/* * Copyright (C) 2003-2004 The FFmpeg project * Copyright (C) 2019 Peter Ross * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * On2 VP3/VP4 Video Decoder * * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) * For more information about the VP3 coding process, visit: * http://wiki.multimedia.cx/index.php?title=On2_VP3 * * Theora decoder by Alex Beregszaszi */ #include "config_components.h" #include <stddef.h> #include <string.h> #include "libavutil/emms.h" #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "libavutil/mem_internal.h" #include "libavutil/thread.h" #include "avcodec.h" #include "codec_internal.h" #include "decode.h" #include "get_bits.h" #include "hpeldsp.h" #include "internal.h" #include "jpegquanttables.h" #include "mathops.h" #include "progressframe.h" #include "refstruct.h" #include "thread.h" #include "videodsp.h" #include "vp3data.h" #include "vp4data.h" #include "vp3dsp.h" #include "xiph.h" #define VP3_MV_VLC_BITS 6 #define VP4_MV_VLC_BITS 6 #define SUPERBLOCK_VLC_BITS 6 #define FRAGMENT_PIXELS 8 // FIXME split things out into their own arrays typedef struct Vp3Fragment { int16_t dc; uint8_t coding_method; uint8_t qpi; } Vp3Fragment; #define SB_NOT_CODED 0 #define SB_PARTIALLY_CODED 1 #define SB_FULLY_CODED 2 // This is the maximum length of a single long bit run that can be encoded // for superblock coding or block qps. Theora special-cases this to read a // bit instead of flipping the current bit to allow for runs longer than 4129. #define MAXIMUM_LONG_BIT_RUN 4129 #define MODE_INTER_NO_MV 0 #define MODE_INTRA 1 #define MODE_INTER_PLUS_MV 2 #define MODE_INTER_LAST_MV 3 #define MODE_INTER_PRIOR_LAST 4 #define MODE_USING_GOLDEN 5 #define MODE_GOLDEN_MV 6 #define MODE_INTER_FOURMV 7 #define CODING_MODE_COUNT 8 /* special internal mode */ #define MODE_COPY 8 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb); static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); /* There are 6 preset schemes, plus a free-form scheme */ static const int ModeAlphabet[6][CODING_MODE_COUNT] = { /* scheme 1: Last motion vector dominates */ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 2 */ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 3 */ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 4 */ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 5: No motion vector dominates */ { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 6 */ { MODE_INTER_NO_MV, MODE_USING_GOLDEN, MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, }; static const uint8_t hilbert_offset[16][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 }, { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 }, { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 } }; enum { VP4_DC_INTRA = 0, VP4_DC_INTER = 1, VP4_DC_GOLDEN = 2, NB_VP4_DC_TYPES, VP4_DC_UNDEFINED = NB_VP4_DC_TYPES }; static const uint8_t vp4_pred_block_type_map[8] = { [MODE_INTER_NO_MV] = VP4_DC_INTER, [MODE_INTRA] = VP4_DC_INTRA, [MODE_INTER_PLUS_MV] = VP4_DC_INTER, [MODE_INTER_LAST_MV] = VP4_DC_INTER, [MODE_INTER_PRIOR_LAST] = VP4_DC_INTER, [MODE_USING_GOLDEN] = VP4_DC_GOLDEN, [MODE_GOLDEN_MV] = VP4_DC_GOLDEN, [MODE_INTER_FOURMV] = VP4_DC_INTER, }; static VLCElem superblock_run_length_vlc[88]; /* version < 2 */ static VLCElem fragment_run_length_vlc[56]; /* version < 2 */ static VLCElem motion_vector_vlc[112]; /* version < 2 */ // The VP4 tables reuse this vlc. static VLCElem mode_code_vlc[24 + 2108 * CONFIG_VP4_DECODER]; #if CONFIG_VP4_DECODER static const VLCElem *vp4_mv_vlc_table[2][7]; /* version >= 2 */ static const VLCElem *block_pattern_vlc[2]; /* version >= 2 */ #endif typedef struct { int dc; int type; } VP4Predictor; #define MIN_DEQUANT_VAL 2 typedef struct HuffEntry { uint8_t len, sym; } HuffEntry; typedef struct HuffTable { HuffEntry entries[32]; uint8_t nb_entries; } HuffTable; typedef struct CoeffVLCs { const VLCElem *vlc_tabs[80]; VLC vlcs[80]; } CoeffVLCs; typedef struct Vp3DecodeContext { AVCodecContext *avctx; int theora, theora_tables, theora_header; int version; int width, height; int chroma_x_shift, chroma_y_shift; ProgressFrame golden_frame; ProgressFrame last_frame; ProgressFrame current_frame; int keyframe; uint8_t idct_permutation[64]; uint8_t idct_scantable[64]; HpelDSPContext hdsp; VideoDSPContext vdsp; VP3DSPContext vp3dsp; DECLARE_ALIGNED(16, int16_t, block)[64]; int flipped_image; int last_slice_end; int skip_loop_filter; int qps[3]; int nqps; int last_qps[3]; int superblock_count; int y_superblock_width; int y_superblock_height; int y_superblock_count; int c_superblock_width; int c_superblock_height; int c_superblock_count; int u_superblock_start; int v_superblock_start; unsigned char *superblock_coding; int macroblock_count; /* y macroblock count */ int macroblock_width; int macroblock_height; int c_macroblock_count; int c_macroblock_width; int c_macroblock_height; int yuv_macroblock_count; /* y+u+v macroblock count */ int fragment_count; int fragment_width[2]; int fragment_height[2]; Vp3Fragment *all_fragments; int fragment_start[3]; int data_offset[3]; uint8_t offset_x; uint8_t offset_y; int offset_x_warned; int8_t (*motion_val[2])[2]; /* tables */ uint16_t coded_dc_scale_factor[2][64]; uint32_t coded_ac_scale_factor[64]; uint8_t base_matrix[384][64]; uint8_t qr_count[2][3]; uint8_t qr_size[2][3][64]; uint16_t qr_base[2][3][64]; /** * This is a list of all tokens in bitstream order. Reordering takes place * by pulling from each level during IDCT. As a consequence, IDCT must be * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 * otherwise. The 32 different tokens with up to 12 bits of extradata are * collapsed into 3 types, packed as follows: * (from the low to high bits) * * 2 bits: type (0,1,2) * 0: EOB run, 14 bits for run length (12 needed) * 1: zero run, 7 bits for run length * 7 bits for the next coefficient (3 needed) * 2: coefficient, 14 bits (11 needed) * * Coefficients are signed, so are packed in the highest bits for automatic * sign extension. */ int16_t *dct_tokens[3][64]; int16_t *dct_tokens_base; #define TOKEN_EOB(eob_run) ((eob_run) << 2) #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1) #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2) /** * number of blocks that contain DCT coefficients at * the given level or higher */ int num_coded_frags[3][64]; int total_num_coded_frags; /* this is a list of indexes into the all_fragments array indicating * which of the fragments are coded */ int *coded_fragment_list[3]; int *kf_coded_fragment_list; int *nkf_coded_fragment_list; int num_kf_coded_fragment[3]; /** * The first 16 of the following VLCs are for the dc coefficients; * the others are four groups of 16 VLCs each for ac coefficients. * This is a RefStruct reference to share these VLCs between threads. */ CoeffVLCs *coeff_vlc; /* these arrays need to be on 16-byte boundaries since SSE2 operations * index into them */ DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] /* This table contains superblock_count * 16 entries. Each set of 16 * numbers corresponds to the fragment indexes 0..15 of the superblock. * An entry will be -1 to indicate that no entry corresponds to that * index. */ int *superblock_fragments; /* This is an array that indicates how a particular macroblock * is coded. */ unsigned char *macroblock_coding; uint8_t *edge_emu_buffer; /* Huffman decode */ HuffTable huffman_table[5 * 16]; uint8_t filter_limit_values[64]; DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2]; VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */ } Vp3DecodeContext; /************************************************************************ * VP3 specific functions ************************************************************************/ static av_cold void free_tables(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; av_freep(&s->superblock_coding); av_freep(&s->all_fragments); av_freep(&s->nkf_coded_fragment_list); av_freep(&s->kf_coded_fragment_list); av_freep(&s->dct_tokens_base); av_freep(&s->superblock_fragments); av_freep(&s->macroblock_coding); av_freep(&s->dc_pred_row); av_freep(&s->motion_val[0]); av_freep(&s->motion_val[1]); } static void vp3_decode_flush(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; ff_progress_frame_unref(&s->golden_frame); ff_progress_frame_unref(&s->last_frame); ff_progress_frame_unref(&s->current_frame); } static av_cold int vp3_decode_end(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; free_tables(avctx); av_freep(&s->edge_emu_buffer); s->theora_tables = 0; /* release all frames */ vp3_decode_flush(avctx); ff_refstruct_unref(&s->coeff_vlc); return 0; } /** * This function sets up all of the various blocks mappings: * superblocks <-> fragments, macroblocks <-> fragments, * superblocks <-> macroblocks * * @return 0 is successful; returns 1 if *anything* went wrong. */ static int init_block_mapping(Vp3DecodeContext *s) { int j = 0; for (int plane = 0; plane < 3; plane++) { int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; int frag_width = s->fragment_width[!!plane]; int frag_height = s->fragment_height[!!plane]; for (int sb_y = 0; sb_y < sb_height; sb_y++) for (int sb_x = 0; sb_x < sb_width; sb_x++) for (int i = 0; i < 16; i++) { int x = 4 * sb_x + hilbert_offset[i][0]; int y = 4 * sb_y + hilbert_offset[i][1]; if (x < frag_width && y < frag_height) s->superblock_fragments[j++] = s->fragment_start[plane] + y * frag_width + x; else s->superblock_fragments[j++] = -1; } } return 0; /* successful path out */ } /* * This function sets up the dequantization tables used for a particular * frame. */ static void init_dequantizer(Vp3DecodeContext *s, int qpi) { int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; for (int inter = 0; inter < 2; inter++) { for (int plane = 0; plane < 3; plane++) { int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]]; int sum = 0, bmi, bmj, qistart, qri; for (qri = 0; qri < s->qr_count[inter][plane]; qri++) { sum += s->qr_size[inter][plane][qri]; if (s->qps[qpi] <= sum) break; } qistart = sum - s->qr_size[inter][plane][qri]; bmi = s->qr_base[inter][plane][qri]; bmj = s->qr_base[inter][plane][qri + 1]; for (int i = 0; i < 64; i++) { int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] - 2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] + s->qr_size[inter][plane][qri]) / (2 * s->qr_size[inter][plane][qri]); int qmin = 8 << (inter + !i); int qscale = i ? ac_scale_factor : dc_scale_factor; int qbias = (1 + inter) * 3; s->qmat[qpi][inter][plane][s->idct_permutation[i]] = (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096) : (qscale * (coeff - qbias) / 100 + qbias) * 4; } /* all DC coefficients use the same quant so as not to interfere * with DC prediction */ s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; } } } /* * This function initializes the loop filter boundary limits if the frame's * quality index is different from the previous frame's. * * The filter_limit_values may not be larger than 127. */ static void init_loop_filter(Vp3DecodeContext *s) { ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]); } /* * This function unpacks all of the superblock/macroblock/fragment coding * information from the bitstream. */ static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) { const int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start }; int bit = 0; int current_superblock = 0; int current_run = 0; int num_partial_superblocks = 0; int current_fragment; int plane0_num_coded_frags = 0; if (s->keyframe) { memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); } else { /* unpack the list of partially-coded superblocks */ bit = get_bits1(gb) ^ 1; current_run = 0; while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; current_run = get_vlc2(gb, superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 2); if (current_run == 34) current_run += get_bits(gb, 12); if (current_run > s->superblock_count - current_superblock) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n"); return -1; } memset(s->superblock_coding + current_superblock, bit, current_run); current_superblock += current_run; if (bit) num_partial_superblocks += current_run; } /* unpack the list of fully coded superblocks if any of the blocks were * not marked as partially coded in the previous step */ if (num_partial_superblocks < s->superblock_count) { int superblocks_decoded = 0; current_superblock = 0; bit = get_bits1(gb) ^ 1; current_run = 0; while (superblocks_decoded < s->superblock_count - num_partial_superblocks && get_bits_left(gb) > 0) { if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; current_run = get_vlc2(gb, superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 2); if (current_run == 34) current_run += get_bits(gb, 12); for (int j = 0; j < current_run; current_superblock++) { if (current_superblock >= s->superblock_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n"); return -1; } /* skip any superblocks already marked as partially coded */ if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { s->superblock_coding[current_superblock] = 2 * bit; j++; } } superblocks_decoded += current_run; } } /* if there were partial blocks, initialize bitstream for * unpacking fragment codings */ if (num_partial_superblocks) { current_run = 0; bit = get_bits1(gb); /* toggle the bit because as soon as the first run length is * fetched the bit will be toggled again */ bit ^= 1; } } /* figure out which fragments are coded; iterate through each * superblock (all planes) */ s->total_num_coded_frags = 0; memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list : s->nkf_coded_fragment_list; for (int plane = 0; plane < 3; plane++) { int sb_start = superblock_starts[plane]; int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count); int num_coded_frags = 0; if (s->keyframe) { if (s->num_kf_coded_fragment[plane] == -1) { for (int i = sb_start; i < sb_end; i++) { /* iterate through all 16 fragments in a superblock */ for (int j = 0; j < 16; j++) { /* if the fragment is in bounds, check its coding status */ current_fragment = s->superblock_fragments[i * 16 + j]; if (current_fragment != -1) { s->coded_fragment_list[plane][num_coded_frags++] = current_fragment; } } } s->num_kf_coded_fragment[plane] = num_coded_frags; } else num_coded_frags = s->num_kf_coded_fragment[plane]; } else { for (int i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { if (get_bits_left(gb) < plane0_num_coded_frags >> 2) { return AVERROR_INVALIDDATA; } /* iterate through all 16 fragments in a superblock */ for (int j = 0; j < 16; j++) { /* if the fragment is in bounds, check its coding status */ current_fragment = s->superblock_fragments[i * 16 + j]; if (current_fragment != -1) { int coded = s->superblock_coding[i]; if (coded == SB_PARTIALLY_CODED) { /* fragment may or may not be coded; this is the case * that cares about the fragment coding runs */ if (current_run-- == 0) { bit ^= 1; current_run = get_vlc2(gb, fragment_run_length_vlc, 5, 2); } coded = bit; } if (coded) { /* default mode; actual mode will be decoded in * the next phase */ s->all_fragments[current_fragment].coding_method = MODE_INTER_NO_MV; s->coded_fragment_list[plane][num_coded_frags++] = current_fragment; } else { /* not coded; copy this fragment from the prior frame */ s->all_fragments[current_fragment].coding_method = MODE_COPY; } } } } } if (!plane) plane0_num_coded_frags = num_coded_frags; s->total_num_coded_frags += num_coded_frags; for (int i = 0; i < 64; i++) s->num_coded_frags[plane][i] = num_coded_frags; if (plane < 2) s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] + num_coded_frags; } return 0; } #define BLOCK_X (2 * mb_x + (k & 1)) #define BLOCK_Y (2 * mb_y + (k >> 1)) #if CONFIG_VP4_DECODER /** * @return number of blocks, or > yuv_macroblock_count on error. * return value is always >= 1. */ static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb) { int v = 1; int bits; while ((bits = show_bits(gb, 9)) == 0x1ff) { skip_bits(gb, 9); v += 256; if (v > s->yuv_macroblock_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n"); return v; } } #define body(n) { \ skip_bits(gb, 2 + n); \ v += (1 << n) + get_bits(gb, n); } #define thresh(n) (0x200 - (0x80 >> n)) #define else_if(n) else if (bits < thresh(n)) body(n) if (bits < 0x100) { skip_bits(gb, 1); } else if (bits < thresh(0)) { skip_bits(gb, 2); v += 1; } else_if(1) else_if(2) else_if(3) else_if(4) else_if(5) else_if(6) else body(7) #undef body #undef thresh #undef else_if return v; } static int vp4_get_block_pattern(GetBitContext *gb, int *next_block_pattern_table) { int v = get_vlc2(gb, block_pattern_vlc[*next_block_pattern_table], 5, 1); *next_block_pattern_table = vp4_block_pattern_table_selector[v]; return v + 1; } static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb) { int fragment; int next_block_pattern_table; int bit, current_run, has_partial; memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); if (s->keyframe) return 0; has_partial = 0; bit = get_bits1(gb); for (int i = 0; i < s->yuv_macroblock_count; i += current_run) { if (get_bits_left(gb) <= 0) return AVERROR_INVALIDDATA; current_run = vp4_get_mb_count(s, gb); if (current_run > s->yuv_macroblock_count - i) return -1; memset(s->superblock_coding + i, 2 * bit, current_run); bit ^= 1; has_partial |= bit; } if (has_partial) { if (get_bits_left(gb) <= 0) return AVERROR_INVALIDDATA; bit = get_bits1(gb); current_run = vp4_get_mb_count(s, gb); for (int i = 0; i < s->yuv_macroblock_count; i++) { if (!s->superblock_coding[i]) { if (!current_run) { bit ^= 1; current_run = vp4_get_mb_count(s, gb); } s->superblock_coding[i] = bit; current_run--; } } if (current_run) /* handle situation when vp4_get_mb_count() fails */ return -1; } next_block_pattern_table = 0; for (int plane = 0, i = 0; plane < 3; plane++) { int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; int mb_width = plane ? s->c_macroblock_width : s->macroblock_width; int mb_height = plane ? s->c_macroblock_height : s->macroblock_height; int fragment_width = s->fragment_width[!!plane]; int fragment_height = s->fragment_height[!!plane]; for (int sb_y = 0; sb_y < sb_height; sb_y++) { for (int sb_x = 0; sb_x < sb_width; sb_x++) { for (int j = 0; j < 4; j++) { int mb_x = 2 * sb_x + (j >> 1); int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1); int mb_coded, pattern, coded; if (mb_x >= mb_width || mb_y >= mb_height) continue; mb_coded = s->superblock_coding[i++]; if (mb_coded == SB_FULLY_CODED) pattern = 0xF; else if (mb_coded == SB_PARTIALLY_CODED) pattern = vp4_get_block_pattern(gb, &next_block_pattern_table); else pattern = 0; for (int k = 0; k < 4; k++) { if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height) continue; fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X; coded = pattern & (8 >> k); /* MODE_INTER_NO_MV is the default for coded fragments. the actual method is decoded in the next phase. */ s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY; } } } } } return 0; } #endif /* * This function unpacks all the coding mode data for individual macroblocks * from the bitstream. */ static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) { int scheme; int current_macroblock; int current_fragment; int coding_mode; int custom_mode_alphabet[CODING_MODE_COUNT]; const int *alphabet; Vp3Fragment *frag; if (s->keyframe) { for (int i = 0; i < s->fragment_count; i++) s->all_fragments[i].coding_method = MODE_INTRA; } else { /* fetch the mode coding scheme for this frame */ scheme = get_bits(gb, 3); /* is it a custom coding scheme? */ if (scheme == 0) { for (int i = 0; i < 8; i++) custom_mode_alphabet[i] = MODE_INTER_NO_MV; for (int i = 0; i < 8; i++) custom_mode_alphabet[get_bits(gb, 3)] = i; alphabet = custom_mode_alphabet; } else alphabet = ModeAlphabet[scheme - 1]; /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (int sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { for (int sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { if (get_bits_left(gb) <= 0) return -1; for (int j = 0; j < 4; j++) { int