vp9_decode_block(avctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp); } break; case PARTITION_SPLIT: ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1); if (!ret) { ret = decode_subblock(avctx, row, col + hbs, lflvl, yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1); if (!ret) { yoff += hbs * 8 * f->linesize[0]; uvoff += hbs * 4 * f->linesize[1]; ret = decode_subblock(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); if (!ret) { ret = decode_subblock(avctx, row + hbs, col + hbs, lflvl, yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1); } } } break; default: av_log(avctx, AV_LOG_ERROR, "Unexpected partition %d.", bp); return AVERROR_INVALIDDATA; } } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) { bp = PARTITION_SPLIT; ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1); if (!ret) ret = decode_subblock(avctx, row, col + hbs, lflvl, yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1); } else { bp = PARTITION_H; ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); } } else if (row + hbs < s->rows) { if (vp56_rac_get_prob_branchy(&s->c, p[2])) { bp = PARTITION_SPLIT; ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1); if (!ret) { yoff += hbs * 8 * f->linesize[0]; uvoff += hbs * 4 * f->linesize[1]; ret = decode_subblock(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); } } else { bp = PARTITION_V; ret = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); } } else { bp = PARTITION_SPLIT; ret = decode_subblock(avctx, row, col, lflvl, yoff, uvoff, bl + 1); } s->counts.partition[bl][c][bp]++; return ret; } static int decode_superblock_mem(AVCodecContext *avctx, int row, int col, struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl) { VP9Context *s = avctx->priv_data; VP9Block *b = s->b; ptrdiff_t hbs = 4 >> bl; AVFrame *f = s->frames[CUR_FRAME].tf.f; ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1]; int res; if (bl == BL_8X8) { av_assert2(b->bl == BL_8X8); res = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp); } else if (s->b->bl == bl) { if ((res = ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp)) < 0) return res; if (b->bp == PARTITION_H && row + hbs < s->rows) { yoff += hbs * 8 * y_stride; uvoff += hbs * 4 * uv_stride; res = ff_vp9_decode_block(avctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp); } else if (b->bp == PARTITION_V && col + hbs < s->cols) { yoff += hbs * 8; uvoff += hbs * 4; res = ff_vp9_decode_block(avctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp); } } else { if ((res = decode_superblock_mem(avctx, row, col, lflvl, yoff, uvoff, bl + 1)) < 0) return res; if (col + hbs < s->cols) { // FIXME why not <=? if (row + hbs < s->rows) { if ((res = decode_superblock_mem(avctx, row, col + hbs, lflvl, yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1)) < 0) return res; yoff += hbs * 8 * y_stride; uvoff += hbs * 4 * uv_stride; if ((res = decode_superblock_mem(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1)) < 0) return res; res = decode_superblock_mem(avctx, row + hbs, col + hbs, lflvl, yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1); } else { yoff += hbs * 8; uvoff += hbs * 4; res = decode_superblock_mem(avctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1); } } else if (row + hbs < s->rows) { yoff += hbs * 8 * y_stride; uvoff += hbs * 4 * uv_stride; res = decode_superblock_mem(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); } } return res; } static void loopfilter_subblock(AVCodecContext *avctx, VP9Filter *lflvl, int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff) { VP9Context *s = avctx->priv_data; AVFrame *f = s->frames[CUR_FRAME].tf.f; uint8_t *dst = f->data[0] + yoff; ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1]; uint8_t *lvl = lflvl->level; int y, x, p; /* FIXME: In how far can we interleave the v/h loopfilter calls? E.g. * if you think of them as acting on a 8x8 block max, we can interleave * each v/h within the single x loop, but that only works if we work on * 8 pixel blocks, and we won't always do that (we want at least 16px * to use SSE2 optimizations, perhaps 32 for AVX2). */ // filter edges between columns, Y plane (e.g. block1 | block2) for (y = 0; y < 8; y += 2, dst += 16 * ls_y, lvl += 16) { uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[0][0][y]; uint8_t *hmask2 = lflvl->mask[0][0][y + 1]; unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3]; unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3]; unsigned hm = hm1 | hm2 | hm13 | hm23; for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8, l++) { if (hm1 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (col || x > 1) { if (hmask1[0] & x) { if (hmask2[0] & x) { av_assert2(l[8] == L); s->dsp.loop_filter_16[0](ptr, ls_y, E, I, H); } else { s->dsp.loop_filter_8[2][0](ptr, ls_y, E, I, H); } } else if (hm2 & x) { L = l[8]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(hmask1[1] & x)] [!!(hmask2[1] & x)] [0](ptr, ls_y, E, I, H); } else { s->dsp.loop_filter_8[!!(hmask1[1] & x)] [0](ptr, ls_y, E, I, H); } } } else if (hm2 & x) { int L = l[8], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (col || x > 1) { s->dsp.loop_filter_8[!!(hmask2[1] & x)] [0](ptr + 8 * ls_y, ls_y, E, I, H); } } if (hm13 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (hm23 & x) { L = l[8]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[0][0][0](ptr + 4, ls_y, E, I, H); } else { s->dsp.loop_filter_8[0][0](ptr + 4, ls_y, E, I, H); } } else if (hm23 & x) { int L = l[8], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[0][0](ptr + 8 * ls_y + 4, ls_y, E, I, H); } } } // block1 // filter edges between rows, Y plane (e.g. ------) // block2 dst = f->data[0] + yoff; lvl = lflvl->level; for (y = 0; y < 8; y++, dst += 8 * ls_y, lvl += 8) { uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[0][1][y]; unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3]; for (x = 1; vm & ~(x - 1); x <<= 2, ptr += 16, l += 2) { if (row || y) { if (vm & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (vmask[0] & x) { if (vmask[0] & (x << 1)) { av_assert2(l[1] == L); s->dsp.loop_filter_16[1](ptr, ls_y, E, I, H); } else { s->dsp.loop_filter_8[2][1](ptr, ls_y, E, I, H); } } else if (vm & (x << 1)) { L = l[1]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(vmask[1] & x)] [!!(vmask[1] & (x << 1))] [1](ptr, ls_y, E, I, H); } else { s->dsp.loop_filter_8[!!(vmask[1] & x)] [1](ptr, ls_y, E, I, H); } } else if (vm & (x << 1)) { int L = l[1], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[!!(vmask[1] & (x << 1))] [1](ptr + 8, ls_y, E, I, H); } } if (vm3 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (vm3 & (x << 1)) { L = l[1]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[0][0][1](ptr + ls_y * 4, ls_y, E, I, H); } else { s->dsp.loop_filter_8[0][1](ptr + ls_y * 4, ls_y, E, I, H); } } else if (vm3 & (x << 1)) { int L = l[1], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[0][1](ptr + ls_y * 4 + 8, ls_y, E, I, H); } } } // same principle but for U/V planes for (p = 0; p < 2; p++) { lvl = lflvl->level; dst = f->data[1 + p] + uvoff; for (y = 0; y < 8; y += 4, dst += 16 * ls_uv, lvl += 32) { uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[1][0][y]; uint8_t *hmask2 = lflvl->mask[1][0][y + 2]; unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2]; unsigned hm2 = hmask2[1] | hmask2[2], hm = hm1 | hm2; for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 4) { if (col || x > 1) { if (hm1 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L]; int I = s->filter.lim_lut[L]; if (hmask1[0] & x) { if (hmask2[0] & x) { av_assert2(l[16] == L); s->dsp.loop_filter_16[0](ptr, ls_uv, E, I, H); } else { s->dsp.loop_filter_8[2][0](ptr, ls_uv, E, I, H); } } else if (hm2 & x) { L = l[16]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(hmask1[1] & x)] [!!