/* * VC-1 and WMV3 decoder - DSP functions * Copyright (c) 2006 Konstantin Shishkov * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * VC-1 and WMV3 decoder * */ #include "vc1dsp.h" /** Apply overlap transform to horizontal edge */ static void vc1_v_overlap_c(uint8_t* src, int stride) { int i; int a, b, c, d; int d1, d2; int rnd = 1; for(i = 0; i < 8; i++) { a = src[-2*stride]; b = src[-stride]; c = src[0]; d = src[stride]; d1 = (a - d + 3 + rnd) >> 3; d2 = (a - d + b - c + 4 - rnd) >> 3; src[-2*stride] = a - d1; src[-stride] = av_clip_uint8(b - d2); src[0] = av_clip_uint8(c + d2); src[stride] = d + d1; src++; rnd = !rnd; } } /** Apply overlap transform to vertical edge */ static void vc1_h_overlap_c(uint8_t* src, int stride) { int i; int a, b, c, d; int d1, d2; int rnd = 1; for(i = 0; i < 8; i++) { a = src[-2]; b = src[-1]; c = src[0]; d = src[1]; d1 = (a - d + 3 + rnd) >> 3; d2 = (a - d + b - c + 4 - rnd) >> 3; src[-2] = a - d1; src[-1] = av_clip_uint8(b - d2); src[0] = av_clip_uint8(c + d2); src[1] = d + d1; src += stride; rnd = !rnd; } } static void vc1_v_s_overlap_c(DCTELEM *top, DCTELEM *bottom) { int i; int a, b, c, d; int d1, d2; int rnd1 = 4, rnd2 = 3; for(i = 0; i < 8; i++) { a = top[48]; b = top[56]; c = bottom[0]; d = bottom[8]; d1 = a - d; d2 = a - d + b - c; top[48] = ((a << 3) - d1 + rnd1) >> 3; top[56] = ((b << 3) - d2 + rnd2) >> 3; bottom[0] = ((c << 3) + d2 + rnd1) >> 3; bottom[8] = ((d << 3) + d1 + rnd2) >> 3; bottom++; top++; rnd2 = 7 - rnd2; rnd1 = 7 - rnd1; } } static void vc1_h_s_overlap_c(DCTELEM *left, DCTELEM *right) { int i; int a, b, c, d; int d1, d2; int rnd1 = 4, rnd2 = 3; for(i = 0; i < 8; i++) { a = left[6]; b = left[7]; c = right[0]; d = right[1]; d1 = a - d; d2 = a - d + b - c; left[6] = ((a << 3) - d1 + rnd1) >> 3; left[7] = ((b << 3) - d2 + rnd2) >> 3; right[0] = ((c << 3) + d2 + rnd1) >> 3; right[1] = ((d << 3) + d1 + rnd2) >> 3; right += 8; left += 8; rnd2 = 7 - rnd2; rnd1 = 7 - rnd1; } } /** * VC-1 in-loop deblocking filter for one line * @param src source block type * @param stride block stride * @param pq block quantizer * @return whether other 3 pairs should be filtered or not * @see 8.6 */ static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){ int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3; int a0_sign = a0 >> 31; /* Store sign */ a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */ if(a0 < pq){ int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3); int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3); if(a1 < a0 || a2 < a0){ int clip = src[-1*stride] - src[ 0*stride]; int clip_sign = clip >> 31; clip = ((clip ^ clip_sign) - clip_sign)>>1; if(clip){ int a3 = FFMIN(a1, a2); int d = 5 * (a3 - a0); int d_sign = (d >> 31); d = ((d ^ d_sign) - d_sign) >> 3; d_sign ^= a0_sign; if( d_sign ^ clip_sign ) d = 0; else{ d = FFMIN(d, clip); d = (d ^ d_sign) - d_sign; /* Restore sign */ src[-1*stride] = av_clip_uint8(src[-1*stride] - d); src[ 0*stride] = av_clip_uint8(src[ 0*stride] + d); } return 1; } } } return 0; } /** * VC-1 in-loop deblocking filter * @param src source block type * @param step distance between horizontally adjacent elements * @param stride distance between vertically adjacent elements * @param len edge length to filter (4 or 8 pixels) * @param pq block quantizer * @see 8.6 */ static inline void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq) { int i; int filt3; for(i = 0; i < len; i += 4){ filt3 = vc1_filter_line(src + 2*step, stride, pq); if(filt3){ vc1_filter_line(src + 0*step, stride, pq); vc1_filter_line(src + 1*step, stride, pq); vc1_filter_line(src + 3*step, stride, pq); } src += step * 4; } } static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq) { vc1_loop_filter(src, 1, stride, 4, pq); } static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq) { vc1_loop_filter(src, stride, 1, 4, pq); } static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq) { vc1_loop_filter(src, 1, stride, 8, pq); } static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq) { vc1_loop_filter(src, stride, 1, 8, pq); } static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq) { vc1_loop_filter(src, 1, stride, 16, pq); } static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq) { vc1_loop_filter(src, stride, 1, 16, pq); } /** Do inverse transform on 8x8 block */ static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; int dc = block[0]; dc = (3 * dc + 1) >> 1; dc = (3 * dc + 16) >> 5; for(i = 0; i < 8; i++){ dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest[4] = av_clip_uint8(dest[4] + dc); dest[5] = av_clip_uint8(dest[5] + dc); dest[6] = av_clip_uint8(dest[6] + dc); dest[7] = av_clip_uint8(dest[7] + dc); dest += linesize; } } static void vc1_inv_trans_8x8_c(DCTELEM block[64]) { int i; register int t1,t2,t3,t4,t5,t6,t7,t8; DCTELEM *src, *dst, temp[64]; src = block; dst = temp; for(i = 0; i < 8; i++){ t1 = 12 * (src[ 0] + src[32]) + 4; t2 = 12 * (src[ 0] - src[32]) + 4; t3 = 16 * src[16] + 6 * src[48]; t4 = 6 * src[16] - 16 * src[48]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56]; t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56]; t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56]; t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56]; dst[0] = (t5 + t1) >> 3; dst[1] = (t6 + t2) >> 3; dst[2] = (t7 + t3) >> 3; dst[3] = (t8 + t4) >> 3; dst[4] = (t8 - t4) >> 3; dst[5] = (t7 - t3) >> 3; dst[6] = (t6 - t2) >> 3; dst[7] = (t5 - t1) >> 3; src += 1; dst += 8; } src = temp; dst = block; for(i = 0; i < 8; i++){ t1 = 12 * (src[ 0] + src[32]) + 64; t2 = 12 * (src[ 0] - src[32]) + 64; t3 = 16 * src[16] + 6 * src[48]; t4 = 6 * src[16] - 16 * src[48]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56]; t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56]; t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56]; t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56]; dst[ 0] = (t5 + t1) >> 7; dst[ 8] = (t6 + t2) >> 7; dst[16] = (t7 + t3) >> 7; dst[24] = (t8 + t4) >> 7; dst[32] = (t8 - t4 + 1) >> 7; dst[40] = (t7 - t3 + 1) >> 7; dst[48] = (t6 - t2 + 1) >> 7; dst[56] = (t5 - t1 + 1) >> 7; src++; dst++; } } /** Do inverse transform on 8x4 part of block */ static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; int dc = block[0]; dc = ( 3 * dc + 1) >> 1; dc = (17 * dc + 64) >> 7; for(i = 0; i < 4; i++){ dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest[4] = av_clip_uint8(dest[4] + dc); dest[5] = av_clip_uint8(dest[5] + dc); dest[6] = av_clip_uint8(dest[6] + dc); dest[7] = av_clip_uint8(dest[7] + dc); dest += linesize; } } static void vc1_inv_trans_8x4_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; register int t1,t2,t3,t4,t5,t6,t7,t8; DCTELEM *src, *dst; src = block; dst = block; for(i = 0; i < 4; i++){ t1 = 12 * (src[0] + src[4]) + 4; t2 = 12 * (src[0] - src[4]) + 4; t3 = 16 * src[2] + 6 * src[6]; t4 = 6 * src[2] - 16 * src[6]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7]; t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7]; t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7]; t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7]; dst[0] = (t5 + t1) >> 3; dst[1] = (t6 + t2) >> 3; dst[2] = (t7 + t3) >> 3; dst[3] = (t8 + t4) >> 3; dst[4] = (t8 - t4) >> 3; dst[5] = (t7 - t3) >> 3; dst[6] = (t6 - t2) >> 3; dst[7] = (t5 - t1) >> 3; src += 8; dst += 8; } src = block; for(i = 0; i < 8; i++){ t1 = 17 * (src[ 0] + src[16]) + 64; t2 = 17 * (src[ 0] - src[16]) + 64; t3 = 22 * src[ 8] + 10 * src[24]; t4 = 22 * src[24] - 10 * src[ 8]; dest[0*linesize] = av_clip_uint8(dest[0*linesize] + ((t1 + t3) >> 7)); dest[1*linesize] = av_clip_uint8(dest[1*linesize] + ((t2 - t4) >> 7)); dest[2*linesize] = av_clip_uint8(dest[2*linesize] + ((t2 + t4) >> 7)); dest[3*linesize] = av_clip_uint8(dest[3*linesize] + ((t1 - t3) >> 7)); src ++; dest++; } } /** Do inverse transform on 4x8 parts of block */ static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; int dc = block[0]; dc = (17 * dc + 4) >> 3; dc = (12 * dc + 64) >> 7; for(i = 0; i < 8; i++){ dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest += linesize; } } static void vc1_inv_trans_4x8_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; register int t1,t2,t3,t4,t5,t6,t7,t8; DCTELEM *src, *dst; src = block; dst = block; for(i = 0; i < 8; i++){ t1 = 17 * (src[0] + src[2]) + 4; t2 = 17 * (src[0] - src[2]) + 4; t3 = 22 * src[1] + 10 * src[3]; t4 = 22 * src[3] - 10 * src[1]; dst[0] = (t1 + t3) >> 3; dst[1] = (t2 - t4) >> 3; dst[2] = (t2 + t4) >> 3; dst[3] = (t1 - t3) >> 3; src += 8; dst += 8; } src = block; for(i = 0; i < 4; i++){ t1 = 12 * (src[ 0] + src[32]) + 64; t2 = 12 * (src[ 0] - src[32]) + 64; t3 = 16 * src[16] + 6 * src[48]; t4 = 6 * src[16] - 16 * src[48]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56]; t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56]; t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56]; t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56]; dest[0*linesize] = av_clip_uint8(dest[0*linesize] + ((t5 + t1) >> 7)); dest[1*linesize] = av_clip_uint8(dest[1*linesize] + ((t6 + t2) >> 7)); dest[2*linesize] = av_clip_uint8(dest[2*linesize] + ((t7 + t3) >> 7)); dest[3*linesize] = av_clip_uint8(dest[3*linesize] + ((t8 + t4) >> 7)); dest[4*linesize] = av_clip_uint8(dest[4*linesize] + ((t8 - t4 + 1) >> 7)); dest[5*linesize] = av_clip_uint8(dest[5*linesize] + ((t7 - t3 + 1) >> 7)); dest[6*linesize] = av_clip_uint8(dest[6*linesize] + ((t6 - t2 + 1) >> 7)); dest[7*linesize] = av_clip_uint8(dest[7*linesize] + ((t5 - t1 + 1) >> 7)); src ++; dest++; } } /** Do inverse transform on 4x4 part of block */ static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; int dc = block[0]; dc = (17 * dc + 4) >> 3; dc = (17 * dc + 64) >> 7; for(i = 0; i < 4; i++){ dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest += linesize; } } static void vc1_inv_trans_4x4_c(uint8_t *dest, int linesize, DCTELEM *block) { int i; register int t1,t2,t3,t4; DCTELEM *src, *dst; src = block; dst = block; for(i = 0; i < 4; i++){ t1 = 17 * (src[0] + src[2]) + 4; t2 = 17 * (src[0] - src[2]) + 4; t3 = 22 * src[1] + 10 * src[3]; t4 = 22 * src[3] - 10 * src[1]; dst[0] = (t1 + t3) >> 3; dst[1] = (t2 - t4) >> 3; dst[2] = (t2 + t4) >> 3; dst[3] = (t1 - t3) >> 3; src += 8; dst += 8; } src = block; for(i = 0; i < 4; i++){ t1 = 17 * (src[ 0] + src[16]) + 64; t2 = 17 * (src[ 0] - src[16]) + 64; t3 = 22 * src[ 8] + 10 * src[24]; t4 = 22 * src[24] - 10 * src[ 8]; dest[0*linesize] = av_clip_uint8(dest[0*linesize] + ((t1 + t3) >> 7)); dest[1*linesize] = av_clip_uint8(dest[1*linesize] + ((t2 - t4) >> 7)); dest[2*linesize] = av_clip_uint8(dest[2*linesize] + ((t2 + t4) >> 