k; int mb_x = 2 * sb_x + (j >> 1); int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); current_macroblock = mb_y * s->macroblock_width + mb_x; if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height) continue; /* coding modes are only stored if the macroblock has * at least one luma block coded, otherwise it must be * INTER_NO_MV */ for (k = 0; k < 4; k++) { current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X; if (s->all_fragments[current_fragment].coding_method != MODE_COPY) break; } if (k == 4) { s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; continue; } /* mode 7 means get 3 bits for each coding mode */ if (scheme == 7) coding_mode = get_bits(gb, 3); else coding_mode = alphabet[get_vlc2(gb, mode_code_vlc, 4, 2)]; s->macroblock_coding[current_macroblock] = coding_mode; for (k = 0; k < 4; k++) { frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X; if (frag->coding_method != MODE_COPY) frag->coding_method = coding_mode; } #define SET_CHROMA_MODES \ if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ frag[s->fragment_start[1]].coding_method = coding_mode; \ if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ frag[s->fragment_start[2]].coding_method = coding_mode; if (s->chroma_y_shift) { frag = s->all_fragments + mb_y * s->fragment_width[1] + mb_x; SET_CHROMA_MODES } else if (s->chroma_x_shift) { frag = s->all_fragments + 2 * mb_y * s->fragment_width[1] + mb_x; for (k = 0; k < 2; k++) { SET_CHROMA_MODES frag += s->fragment_width[1]; } } else { for (k = 0; k < 4; k++) { frag = s->all_fragments + BLOCK_Y * s->fragment_width[1] + BLOCK_X; SET_CHROMA_MODES } } } } } } return 0; } static int vp4_get_mv(GetBitContext *gb, int axis, int last_motion) { #if CONFIG_VP4_DECODER int v = get_vlc2(gb, vp4_mv_vlc_table[axis][vp4_mv_table_selector[FFABS(last_motion)]], VP4_MV_VLC_BITS, 2); return last_motion < 0 ? -v : v; #else return 0; #endif } /* * This function unpacks all the motion vectors for the individual * macroblocks from the bitstream. */ static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) { int coding_mode; int motion_x[4]; int motion_y[4]; int last_motion_x = 0; int last_motion_y = 0; int prior_last_motion_x = 0; int prior_last_motion_y = 0; int last_gold_motion_x = 0; int last_gold_motion_y = 0; int current_macroblock; int current_fragment; int frag; if (s->keyframe) return 0; /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */ coding_mode = s->version < 2 ? get_bits1(gb) : 2; /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (int sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { for (int sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { if (get_bits_left(gb) <= 0) return -1; for (int j = 0; j < 4; j++) { int mb_x = 2 * sb_x + (j >> 1); int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); current_macroblock = mb_y * s->macroblock_width + mb_x; if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height || s->macroblock_coding[current_macroblock] == MODE_COPY) continue; switch (s->macroblock_coding[current_macroblock]) { case MODE_GOLDEN_MV: if (coding_mode == 2) { /* VP4 */ last_gold_motion_x = motion_x[0] = vp4_get_mv(gb, 0, last_gold_motion_x); last_gold_motion_y = motion_y[0] = vp4_get_mv(gb, 1, last_gold_motion_y); break; } /* otherwise fall through */ case MODE_INTER_PLUS_MV: /* all 6 fragments use the same motion vector */ if (coding_mode == 0) { motion_x[0] = get_vlc2(gb, motion_vector_vlc, VP3_MV_VLC_BITS, 2); motion_y[0] = get_vlc2(gb, motion_vector_vlc, VP3_MV_VLC_BITS, 2); } else if (coding_mode == 1) { motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; } else { /* VP4 */ motion_x[0] = vp4_get_mv(gb, 0, last_motion_x); motion_y[0] = vp4_get_mv(gb, 1, last_motion_y); } /* vector maintenance, only on MODE_INTER_PLUS_MV */ if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; } break; case MODE_INTER_FOURMV: /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; /* fetch 4 vectors from the bitstream, one for each * Y fragment, then average for the C fragment vectors */ for (int k = 0; k < 4; k++) { current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X; if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { if (coding_mode == 0) { motion_x[k] = get_vlc2(gb, motion_vector_vlc, VP3_MV_VLC_BITS, 2); motion_y[k] = get_vlc2(gb, motion_vector_vlc, VP3_MV_VLC_BITS, 2); } else if (coding_mode == 1) { motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; } else { /* VP4 */ motion_x[k] = vp4_get_mv(gb, 0, prior_last_motion_x); motion_y[k] = vp4_get_mv(gb, 1, prior_last_motion_y); } last_motion_x = motion_x[k]; last_motion_y = motion_y[k]; } else { motion_x[k] = 0; motion_y[k] = 0; } } break; case MODE_INTER_LAST_MV: /* all 6 fragments use the last motion vector */ motion_x[0] = last_motion_x; motion_y[0] = last_motion_y; /* no vector maintenance (last vector remains the * last vector) */ break; case MODE_INTER_PRIOR_LAST: /* all 6 fragments use the motion vector prior to the * last motion vector */ motion_x[0] = prior_last_motion_x; motion_y[0] = prior_last_motion_y; /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; break; default: /* covers intra, inter without MV, golden without MV */ motion_x[0] = 0; motion_y[0] = 0; /* no vector maintenance */ break; } /* assign the motion vectors to the correct fragments */ for (int k = 0; k < 4; k++) { current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X; if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { s->motion_val[0][current_fragment][0] = motion_x[k]; s->motion_val[0][current_fragment][1] = motion_y[k]; } else { s->motion_val[0][current_fragment][0] = motion_x[0]; s->motion_val[0][current_fragment][1] = motion_y[0]; } } if (s->chroma_y_shift) { if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2); motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2); } if (s->version <= 2) { motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1); } frag = mb_y * s->fragment_width[1] + mb_x; s->motion_val[1][frag][0] = motion_x[0]; s->motion_val[1][frag][1] = motion_y[0]; } else if (s->chroma_x_shift) { if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); } else { motion_x[1] = motion_x[0]; motion_y[1] = motion_y[0]; } if (s->version <= 2) { motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1); } frag = 2 * mb_y * s->fragment_width[1] + mb_x; for (int k = 0; k < 2; k++) { s->motion_val[1][frag][0] = motion_x[k]; s->motion_val[1][frag][1] = motion_y[k]; frag += s->fragment_width[1]; } } else { for (int k = 0; k < 4; k++) { frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X; if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { s->motion_val[1][frag][0] = motion_x[k]; s->motion_val[1][frag][1] = motion_y[k]; } else { s->motion_val[1][frag][0] = motion_x[0]; s->motion_val[1][frag][1] = motion_y[0]; } } } } } } return 0; } static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) { int num_blocks = s->total_num_coded_frags; for (int qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) { int i = 0, blocks_decoded = 0, num_blocks_at_qpi = 0; int bit, run_length; bit = get_bits1(gb) ^ 1; run_length = 0; do { if (run_length == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; run_length = get_vlc2(gb, superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 2); if (run_length == 34) run_length += get_bits(gb, 12); blocks_decoded += run_length; if (!bit) num_blocks_at_qpi += run_length; for (int j = 0; j < run_length; i++) { if (i >= s->total_num_coded_frags) return -1; if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; j++; } } } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); num_blocks -= num_blocks_at_qpi; } return 0; } static inline int get_eob_run(GetBitContext *gb, int token) { int v = eob_run_table[token].base; if (eob_run_table[token].bits) v += get_bits(gb, eob_run_table[token].bits); return v; } static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff) { int bits_to_get, zero_run; bits_to_get = coeff_get_bits[token]; if (bits_to_get) bits_to_get = get_bits(gb, bits_to_get); *coeff = coeff_tables[token][bits_to_get]; zero_run = zero_run_base[token]; if (zero_run_get_bits[token]) zero_run += get_bits(gb, zero_run_get_bits[token]); return zero_run; } /* * This function is called by unpack_dct_coeffs() to extract the VLCs from * the bitstream. The VLCs encode tokens which are used to unpack DCT * data. This function unpacks all the VLCs for either the Y plane or both * C planes, and is called for DC coefficients or different AC coefficient * levels (since different coefficient types require different VLC tables. * * This function returns a residual eob run. E.g, if a particular token gave * instructions to EOB the next 5 fragments and there were only 2 fragments * left in the current fragment range, 3 would be returned so that it could * be passed into the next call to this same function. */ static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, const VLCElem *vlc_table, int coeff_index, int plane, int eob_run) { int j = 0; int token; int zero_run = 0; int16_t coeff = 0; int blocks_ended; int coeff_i = 0; int num_coeffs = s->num_coded_frags[plane][coeff_index]; int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; /* local references to structure members to avoid repeated dereferences */ const int *coded_fragment_list = s->coded_fragment_list[plane]; Vp3Fragment *all_fragments = s->all_fragments; if (num_coeffs < 0) { av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficients at level %d\n", coeff_index); return AVERROR_INVALIDDATA; } if (eob_run > num_coeffs) { coeff_i = blocks_ended = num_coeffs; eob_run -= num_coeffs; } else { coeff_i = blocks_ended = eob_run; eob_run = 0; } // insert fake EOB token to cover the split between planes or zzi if (blocks_ended) dct_tokens[j++] = blocks_ended << 2; while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { /* decode a VLC into a token */ token = get_vlc2(gb, vlc_table, 11, 3); /* use the token to get a zero run, a coefficient, and an eob