(hmask2[1] & x)] [0](ptr, ls_uv, E, I, H); } else { s->dsp.loop_filter_8[!!(hmask1[1] & x)] [0](ptr, ls_uv, E, I, H); } } else if (hm2 & x) { int L = l[16], H = L >> 4; int E = s->filter.mblim_lut[L]; int I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[!!(hmask2[1] & x)] [0](ptr + 8 * ls_uv, ls_uv, E, I, H); } } if (x & 0xAA) l += 2; } } lvl = lflvl->level; dst = f->data[1 + p] + uvoff; for (y = 0; y < 8; y++, dst += 4 * ls_uv) { uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[1][1][y]; unsigned vm = vmask[0] | vmask[1] | vmask[2]; for (x = 1; vm & ~(x - 1); x <<= 4, ptr += 16, l += 4) { if (row || y) { if (vm & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L]; int I = s->filter.lim_lut[L]; if (vmask[0] & x) { if (vmask[0] & (x << 2)) { av_assert2(l[2] == L); s->dsp.loop_filter_16[1](ptr, ls_uv, E, I, H); } else { s->dsp.loop_filter_8[2][1](ptr, ls_uv, E, I, H); } } else if (vm & (x << 2)) { L = l[2]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(vmask[1] & x)] [!!(vmask[1] & (x << 2))] [1](ptr, ls_uv, E, I, H); } else { s->dsp.loop_filter_8[!!(vmask[1] & x)] [1](ptr, ls_uv, E, I, H); } } else if (vm & (x << 2)) { int L = l[2], H = L >> 4; int E = s->filter.mblim_lut[L]; int I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[!!(vmask[1] & (x << 2))] [1](ptr + 8, ls_uv, E, I, H); } } } if (y & 1) lvl += 16; } } } static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n) { int sb_start = (idx * n) >> log2_n; int sb_end = ((idx + 1) * n) >> log2_n; *start = FFMIN(sb_start, n) << 3; *end = FFMIN(sb_end, n) << 3; } static int update_refs(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i, ret; for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++) if (s->refreshrefmask & (1 << i)) { ff_thread_release_buffer(avctx, &s->refs[i]); ret = ff_thread_ref_frame(&s->refs[i], &s->frames[CUR_FRAME].tf); if (ret < 0) return ret; } return 0; } static int vp9_decode_frame(AVCodecContext *avctx, void *output, int *got_frame, AVPacket *pkt) { VP9Context *s = avctx->priv_data; AVFrame *frame = output; const uint8_t *data = pkt->data; int size = pkt->size; AVFrame *f; int ret, tile_row, tile_col, i, ref = -1, row, col; s->setup_finished = 0; ret = decode_frame_header(avctx, data, size, &ref); if (ret < 0) { return ret; } else if (!ret) { if (!s->refs[ref].f->buf[0]) { av_log(avctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref); return AVERROR_INVALIDDATA; } ret = av_frame_ref(frame, s->refs[ref].f); if (ret < 0) return ret; *got_frame = 1; return pkt->size; } data += ret; size -= ret; vp9_frame_unref(avctx, &s->frames[LAST_FRAME]); if (!s->keyframe && s->frames[CUR_FRAME].tf.f->buf[0]) { ret = vp9_frame_ref(&s->frames[LAST_FRAME], &s->frames[CUR_FRAME]); if (ret < 0) return ret; } vp9_frame_unref(avctx, &s->frames[CUR_FRAME]); ret = vp9_frame_alloc(avctx, &s->frames[CUR_FRAME]); if (ret < 0) return ret; f = s->frames[CUR_FRAME].tf.f; f->key_frame = s->keyframe; f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; if (s->fullrange) avctx->color_range = AVCOL_RANGE_JPEG; else avctx->color_range = AVCOL_RANGE_MPEG; switch (s->colorspace) { case 1: avctx->colorspace = AVCOL_SPC_BT470BG; break; case 2: avctx->colorspace = AVCOL_SPC_BT709; break; case 