run */ if ((unsigned) token <= 6U) { eob_run = get_eob_run(gb, token); if (!eob_run) eob_run = INT_MAX; // record only the number of blocks ended in this plane, // any spill will be recorded in the next plane. if (eob_run > num_coeffs - coeff_i) { dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); blocks_ended += num_coeffs - coeff_i; eob_run -= num_coeffs - coeff_i; coeff_i = num_coeffs; } else { dct_tokens[j++] = TOKEN_EOB(eob_run); blocks_ended += eob_run; coeff_i += eob_run; eob_run = 0; } } else if (token >= 0) { zero_run = get_coeff(gb, token, &coeff); if (zero_run) { dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); } else { // Save DC into the fragment structure. DC prediction is // done in raster order, so the actual DC can't be in with // other tokens. We still need the token in dct_tokens[] // however, or else the structure collapses on itself. if (!coeff_index) all_fragments[coded_fragment_list[coeff_i]].dc = coeff; dct_tokens[j++] = TOKEN_COEFF(coeff); } if (coeff_index + zero_run > 64) { av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with %d coeffs left\n", zero_run, 64 - coeff_index); zero_run = 64 - coeff_index; } // zero runs code multiple coefficients, // so don't try to decode coeffs for those higher levels for (int i = coeff_index + 1; i <= coeff_index + zero_run; i++) s->num_coded_frags[plane][i]--; coeff_i++; } else { av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); return -1; } } if (blocks_ended > s->num_coded_frags[plane][coeff_index]) av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); // decrement the number of blocks that have higher coefficients for each // EOB run at this level if (blocks_ended) for (int i = coeff_index + 1; i < 64; i++) s->num_coded_frags[plane][i] -= blocks_ended; // setup the next buffer if (plane < 2) s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j; else if (coeff_index < 63) s->dct_tokens[0][coeff_index + 1] = dct_tokens + j; return eob_run; } static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height); /* * This function unpacks all of the DCT coefficient data from the * bitstream. */ static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) { const VLCElem *const *coeff_vlc = s->coeff_vlc->vlc_tabs; int dc_y_table; int dc_c_table; int ac_y_table; int ac_c_table; int residual_eob_run = 0; const VLCElem *y_tables[64], *c_tables[64]; s->dct_tokens[0][0] = s->dct_tokens_base; if (get_bits_left(gb) < 16) return AVERROR_INVALIDDATA; /* fetch the DC table indexes */ dc_y_table = get_bits(gb, 4); dc_c_table = get_bits(gb, 4); /* unpack the Y plane DC coefficients */ residual_eob_run = unpack_vlcs(s, gb, coeff_vlc[dc_y_table], 0, 0, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; if (get_bits_left(gb) < 8) return AVERROR_INVALIDDATA; /* reverse prediction of the Y-plane DC coefficients */ reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); /* unpack the C plane DC coefficients */ residual_eob_run = unpack_vlcs(s, gb, coeff_vlc[dc_c_table], 0, 1, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; residual_eob_run = unpack_vlcs(s, gb, coeff_vlc[dc_c_table], 0, 2, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; /* reverse prediction of the C-plane DC coefficients */ if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { reverse_dc_prediction(s, s->fragment_start[1], s->fragment_width[1], s->fragment_height[1]); reverse_dc_prediction(s, s->fragment_start[2], s->fragment_width[1], s->fragment_height[1]); } if (get_bits_left(gb) < 8) return AVERROR_INVALIDDATA; /* fetch the AC table indexes */ ac_y_table = get_bits(gb, 4); ac_c_table = get_bits(gb, 4); /* build tables of AC VLC tables */ for (int i = 1; i <= 5; i++) { /* AC VLC table group 1 */ y_tables[i] = coeff_vlc[ac_y_table + 16]; c_tables[i] = coeff_vlc[ac_c_table + 16]; } for (int i = 6; i <= 14; i++) { /* AC VLC table group 2 */ y_tables[i] = coeff_vlc[ac_y_table + 32]; c_tables[i] = coeff_vlc[ac_c_table + 32]; } for (int i = 15; i <= 27; i++) { /* AC VLC table group 3 */ y_tables[i] = coeff_vlc[ac_y_table + 48]; c_tables[i] = coeff_vlc[ac_c_table + 48]; } for (int i = 28; i <= 63; i++) { /* AC VLC table group 4 */ y_tables[i] = coeff_vlc[ac_y_table + 64]; c_tables[i] = coeff_vlc[ac_c_table + 64]; } /* decode all AC coefficients */ for (int i = 1; i <= 63; i++) { residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, 0, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, 1, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, 2, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; } return 0; } #if CONFIG_VP4_DECODER /** * eob_tracker[] is instead of TOKEN_EOB(value) * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work * * @return < 0 on error */ static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, const VLCElem *const vlc_tables[64], int plane, int eob_tracker[64], int fragment) { int token; int zero_run = 0; int16_t coeff = 0; int coeff_i = 0; int eob_run; while (!eob_tracker[coeff_i]) { if (get_bits_left(gb) < 1) return AVERROR_INVALIDDATA; token = get_vlc2(gb, vlc_tables[coeff_i], 11, 3); /* use the token to get a zero run, a coefficient, and an eob run */ if ((unsigned) token <= 6U) { eob_run = get_eob_run(gb, token); *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0); eob_tracker[coeff_i] = eob_run - 1; return 0; } else if (token >= 0) { zero_run = get_coeff(gb, token, &coeff); if (zero_run) { if (coeff_i + zero_run > 64) { av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with %d coeffs left\n", zero_run, 64 - coeff_i); zero_run = 64 - coeff_i; } *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run); coeff_i += zero_run; } else { if (!coeff_i) s->all_fragments[fragment].dc = coeff; *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff); } coeff_i++; if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */ return 0; /* stop */ } else { av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); return -1; } } *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0); eob_tracker[coeff_i]--; return 0; } static void vp4_dc_predictor_reset(VP4Predictor *p) { p->dc = 0; p->type = VP4_DC_UNDEFINED; } static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x) { for (int i = 0; i < 4; i++) dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i]; for (int j = 1; j < 5; j++) for (int i = 0; i < 4; i++) vp4_dc_predictor_reset(&dc_pred[j][i + 1]); } static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x) { for (int i = 0; i < 4; i++) s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1]; for (int i = 1; i < 5; i++) dc_pred[i][0] = dc_pred[i][4]; } /* note: dc_pred points to the current block */ static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane) { int count = 0; int dc = 0; if (dc_pred[-6].type == type) { dc += dc_pred[-6].dc; count++; } if (dc_pred[6].type == type) { dc += dc_pred[6].dc; count++; } if (count != 2 && dc_pred[-1].type == type) { dc += dc_pred[-1].dc; count++; } if (count != 2 && dc_pred[1].type == type) { dc += dc_pred[1].dc; count++; } /* using division instead of shift to correctly handle negative values */ return count == 2 ? dc / 2 : last_dc[type]; } static void vp4_set_tokens_base(Vp3DecodeContext *s) { int16_t *base = s->dct_tokens_base; for (int plane = 0; plane < 3; plane++) { for (int i = 0; i < 64; i++) { s->dct_tokens[plane][i] = base; base += s->fragment_width[!!plane] * s->fragment_height[!!plane]; } } } static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) { const VLCElem *const *coeff_vlc = s->coeff_vlc->vlc_tabs; int dc_y_table; int dc_c_table; int ac_y_table; int ac_c_table; const VLCElem *tables[2][64]; int eob_tracker[64]; VP4Predictor dc_pred[6][6]; int last_dc[NB_VP4_DC_TYPES]; if (get_bits_left(gb) < 16) return AVERROR_INVALIDDATA; /* fetch the DC table indexes */ dc_y_table = get_bits(gb, 4); dc_c_table = get_bits(gb, 4); ac_y_table = get_bits(gb, 4); ac_c_table = get_bits(gb, 4); /* build tables of DC/AC VLC tables */ /* DC table group */ tables[0][0] = coeff_vlc[dc_y_table]; tables[1][0] = coeff_vlc[dc_c_table]; for (int i = 1; i <= 5; i++) { /* AC VLC table group 1 */ tables[0][i] = coeff_vlc[ac_y_table + 16]; tables[1][i] = coeff_vlc[ac_c_table + 16]; } for (int i = 6; i <= 14; i++) { /* AC VLC table group 2 */ tables[0][i] = coeff_vlc[ac_y_table + 32]; tables[1][i] = coeff_vlc[ac_c_table + 32]; } for (int i = 15; i <= 27; i++) { /* AC VLC table group 3 */ tables[0][i] = coeff_vlc[ac_y_table + 48]; tables[1][i] = coeff_vlc[ac_c_table + 48]; } for (int i = 28; i <= 63; i++) { /* AC VLC table group 4 */ tables[0][i] = coeff_vlc[ac_y_table + 64]; tables[1][i] = coeff_vlc[ac_c_table + 64]; } vp4_set_tokens_base(s); memset(last_dc, 0, sizeof(last_dc)); for (int plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) { memset(eob_tracker, 0, sizeof(eob_tracker)); /* initialise dc prediction */ for (int i = 0; i < s->fragment_width[!!plane]; i++) vp4_dc_predictor_reset(&s->dc_pred_row[i]); for (int j = 0; j < 6; j++) for (int i = 0; i < 6; i++) vp4_dc_predictor_reset(&dc_pred[j][i]); for (int sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) { for (int sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) { vp4_dc_pred_before(s, dc_pred, sb_x); for (int j = 0; j < 16; j++) { int hx = hilbert_offset[j][0]; int hy = hilbert_offset[j][1]; int x = 4 * sb_x + hx; int y = 4 * sb_y + hy; VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1]; int fragment, dc_block_type; if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane]) continue; fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x; if (s->all_fragments[fragment].coding_method == MODE_COPY) continue; if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0) return -1; dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method]; s->all_fragments[fragment].dc += vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane); this_dc_pred->type = dc_block_type, this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc; } vp4_dc_pred_after(s, dc_pred, sb_x); } } } vp4_set_tokens_base(s); return 0; } #endif /* * This function reverses the DC prediction for each coded fragment in * the frame. Much of this function is adapted directly from the original * VP3 source code. */ #define COMPATIBLE_FRAME(x) \ (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) #define DC_COEFF(u) s->all_fragments[u].dc static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height) { #define PUL 8 #define PU 4 #define PUR 2 #define PL 1 int i = first_fragment; int predicted_dc; /* DC values for the left, up-left, up, and up-right fragments */ int vl, vul, vu, vur; /* indexes for the left, up-left, up, and up-right fragments */ int l, ul, u, ur; /* * The 6 fields mean: * 0: up-left multiplier * 1: up multiplier * 2: up-right multiplier * 3: left multiplier */ static const int predictor_transform[16][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 128 }, // PL { 0, 0, 128, 0 }, // PUR { 0, 0, 53, 75 }, // PUR|PL { 0, 128, 0, 0 }, // PU { 0, 64, 0, 64 }, // PU |PL { 0, 128, 0, 0 }, // PU |PUR { 0, 0, 53, 75 }, // PU |PUR|PL { 128, 0, 0, 0 }, // PUL { 0, 0, 0, 128 }, // PUL|PL { 64, 0, 64, 0 }, // PUL|PUR { 0, 0, 53, 75 }, // PUL|PUR|PL { 0, 128, 0, 0 }, // PUL|PU { -104, 116, 0, 116 }, // PUL|PU |PL { 24, 80, 24, 0 }, // PUL|PU |PUR { -104, 116, 0, 116 } // PUL|PU |PUR|PL }; /* This table shows which types of blocks can use other blocks for * prediction. For example, INTRA is the only mode in this table to * have a frame number of 0. That means INTRA blocks can only predict * from other INTRA blocks. There are 2 golden frame coding types; * blocks encoding in these modes can only predict from other blocks * that were encoded with these 1 of these 2 modes. */ static const unsigned char compatible_frame[9] = { 1, /* MODE_INTER_NO_MV */ 0, /* MODE_INTRA */ 1, /* MODE_INTER_PLUS_MV */ 1, /* MODE_INTER_LAST_MV */ 1, /* MODE_INTER_PRIOR_MV */ 2, /* MODE_USING_GOLDEN */ 2, /* MODE_GOLDEN_MV */ 1, /* MODE_INTER_FOUR_MV */ 3 /* MODE_COPY */ }; int current_frame_type; /* there is a last DC predictor for each of the 3 frame types */ short last_dc[3]; int transform = 0; vul = vu = vur = vl = 0; last_dc[0] = last_dc[1] = last_dc[2] = 0; /* for each fragment row... */ for (int y = 0; y < fragment_height; y++) { /* for each fragment in a row... */ for (int x = 0; x < fragment_width; x++, i++) { /* reverse prediction if this block was coded */ if (s->all_fragments[i].coding_method != MODE_COPY) { current_frame_type = compatible_frame[s->all_fragments[i].coding_method]; transform = 0; if (x) { l = i - 1; vl = DC_COEFF(l); if (COMPATIBLE_FRAME(l)) transform |= PL; } if (y) { u = i - fragment_width; vu = DC_COEFF(u); if (COMPATIBLE_FRAME(u)) transform |= PU; if (x) { ul = i - fragment_width - 1; vul = DC_COEFF(ul); if (COMPATIBLE_FRAME(ul)) transform |= PUL; } if (x + 1 < fragment_width) { ur = i - fragment_width + 1; vur = DC_COEFF(ur); if (COMPATIBLE_FRAME(ur)) transform |= PUR; } } if (transform == 0) { /* if there were no fragments to predict from, use last * DC saved */ predicted_dc = last_dc[current_frame_type]; } else { /* apply the appropriate predictor transform */ predicted_dc = (predictor_transform[transform][0] * vul) + (predictor_transform[transform][1] * vu) + (predictor_transform[transform][2] * vur) + (predictor_transform[transform][3] * vl); predicted_dc /= 128; /* check for outranging on the [ul u l] and * [ul u ur l] predictors */ if ((transform == 15) || (transform == 13)) { if (FFABS(predicted_dc - vu) > 128) predicted_dc = vu; else if (FFABS(predicted_dc - vl) > 128) predicted_dc = vl; else if (FFABS(predicted_dc - vul) > 128) predicted_dc = vul; } } /* at long last, apply the predictor */ DC_COEFF(i) += predicted_dc; /* save the DC */ last_dc[current_frame_type] = DC_COEFF(i); } } } } static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend) { int *bounding_values = s->bounding_values_array + 127; int width = s->fragment_width[!!plane]; int height = s->fragment_height[!!plane]; int fragment = s->fragment_start[plane] + ystart * width; ptrdiff_t stride = s->current_frame.f->linesize[plane]; uint8_t *plane_data = s->current_frame.f->data[plane]; if (!s->flipped_image) stride = -stride; plane_data += s->data_offset[plane] + 8 * ystart * stride; for (int y = ystart; y < yend; y++) { for (int x = 0; x < width; x++) { /* This code basically just deblocks on the edges of coded blocks. * However, it has to be much more complicated because of the * brain damaged deblock ordering used in VP3/Theora. Order matters * because some pixels get filtered twice. */ if (s->all_fragments[fragment].coding_method != MODE_COPY) { /* do not perform left edge filter for left columns frags */ if (x > 0) { s->vp3dsp.h_loop_filter( plane_data + 8 * x, stride, bounding_values); } /* do not perform top edge filter for top row fragments */ if (y > 0) { s->vp3dsp.v_loop_filter( plane_data + 8 * x, stride, bounding_values); } /* do not perform right edge filter for right column * fragments or if right fragment neighbor is also coded * in this frame (it will be filtered in next iteration) */ if ((x < width - 1) && (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { s->vp3dsp.h_loop_filter( plane_data + 8 * x + 8, stride, bounding_values); } /* do not perform bottom edge filter for bottom row * fragments or if bottom fragment neighbor is also coded * in this frame (it will be filtered in the next row) */ if ((y < height - 1) && (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { s->vp3dsp.v_loop_filter( plane_data + 8 * x + 8 * stride, stride, bounding_values); } } fragment++; } plane_data += 8 * stride; } } /** * Pull DCT tokens from the 64 levels to decode and dequant the coefficients * for the next block in coding order */ static inline int vp3_dequant(Vp3DecodeContext *s, const Vp3Fragment *frag, int plane, int inter, int16_t block[64]) { const int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; const uint8_t *perm = s->idct_scantable; int i = 0; do { int token = *s->dct_tokens[plane][i]; switch (token & 3) { case 0: // EOB if (--token < 4) // 0-3 are token types so the EOB run must now be 0 s->dct_tokens[plane][i]++; else *s->dct_tokens[plane][i] = token & ~3; goto end; case 1: // zero run s->dct_tokens[plane][i]++; i += (token >> 2) & 0x7f; if (i > 63) { av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); return i; } block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; i++; break; case 2: // coeff block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; s->dct_tokens[plane][i++]++; break; default: // shouldn't happen return i; } } while (i < 64); // return value is expected to be a valid level i--; end: // the actual DC+prediction is in the fragment structure block[0] = frag->dc * s->qmat[0][inter][plane][0]; return i; } /** * called when all pixels up to row y are complete */ static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) { int h, cy; int offset[AV_NUM_DATA_POINTERS]; if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) { int y_flipped = s->flipped_image ? s->height - y : y; /* At the end of the frame, report INT_MAX instead of the height of * the frame. This makes the other threads' ff_thread_await_progress() * calls cheaper, because they don't have to clip their values. */ ff_progress_frame_report(&s->current_frame, y_flipped == s->height ? INT_MAX : y_flipped - 1); } if (!s->avctx->draw_horiz_band) return; h = y - s->last_slice_end; s->last_slice_end = y; y -= h; if (!s->flipped_image) y = s->height - y - h; cy = y >> s->chroma_y_shift; offset[0] = s->current_frame.f->linesize[0] * y; offset[1] = s->current_frame.f->linesize[1] * cy; offset[2] = s->current_frame.f->linesize[2] * cy; for (int i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h); } /** * Wait for the reference frame of the current fragment. * The progress value is in luma pixel rows. */ static void await_reference_row(Vp3DecodeContext *s, const Vp3Fragment *fragment, int motion_y, int y) { const ProgressFrame *ref_frame; int ref_row; int border = motion_y & 1; if (fragment->coding_method == MODE_USING_GOLDEN || fragment->coding_method == MODE_GOLDEN_MV) ref_frame = &s->golden_frame; else ref_frame = &s->last_frame; ref_row = y + (motion_y >> 1); ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); ff_progress_frame_await(ref_frame, ref_row); } #if CONFIG_VP4_DECODER /** * @return non-zero if temp (edge_emu_buffer) was populated */ static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by, const uint8_t *motion_source, ptrdiff_t stride, int src_x, int src_y, uint8_t *temp) { int motion_shift = plane ? 4 : 2; int subpel_mask = plane ? 3 : 1; int *bounding_values = s->bounding_values_array + 127; int x, y; int x2, y2; int x_subpel, y_subpel; int x_offset, y_offset; int block_width = plane ? 8 : 16; int plane_width = s->width >> (plane && s->chroma_x_shift); int plane_height = s->height >> (plane && s->chroma_y_shift); #define loop_stride 12 uint8_t loop[12 * loop_stride]; /* using division instead of shift to correctly handle negative values */ x = 8 * bx + motion_x / motion_shift; y = 8 * by + motion_y / motion_shift; x_subpel = motion_x & subpel_mask; y_subpel = motion_y & subpel_mask; if (x_subpel || y_subpel) { x--; y--; if (x_subpel) x = FFMIN(x, x + FFSIGN(motion_x)); if (y_subpel) y = FFMIN(y, y + FFSIGN(motion_y)); x2 = x + block_width; y2 = y + block_width; if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height) return 0; x_offset = (-(x + 2) & 7) + 2; y_offset = (-(y + 2) & 7) + 2; av_assert1(!