3: avctx->colorspace = AVCOL_SPC_SMPTE170M; break; case 4: avctx->colorspace = AVCOL_SPC_SMPTE240M; break; } s->pass = s->uses_2pass = avctx->active_thread_type & FF_THREAD_FRAME && s->refreshctx && !s->parallelmode; if (s->refreshctx && s->parallelmode) { int j, k, l, m; for (i = 0; i < 4; i++) { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m], s->prob.coef[i][j][k][l][m], 3); if (s->txfmmode == i) break; } s->prob_ctx[s->framectxid].p = s->prob.p; } if ((s->parallelmode || !s->refreshctx) && avctx->active_thread_type & FF_THREAD_FRAME) { ff_thread_finish_setup(avctx); s->setup_finished = 1; } // main tile decode loop memset(s->above_partition_ctx, 0, s->cols); memset(s->above_skip_ctx, 0, s->cols); if (s->keyframe || s->intraonly) memset(s->above_mode_ctx, DC_PRED, s->cols * 2); else memset(s->above_mode_ctx, NEARESTMV, s->cols); memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16); memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 8); memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 8); memset(s->above_segpred_ctx, 0, s->cols); do { ptrdiff_t yoff = 0, uvoff = 0; s->b = s->b_base; s->block = s->block_base; s->uvblock[0] = s->uvblock_base[0]; s->uvblock[1] = s->uvblock_base[1]; s->eob = s->eob_base; s->uveob[0] = s->uveob_base[0]; s->uveob[1] = s->uveob_base[1]; for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) { set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end, tile_row, s->tiling.log2_tile_rows, s->sb_rows); if (s->pass != 2) { for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) { int64_t tile_size; if (tile_col == s->tiling.tile_cols - 1 && tile_row == s->tiling.tile_rows - 1) { tile_size = size; } else { tile_size = AV_RB32(data); data += 4; size -= 4; } if (tile_size > size) { ret = AVERROR_INVALIDDATA; goto fail; } ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size); if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit ret = AVERROR_INVALIDDATA; goto fail; } data += tile_size; size -= tile_size; } } for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end; row += 8, yoff += f->linesize[0] * 64, uvoff += f->linesize[1] * 32) { VP9Filter *lflvl = s->lflvl; ptrdiff_t yoff2 = yoff, uvoff2 = uvoff; for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) { set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end, tile_col, s->tiling.log2_tile_cols, s->sb_cols); memset(s->left_partition_ctx, 0, 8); memset(s->left_skip_ctx, 0, 8); if (s->keyframe || s->intraonly) memset(s->left_mode_ctx, DC_PRED, 16); else memset(s->left_mode_ctx, NEARESTMV, 8); memset(s->left_y_nnz_ctx, 0, 16); memset(s->left_uv_nnz_ctx, 0, 16); memset(s->left_segpred_ctx, 0, 8); memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c)); for (col = s->tiling.tile_col_start; col < s->tiling.tile_col_end; col += 8, yoff2 += 64, uvoff2 += 32, lflvl++) { // FIXME integrate with lf code (i.e. zero after each // use, similar to invtxfm coefficients, or similar) if (s->pass != 1) memset(lflvl->mask, 0, sizeof(lflvl->mask)); if (s->pass == 2) { ret = decode_superblock_mem(avctx, row, col, lflvl, yoff2, uvoff2, BL_64X64); } else { ret = decode_subblock(avctx, row, col, lflvl, yoff2, uvoff2, BL_64X64); } if (ret < 0) goto fail; } if (s->pass != 2) memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c)); } if (s->pass == 1) continue; // backup pre-loopfilter reconstruction data for intra // prediction of next row of sb64s if (row + 8 < s->rows) { memcpy(s->intra_pred_data[0], f->data[0] + yoff + 63 * f->linesize[0], 8 * s->cols); memcpy(s->intra_pred_data[1], f->data[1] + uvoff + 31 * f->linesize[1], 4 * s->cols); memcpy(s->intra_pred_data[2], f->data[2] + uvoff + 31 * f->linesize[2], 4 * s->cols); } // loopfilter one row if (s->filter.level) { yoff2 = yoff; uvoff2 = uvoff; lflvl = s->lflvl; for (col = 0; col < s->cols; col += 8, yoff2 += 64, uvoff2 += 32, lflvl++) loopfilter_subblock(avctx, lflvl, row, col, yoff2, uvoff2); } // FIXME maybe we can make this more finegrained by running the // loopfilter per-block instead of after each sbrow // In fact that would also make intra pred left preparation easier? ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0); } } if (s->pass < 2 && s->refreshctx && !s->parallelmode) { ff_vp9_adapt_probs(s); if (avctx->active_thread_type & FF_THREAD_FRAME) { ff_thread_finish_setup(avctx); s->setup_finished = 1; } } } while (s->pass++ == 1); fail: ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0); if (ret < 0) return ret; // ref frame setup if (!s->setup_finished) { ret = update_refs(avctx); if (ret < 0) return ret; } if (!s->invisible) { av_frame_unref(frame); ret = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f); if (ret < 0) return ret; *got_frame = 1; } return pkt->size; } static av_cold int vp9_decode_free(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i; for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) { vp9_frame_unref(avctx, &s->frames[i]); av_frame_free(&s->frames[i].tf.f); } for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++) { ff_thread_release_buffer(avctx, &s->refs[i]); av_frame_free(&s->refs[i].f); } av_freep(&s->c_b); av_freep(&s->above_partition_ctx); av_freep(&s->b_base); av_freep(&s->block_base); return 0; } static av_cold int vp9_decode_init(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i; memset(s, 0, sizeof(*s)); avctx->internal->allocate_progress = 1; avctx->pix_fmt = AV_PIX_FMT_YUV420P; ff_vp9dsp_init(&s->dsp); ff_videodsp_init(&s->vdsp, 8); s->frames[0].tf.f = av_frame_alloc(); s->frames[1].tf.f = av_frame_alloc(); if (!s->frames[0].tf.f || !s->frames[1].tf.f) goto fail; for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++) { s->refs[i].f = av_frame_alloc(); if (!s->refs[i].f) goto fail; } s->filter.sharpness = -1; return 0; fail: vp9_decode_free(avctx); return AVERROR(ENOMEM); } static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { VP9Context *s = dst->priv_data, *ssrc = src->priv_data; int i, ret; ret = update_size(dst, ssrc->alloc_width, ssrc->alloc_height); if (ret < 0) return ret; for (i = 0; i < 2; i++) { if (s->frames[i].tf.f->data[0]) vp9_frame_unref(dst, &s->frames[i]); if (ssrc->frames[i].tf.f->data[0]) { if ((ret = vp9_frame_ref(&s->frames[i], &ssrc->frames[i])) < 0) return ret; } } for (i = 0; i < FF_ARRAY_ELEMS(s->refs); i++) { ff_thread_release_buffer(dst, &s->refs[i]); if (ssrc->refs[i].f->buf[0]) { ret = ff_thread_ref_frame(&s->refs[i], &ssrc->refs[i]); if (ret < 0) return ret; } } s->refreshrefmask = ssrc->refreshrefmask; ret = update_refs(dst); if (ret < 0) return ret; s->invisible = ssrc->invisible; s->keyframe = ssrc->keyframe; s->last_uses_2pass = ssrc->uses_2pass; memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx)); memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta)); memcpy(&s->segmentation.feat, &ssrc->segmentation.feat, sizeof(s->segmentation.feat)); return 0; } AVCodec ff_vp9_decoder = { .name = "vp9", .long_name = NULL_IF_CONFIG_SMALL("Google VP9"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_VP9, .priv_data_size = sizeof(VP9Context), .init = vp9_decode_init, .decode = vp9_decode_frame, .flush = vp9_decode_flush, .close = vp9_decode_free, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS, .init_thread_copy = vp9_decode_init, .update_thread_context = vp9_decode_update_thread_context, .bsfs = "vp9_superframe_split", };