(x_offset > 8 + x_subpel && y_offset > 8 + y_subpel)); s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1, loop_stride, stride, 12, 12, src_x - 1, src_y - 1, plane_width, plane_height); if (x_offset <= 8 + x_subpel) ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values); if (y_offset <= 8 + y_subpel) ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values); } else { x_offset = -x & 7; y_offset = -y & 7; if (!x_offset && !y_offset) return 0; s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1, loop_stride, stride, 12, 12, src_x - 1, src_y - 1, plane_width, plane_height); #define safe_loop_filter(name, ptr, stride, bounding_values) \ if ((uintptr_t)(ptr) & 7) \ s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \ else \ s->vp3dsp.name(ptr, stride, bounding_values); if (x_offset) safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values); if (y_offset) safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values); } for (int i = 0; i < 9; i++) memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9); return 1; } #endif /* * Perform the final rendering for a particular slice of data. * The slice number ranges from 0..(c_superblock_height - 1). */ static void render_slice(Vp3DecodeContext *s, int slice) { int16_t *block = s->block; int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; /* When decoding keyframes, the earlier frames may not be available, * so we just use the current frame in this case instead; * it also avoid using undefined pointer arithmetic. Nothing is * ever read from these frames in case of a keyframe. */ const AVFrame *last_frame = s->last_frame.f ? s->last_frame.f : s->current_frame.f; const AVFrame *golden_frame = s->golden_frame.f ? s->golden_frame.f : s->current_frame.f; int motion_halfpel_index; int first_pixel; if (slice >= s->c_superblock_height) return; for (int plane = 0; plane < 3; plane++) { uint8_t *output_plane = s->current_frame.f->data[plane] + s->data_offset[plane]; const uint8_t *last_plane = last_frame->data[plane] + s->data_offset[plane]; const uint8_t *golden_plane = golden_frame->data[plane] + s->data_offset[plane]; ptrdiff_t stride = s->current_frame.f->linesize[plane]; int plane_width = s->width >> (plane && s->chroma_x_shift); int plane_height = s->height >> (plane && s->chroma_y_shift); const int8_t (*motion_val)[2] = s->motion_val[!!plane]; int sb_y = slice << (!plane && s->chroma_y_shift); int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); int slice_width = plane ? s->c_superblock_width : s->y_superblock_width; int fragment_width = s->fragment_width[!!plane]; int fragment_height = s->fragment_height[!!plane]; int fragment_start = s->fragment_start[plane]; int do_await = !plane && HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME); if (!s->flipped_image) stride = -stride; if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) continue; /* for each superblock row in the slice (both of them)... */ for (; sb_y < slice_height; sb_y++) { /* for each superblock in a row... */ for (int sb_x = 0; sb_x < slice_width; sb_x++) { /* for each block in a superblock... */ for (int j = 0; j < 16; j++) { int x = 4 * sb_x + hilbert_offset[j][0]; int y = 4 * sb_y + hilbert_offset[j][1]; int fragment = y * fragment_width + x; int i = fragment_start + fragment; // bounds check if (x >= fragment_width || y >= fragment_height) continue; first_pixel = 8 * y * stride + 8 * x; if (do_await && s->all_fragments[i].coding_method != MODE_INTRA) await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16 * y) >> s->chroma_y_shift); /* transform if this block was coded */ if (s->all_fragments[i].coding_method != MODE_COPY) { const uint8_t *motion_source; if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) motion_source = golden_plane; else motion_source = last_plane; motion_source += first_pixel; motion_halfpel_index = 0; /* sort out the motion vector if this fragment is coded * using a motion vector method */ if ((s->all_fragments[i].coding_method > MODE_INTRA) && (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { int src_x, src_y; int standard_mc = 1; motion_x = motion_val[fragment][0]; motion_y = motion_val[fragment][1]; #if CONFIG_VP4_DECODER if (plane && s->version >= 2) { motion_x = (motion_x >> 1) | (motion_x & 1); motion_y = (motion_y >> 1) | (motion_y & 1); } #endif src_x = (motion_x >> 1) + 8 * x; src_y = (motion_y >> 1) + 8 * y; motion_halfpel_index = motion_x & 0x01; motion_source += (motion_x >> 1); motion_halfpel_index |= (motion_y & 0x01) << 1; motion_source += ((motion_y >> 1) * stride); #if CONFIG_VP4_DECODER if (s->version >= 2) { uint8_t *temp = s->edge_emu_buffer; if (stride < 0) temp -= 8 * stride; if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) { motion_source = temp; standard_mc = 0; } } #endif if (standard_mc && ( src_x < 0 || src_y < 0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height)) { uint8_t *temp = s->edge_emu_buffer; if (stride < 0) temp -= 8 * stride; s->vdsp.emulated_edge_mc(temp, motion_source, stride, stride, 9, 9, src_x, src_y, plane_width, plane_height); motion_source = temp; } } /* first, take care of copying a block from either the * previous or the golden frame */ if (s->all_fragments[i].coding_method != MODE_INTRA) { /* Note, it is possible to implement all MC cases * with put_no_rnd_pixels_l2 which would look more * like the VP3 source but this would be slower as * put_no_rnd_pixels_tab is better optimized */ if (motion_halfpel_index != 3) { s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( output_plane + first_pixel, motion_source, stride, 8); } else { /* d is 0 if motion_x and _y have the same sign, * else -1 */ int d = (motion_x ^ motion_y) >> 31; s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel, motion_source - d, motion_source + stride + 1 + d, stride, 8); } } /* invert DCT and place (or add) in final output */ if (s->all_fragments[i].coding_method == MODE_INTRA) { vp3_dequant(s, s->all_fragments + i, plane, 0, block); s->vp3dsp.idct_put(output_plane + first_pixel, stride, block); } else { if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) { s->vp3dsp.idct_add(output_plane + first_pixel, stride, block); } else { s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block); } } } else { /* copy directly from the previous frame */ s->hdsp.put_pixels_tab[1][0]( output_plane + first_pixel, last_plane + first_pixel, stride, 8); } } } // Filter up to the last row in the superblock row if (s->version < 2 && !s->skip_loop_filter) apply_loop_filter(s, plane, 4 * sb_y - !!sb_y, FFMIN(4 * sb_y + 3, fragment_height - 1)); } } /* this looks like a good place for slice dispatch... */ /* algorithm: * if (slice == s->macroblock_height - 1) * dispatch (both last slice & 2nd-to-last slice); * else if (slice > 0) * dispatch (slice - 1); */ vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16, s->height - 16)); } static av_cold void init_tables_once(void) { VLCInitState state = VLC_INIT_STATE(mode_code_vlc); VLC_INIT_STATIC_TABLE_FROM_LENGTHS(superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 34, superblock_run_length_vlc_lens, 1, NULL, 0, 0, 1, 0); VLC_INIT_STATIC_TABLE_FROM_LENGTHS(fragment_run_length_vlc, 5, 30, fragment_run_length_vlc_len, 1, NULL, 0, 0, 0, 0); VLC_INIT_STATIC_TABLE_FROM_LENGTHS(motion_vector_vlc, VP3_MV_VLC_BITS, 63, &motion_vector_vlc_table[0][1], 2, &motion_vector_vlc_table[0][0], 2, 1, -31, 0); ff_vlc_init_tables_from_lengths(&state, 4, 8, mode_code_vlc_len, 1, NULL, 0, 0, 0, 0); #if CONFIG_VP4_DECODER for (int j = 0; j < 2; j++) for (int i = 0; i < 7; i++) { vp4_mv_vlc_table[j][i] = ff_vlc_init_tables_from_lengths(&state, VP4_MV_VLC_BITS, 63, &vp4_mv_vlc[j][i][0][1], 2, &vp4_mv_vlc[j][i][0][0], 2, 1, -31, 0); } /* version >= 2 */ for (int i = 0; i < 2; i++) { block_pattern_vlc[i] = ff_vlc_init_tables(&state, 5, 14, &vp4_block_pattern_vlc[i][0][1], 2, 1, &vp4_block_pattern_vlc[i][0][0], 2, 1, 0); } #endif } /// Allocate tables for per-frame data in Vp3DecodeContext static av_cold int allocate_tables(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int y_fragment_count, c_fragment_count; free_tables(avctx); y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */ s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count)); s->all_fragments = av_calloc(s->fragment_count, sizeof(*s->all_fragments)); s-> kf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int)); s->nkf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int)); memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment)); s->dct_tokens_base = av_calloc(s->fragment_count, 64 * sizeof(*s->dct_tokens_base)); s->motion_val[0] = av_calloc(y_fragment_count, sizeof(*s->motion_val[0])); s->motion_val[1] = av_calloc(c_fragment_count, sizeof(*s->motion_val[1])); /* work out the block mapping tables */ s->superblock_fragments = av_calloc(s->superblock_count, 16 * sizeof(int)); s->macroblock_coding = av_mallocz(s->macroblock_count + 1); s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row)); if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base || !s->kf_coded_fragment_list || !s->nkf_coded_fragment_list || !s->superblock_fragments || !s->macroblock_coding || !s->dc_pred_row || !s->motion_val[0] || !s->motion_val[1]) { return -1; } init_block_mapping(s); return 0; } static av_cold void free_vlc_tables(FFRefStructOpaque unused, void *obj) { CoeffVLCs *vlcs = obj; for (int i = 0; i < FF_ARRAY_ELEMS(vlcs->vlcs); i++) ff_vlc_free(&vlcs->vlcs[i]); } static av_cold int vp3_decode_init(AVCodecContext *avctx) { static AVOnce init_static_once = AV_ONCE_INIT; Vp3DecodeContext *s = avctx->priv_data; int ret; int c_width; int c_height; int y_fragment_count, c_fragment_count; if (avctx->codec_tag == MKTAG('V', 'P', '4', '0')) { s->version = 3; #if !CONFIG_VP4_DECODER av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n"); return AVERROR_DECODER_NOT_FOUND; #endif } else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0')) s->version = 0; else s->version = 1; s->avctx = avctx; s->width = FFALIGN(avctx->coded_width, 16); s->height = FFALIGN(avctx->coded_height, 16); if (s->width < 18) return AVERROR_PATCHWELCOME; if (avctx->codec_id != AV_CODEC_ID_THEORA) avctx->pix_fmt = AV_PIX_FMT_YUV420P; avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT); ff_videodsp_init(&s->vdsp, 8); ff_vp3dsp_init(&s->vp3dsp, avctx->flags); for (int i = 0; i < 64; i++) { #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3)) s->idct_permutation[i] = TRANSPOSE(i); s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]); #undef TRANSPOSE } /* initialize to an impossible value which will force a recalculation * in the first frame decode */ for (int i = 0; i < 3; i++) s->qps[i] = -1; ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); if (ret) return ret; s->y_superblock_width = (s->width + 31) / 32; s->y_superblock_height = (s->height + 31) / 32; s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; /* work out the dimensions for the C planes */ c_width = s->width >> s->chroma_x_shift; c_height = s->height >> s->chroma_y_shift; s->c_superblock_width = (c_width + 31) / 32; s->c_superblock_height = (c_height + 31) / 32; s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); s->u_superblock_start = s->y_superblock_count; s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; s->macroblock_width = (s->width + 15) / 16; s->macroblock_height = (s->height + 15) / 16; s->macroblock_count = s->macroblock_width * s->macroblock_height; s->c_macroblock_width = (c_width + 15) / 16; s->c_macroblock_height = (c_height + 15) / 16; s->c_macroblock_count = s->c_macroblock_width * s->c_macroblock_height; s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count; s->fragment_width[0] = s->width / FRAGMENT_PIXELS; s->fragment_height[0] = s->height / FRAGMENT_PIXELS; s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; /* fragment count covers all 8x8 blocks for all 3 planes */ y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; s->fragment_count = y_fragment_count + 2 * c_fragment_count; s->fragment_start[1] = y_fragment_count; s->fragment_start[2] = y_fragment_count + c_fragment_count; if (!s->theora_tables) { for (int i = 0; i < 64; i++) { s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i]; s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i]; s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i]; s->base_matrix[0][i] = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i]; s->base_matrix[1][i] = s->version < 2 ? ff_mjpeg_std_chrominance_quant_tbl[i] : vp4_generic_dequant[i]; s->base_matrix[2][i] = s->version < 2 ? vp31_inter_dequant[i] : vp4_generic_dequant[i]; s->filter_limit_values[i] = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i]; } for (int inter = 0; inter < 2; inter++) { for (int plane = 0; plane < 3; plane++) { s->qr_count[inter][plane] = 1; s->qr_size[inter][plane][0] = 63; s->qr_base[inter][plane][0] = s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter; } } } if (!avctx->internal->is_copy) { CoeffVLCs *vlcs = ff_refstruct_alloc_ext(sizeof(*s->coeff_vlc), 0, NULL, free_vlc_tables); if (!vlcs) return AVERROR(ENOMEM); s->coeff_vlc = vlcs; if (!s->theora_tables) { const uint8_t (*bias_tabs)[32][2]; /* init VLC tables */ bias_tabs = CONFIG_VP4_DECODER && s->version >= 2 ? vp4_bias : vp3_bias; for (int i = 0; i < FF_ARRAY_ELEMS(vlcs->vlcs); i++) { ret = ff_vlc_init_from_lengths(&vlcs->vlcs[i], 11, 32, &bias_tabs[i][0][1], 2, &bias_tabs[i][0][0], 2, 1, 0, 0, avctx); if (ret < 0) return ret; vlcs->vlc_tabs[i] = vlcs->vlcs[i].table; } } else { for (int i = 0; i < FF_ARRAY_ELEMS(vlcs->vlcs); i++) { const HuffTable *tab = &s->huffman_table[i]; ret = ff_vlc_init_from_lengths(&vlcs->vlcs[i], 11, tab->nb_entries, &tab->entries[0].len, sizeof(*tab->entries), &tab->entries[0].sym, sizeof(*tab->entries), 1, 0, 0, avctx); if (ret < 0) return ret; vlcs->vlc_tabs[i] = vlcs->vlcs[i].table; } } } ff_thread_once(&init_static_once, init_tables_once); return allocate_tables(avctx); } /// Release and shuffle frames after decode finishes static void update_frames(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; if (s->keyframe) ff_progress_frame_replace(&s->golden_frame, &s->current_frame); /* shuffle frames */ ff_progress_frame_unref(&s->last_frame); FFSWAP(ProgressFrame, s->last_frame, s->current_frame); } #if HAVE_THREADS static void ref_frames(Vp3DecodeContext *dst, const Vp3DecodeContext *src) { ff_progress_frame_replace(&dst->current_frame, &src->current_frame); ff_progress_frame_replace(&dst->golden_frame, &src->golden_frame); ff_progress_frame_replace(&dst->last_frame, &src->last_frame); } static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { Vp3DecodeContext *s = dst->priv_data; const Vp3DecodeContext *s1 = src->priv_data; int qps_changed = 0; ff_refstruct_replace(&s->coeff_vlc, s1->coeff_vlc); // copy previous frame data ref_frames(s, s1); if (!s1->current_frame.f || s->width != s1->width || s->height != s1->height) { return -1; } if (s != s1) { s->keyframe = s1->keyframe; // copy qscale data if necessary for (int i = 0; i < 3; i++) { if (s->qps[i] != s1->qps[1]) { qps_changed = 1; memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); } } if (s->qps[0] != s1->qps[0]) memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array)); if (qps_changed) { memcpy(s->qps, s1->qps, sizeof(s->qps)); memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps)); s->nqps = s1->nqps; } } update_frames(dst); return 0; } #endif static int vp3_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; Vp3DecodeContext *s = avctx->priv_data; GetBitContext gb; int ret; if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0) return ret; #if CONFIG_THEORA_DECODER if (s->theora && get_bits1(&gb)) { int type = get_bits(&gb, 7); skip_bits_long(&gb, 6*8); /* "theora" */ if (s->avctx->active_thread_type&FF_THREAD_FRAME) { av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n"); return AVERROR_PATCHWELCOME; } if (type == 0) { vp3_decode_end(avctx); ret = theora_decode_header(avctx, &gb); if (ret >= 0) ret = vp3_decode_init(avctx); if (ret < 0) { vp3_decode_end(avctx); return ret; } return buf_size; } else if (type == 2) { vp3_decode_end(avctx); ret = theora_decode_tables(avctx, &gb); if (ret >= 0) ret = vp3_decode_init(avctx); if (ret < 0) { vp3_decode_end(avctx); return ret; } return buf_size; } av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); return -1; } #endif s->keyframe = !get_bits1(&gb); if (!s->all_fragments) { av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n"); return -1; } if (!s->theora) skip_bits(&gb, 1); for (int i = 0; i < 3; i++) s->last_qps[i] = s->qps[i]; s->nqps = 0; do { s->qps[s->nqps++] = get_bits(&gb, 6); } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb)); for (int i = s->nqps; i < 3; i++) s->qps[i] = -1; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%"PRId64": Q index = %d\n", s->keyframe ? "key" : "", avctx->frame_num + 1, s->qps[0]); s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] || avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY); if (s->qps[0] != s->last_qps[0]) init_loop_filter(s); for (int i = 0; i < s->nqps; i++) // reinit all dequantizers if the first one changed, because // the DC of the first quantizer must be used for all matrices if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) init_dequantizer(s, i); if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) return buf_size; ff_progress_frame_unref(&s->current_frame); ret = ff_progress_frame_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF); if (ret < 0) { // Don't goto error here, as one can't report progress on or // unref a non-existent frame. return ret; } s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; if (s->keyframe) s->current_frame.f->flags |= AV_FRAME_FLAG_KEY; else s->current_frame.f->flags &= ~AV_FRAME_FLAG_KEY; if (!s->edge_emu_buffer) { s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0])); if (!s->edge_emu_buffer) { ret = AVERROR(ENOMEM); goto error; } } if (s->keyframe) { if (!s->theora) { skip_bits(&gb, 4); /* width code */ skip_bits(&gb, 4); /* height code */ if (s->version) { int version = get_bits(&gb, 5); #if !CONFIG_VP4_DECODER if (version >= 2) { av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n"); return AVERROR_DECODER_NOT_FOUND; } #endif s->version = version; if (avctx->frame_num == 0) av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); } } if (s->version || s->theora) { if (get_bits1(&gb)) av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); skip_bits(&gb, 2); /* reserved? */ #if CONFIG_VP4_DECODER if (s->version >= 2) { int mb_height, mb_width; int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div; mb_height = get_bits(&gb, 8); mb_width = get_bits(&gb, 8); if (mb_height != s->macroblock_height || mb_width != s->macroblock_width) avpriv_request_sample(s->avctx, "macroblock dimension mismatch"); mb_width_mul = get_bits(&gb, 5); mb_width_div = get_bits(&gb, 3); mb_height_mul = get_bits(&gb, 5); mb_height_div = get_bits(&gb, 3); if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1) avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider"); if (get_bits(&gb, 2)) avpriv_request_sample(s->avctx, "unknown bits"); } #endif } } else { if (!s->golden_frame.f) { av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n"); if ((ret = ff_progress_frame_get_buffer(avctx, &s->golden_frame, AV_GET_BUFFER_FLAG_REF)) < 0) goto error; s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I; ff_progress_frame_replace(&s->last_frame, &s->golden_frame); ff_progress_frame_report(&s->golden_frame, INT_MAX); } } ff_thread_finish_setup(avctx); memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment)); if (s->version < 2) { if ((ret = unpack_superblocks(s, &gb)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); goto error; } #if CONFIG_VP4_DECODER } else { if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n"); goto error; } #endif } if ((ret = unpack_modes(s, &gb)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); goto error; } if (ret = unpack_vectors(s, &gb)) { av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); goto error; } if ((ret = unpack_block_qpis(s, &gb)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); goto error; } if (s->version < 2) { if ((ret = unpack_dct_coeffs(s, &gb)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); goto error; } #if CONFIG_VP4_DECODER } else { if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) { av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n"); goto error; } #endif } for (int i = 0; i < 3; i++) { int height = s->height >> (i && s->chroma_y_shift); if (s->flipped_image) s->data_offset[i] = 0; else s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i]; } s->last_slice_end = 0; for (int i = 0; i < s->c_superblock_height; i++) render_slice(s, i); // filter the last row if (s->version < 2) for (int i = 0; i < 3; i++) { int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1; apply_loop_filter(s, i, row, row + 1); } vp3_draw_horiz_band(s, s->height); /* output frame, offset as needed */ if ((ret = av_frame_ref(frame, s->current_frame.f)) < 0) return ret; frame->crop_left = s->offset_x; frame->crop_right = avctx->coded_width - avctx->width - s->offset_x; frame->crop_top = s->offset_y; frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y; *got_frame = 1; if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) update_frames(avctx); return buf_size; error: ff_progress_frame_report(&s->current_frame, INT_MAX); if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) av_frame_unref(s->current_frame.f); return ret; } static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length, AVCodecContext *avctx) { if (get_bits1(gb)) { int token; if (huff->nb_entries >= 32) { /* overflow */ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); return -1; } token = get_bits(gb, 5); ff_dlog(avctx, "code length %d, curr entry %d, token %d\n", length, huff->nb_entries, token); huff->entries[huff->nb_entries++] = (HuffEntry){ length, token }; } else { /* The following bound follows from the fact that nb_entries <= 32. */ if (length >= 31) { /* overflow */ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); return -1; } length++; if (read_huffman_tree(huff, gb, length, avctx)) return -1; if (read_huffman_tree(huff, gb, length, avctx)) return -1; } return 0; } #if CONFIG_THEORA_DECODER static const enum AVPixelFormat theora_pix_fmts[4] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P }; static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; int visible_width, visible_height, colorspace; uint8_t offset_x = 0, offset_y = 0; int ret; AVRational fps, aspect; if (get_bits_left(gb) < 206) return AVERROR_INVALIDDATA; s->theora_header = 0; s->theora = get_bits(gb, 24); av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); if (!s->theora) { s->theora = 1; avpriv_request_sample(s->avctx, "theora 0"); } /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 * but previous versions have the image flipped relative to vp3 */ if (s->theora < 0x030200) { s->flipped_image = 1; av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n"); } visible_width = s->width = get_bits(gb, 16) << 4; visible_height = s->height = get_bits(gb, 16) << 4; if (s->theora >= 0x030200) { visible_width = get_bits(gb, 24); visible_height = get_bits(gb, 24); offset_x = get_bits(gb, 8); /* offset x */ offset_y = get_bits(gb, 8); /* offset y, from bottom */ } /* sanity check */ if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 || visible_width + offset_x > s->width || visible_height + offset_y > s->height || visible_width < 18 ) { av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n", visible_width, visible_height, offset_x, offset_y, s->width, s->height); return AVERROR_INVALIDDATA; } fps.num = get_bits_long(gb, 32); fps.den = get_bits_long(gb, 32); if (fps.num && fps.den) { if (fps.num < 0 || fps.den < 0) { av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n"); return AVERROR_INVALIDDATA; } av_reduce(&avctx->framerate.den, &avctx->framerate.num, fps.den, fps.num, 1 << 30); } aspect.num = get_bits(gb, 24); aspect.den = get_bits(gb, 24); if (aspect.num && aspect.den) { av_reduce(&avctx->sample_aspect_ratio.num, &avctx->sample_aspect_ratio.den, aspect.num, aspect.den, 1 << 30); ff_set_sar(avctx, avctx->sample_aspect_ratio); } if (s->theora < 0x030200) skip_bits(gb, 5); /* keyframe frequency force */ colorspace = get_bits(gb, 8); skip_bits(gb, 24); /* bitrate */ skip_bits(gb, 6); /* quality hint */ if (s->theora >= 0x030200) { skip_bits(gb, 5); /* keyframe frequency force */ avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)]; if (avctx->pix_fmt == AV_PIX_FMT_NONE) { av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n"); return AVERROR_INVALIDDATA; } skip_bits(gb, 3); /* reserved */ } else avctx->pix_fmt = AV_PIX_FMT_YUV420P; if (s->width < 18) return AVERROR_PATCHWELCOME; ret = ff_set_dimensions(avctx, s->width, s->height); if (ret < 0) return ret; if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) { avctx->width = visible_width; avctx->height = visible_height; // translate offsets from theora axis ([0,0] lower left) // to normal axis ([0,0] upper left) s->offset_x = offset_x; s->offset_y = s->height - visible_height - offset_y; } if (colorspace == 1) avctx->color_primaries = AVCOL_PRI_BT470M; else if (colorspace == 2) avctx->color_primaries = AVCOL_PRI_BT470BG; if (colorspace == 1 || colorspace == 2) { avctx->colorspace = AVCOL_SPC_BT470BG; avctx->color_trc = AVCOL_TRC_BT709; } s->theora_header = 1; return 0; } static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; int n, matrices, ret; if (!s->theora_header) return AVERROR_INVALIDDATA; if (s->theora >= 0x030200) { n = get_bits(gb, 3); /* loop filter limit values table */ if (n) for (int i = 0; i < 64; i++) s->filter_limit_values[i] = get_bits(gb, n); } if (s->theora >= 0x030200) n = get_bits(gb, 4) + 1; else n = 16; /* quality threshold table */ for (int i = 0; i < 64; i++) s->coded_ac_scale_factor[i] = get_bits(gb, n); if (s->theora >= 0x030200) n = get_bits(gb, 4) + 1; else n = 16; /* dc scale factor table */ for (int i = 0; i < 64; i++) s->coded_dc_scale_factor[0][i] = s->coded_dc_scale_factor[1][i] = get_bits(gb, n); if (s->theora >= 0x030200) matrices = get_bits(gb, 9) + 1; else matrices = 3; if (matrices > 384) { av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); return -1; } for (int j = 0; j < matrices; j++) for (int i = 0; i < 64; i++) s->base_matrix[j][i] = get_bits(gb, 8); for (int inter = 0; inter <= 1; inter++) { for (int plane = 0; plane <= 2; plane++) { int newqr = 1; if (inter || plane > 0) newqr = get_bits1(gb); if (!newqr) { int qtj, plj; if (inter && get_bits1(gb)) { qtj = 0; plj = plane; } else { qtj = (3 * inter + plane - 1) / 3; plj = (plane + 2) % 3; } s->qr_count[inter][plane] = s->qr_count[qtj][plj]; memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); } else { int qri = 0; int qi = 0; for (;;) { int i = get_bits(gb, av_log2(matrices - 1) + 1); if (i >= matrices) { av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); return -1; } s->qr_base[inter][plane][qri] = i; if (qi >= 63) break; i = get_bits(gb, av_log2(63 - qi) + 1) + 1; s->qr_size[inter][plane][qri++] = i; qi += i; } if (qi > 63) { av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); return -1; } s->qr_count[inter][plane] = qri; } } } /* Huffman tables */ for (int i = 0; i < FF_ARRAY_ELEMS(s->huffman_table); i++) { s->huffman_table[i].nb_entries = 0; if ((ret = read_huffman_tree(&s->huffman_table[i], gb, 0, avctx)) < 0) return ret; } s->theora_tables = 1; return 0; } static av_cold int theora_decode_init(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; GetBitContext gb; int ptype; const uint8_t *header_start[3]; int header_len[3]; int ret; avctx->pix_fmt = AV_PIX_FMT_YUV420P; s->theora = 1; if (!avctx->extradata_size) { av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); return -1; } if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size, 42, header_start, header_len) < 0) { av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); return -1; } for (int i = 0; i < 3; i++) { if (header_len[i] <= 0) continue; ret = init_get_bits8(&gb, header_start[i], header_len[i]); if (ret < 0) return ret; ptype = get_bits(&gb, 8); if (!(ptype & 0x80)) { av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); // return -1; } // FIXME: Check for this as well. skip_bits_long(&gb, 6 * 8); /* "theora" */ switch (ptype) { case 0x80: if (theora_decode_header(avctx, &gb) < 0) return -1; break; case 0x81: // FIXME: is this needed? it breaks sometimes // theora_decode_comments(avctx, gb); break; case 0x82: if (theora_decode_tables(avctx, &gb)) return -1; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype & ~0x80); break; } if (ptype != 0x81 && get_bits_left(&gb) >= 8U) av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", get_bits_left(&gb), ptype); if (s->theora < 0x030200) break; } return vp3_decode_init(avctx); } const FFCodec ff_theora_decoder = { .p.name = "theora", CODEC_LONG_NAME("Theora"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_THEORA, .priv_data_size = sizeof(Vp3DecodeContext), .init = theora_decode_init, .close = vp3_decode_end, FF_CODEC_DECODE_CB(vp3_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_FRAME_THREADS, .flush = vp3_decode_flush, UPDATE_THREAD_CONTEXT(vp3_update_thread_context), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_USES_PROGRESSFRAMES, }; #endif const FFCodec ff_vp3_decoder = { .p.name = "vp3", CODEC_LONG_NAME("On2 VP3"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_VP3, .priv_data_size = sizeof(Vp3DecodeContext), .init = vp3_decode_init, .close = vp3_decode_end, FF_CODEC_DECODE_CB(vp3_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_FRAME_THREADS, .flush = vp3_decode_flush, UPDATE_THREAD_CONTEXT(vp3_update_thread_context), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_USES_PROGRESSFRAMES, }; #if CONFIG_VP4_DECODER const FFCodec ff_vp4_decoder = { .p.name = "vp4", CODEC_LONG_NAME("On2 VP4"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_VP4, .priv_data_size = sizeof(Vp3DecodeContext), .init = vp3_decode_init, .close = vp3_decode_end, FF_CODEC_DECODE_CB(vp3_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | AV_CODEC_CAP_FRAME_THREADS, .flush = vp3_decode_flush, UPDATE_THREAD_CONTEXT(vp3_update_thread_context), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_USES_PROGRESSFRAMES, }; #endif