7)); dest[3*linesize] = av_clip_uint8(dest[3*linesize] + ((t1 - t3) >> 7)); src ++; dest++; } } /* motion compensation functions */ /** Filter in case of 2 filters */ #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \ static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, int stride, int mode) \ { \ switch(mode){ \ case 0: /* no shift - should not occur */ \ return 0; \ case 1: /* 1/4 shift */ \ return -4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2]; \ case 2: /* 1/2 shift */ \ return -src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2]; \ case 3: /* 3/4 shift */ \ return -3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2]; \ } \ return 0; /* should not occur */ \ } VC1_MSPEL_FILTER_16B(ver, uint8_t) VC1_MSPEL_FILTER_16B(hor, int16_t) /** Filter used to interpolate fractional pel values */ static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r) { switch(mode){ case 0: //no shift return src[0]; case 1: // 1/4 shift return (-4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2] + 32 - r) >> 6; case 2: // 1/2 shift return (-src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2] + 8 - r) >> 4; case 3: // 3/4 shift return (-3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2] + 32 - r) >> 6; } return 0; //should not occur } /** Function used to do motion compensation with bicubic interpolation */ #define VC1_MSPEL_MC(OP, OPNAME)\ static void OPNAME ## vc1_mspel_mc(uint8_t *dst, const uint8_t *src, int stride, int hmode, int vmode, int rnd)\ {\ int i, j;\ \ if (vmode) { /* Horizontal filter to apply */\ int r;\ \ if (hmode) { /* Vertical filter to apply, output to tmp */\ static const int shift_value[] = { 0, 5, 1, 5 };\ int shift = (shift_value[hmode]+shift_value[vmode])>>1;\ int16_t tmp[11*8], *tptr = tmp;\ \ r = (1<<(shift-1)) + rnd-1;\ \ src -= 1;\ for(j = 0; j < 8; j++) {\ for(i = 0; i < 11; i++)\ tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode)+r)>>shift;\ src += stride;\ tptr += 11;\ }\ \ r = 64-rnd;\ tptr = tmp+1;\ for(j = 0; j < 8; j++) {\ for(i = 0; i < 8; i++)\ OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode)+r)>>7);\ dst += stride;\ tptr += 11;\ }\ \ return;\ }\ else { /* No horizontal filter, output 8 lines to dst */\ r = 1-rnd;\ \ for(j = 0; j < 8; j++) {\ for(i = 0; i < 8; i++)\ OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r));\ src += stride;\ dst += stride;\ }\ return;\ }\ }\ \ /* Horizontal mode with no vertical mode */\ for(j = 0; j < 8; j++) {\ for(i = 0; i < 8; i++)\ OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd));\ dst += stride;\ src += stride;\ }\ } #define op_put(a, b) a = av_clip_uint8(b) #define op_avg(a, b) a = (a + av_clip_uint8(b) + 1) >> 1 VC1_MSPEL_MC(op_put, put_) VC1_MSPEL_MC(op_avg, avg_) /* pixel functions - really are entry points to vc1_mspel_mc */ #define PUT_VC1_MSPEL(a, b)\ static void put_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \ put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \ }\ static void avg_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \ avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \ } PUT_VC1_MSPEL(1, 0) PUT_VC1_MSPEL(2, 0) PUT_VC1_MSPEL(3, 0) PUT_VC1_MSPEL(0, 1) PUT_VC1_MSPEL(1, 1) PUT_VC1_MSPEL(2, 1) PUT_VC1_MSPEL(3, 1) PUT_VC1_MSPEL(0, 2) PUT_VC1_MSPEL(1, 2) PUT_VC1_MSPEL(2, 2) PUT_VC1_MSPEL(3, 2) PUT_VC1_MSPEL(0, 3) PUT_VC1_MSPEL(1, 3) PUT_VC1_MSPEL(2, 3) PUT_VC1_MSPEL(3, 3) static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int x, int y){ const int A=(8-x)*(8-y); const int B=( x)*(8-y); const int C=(8-x)*( y); const int D=( x)*( y); int i; assert(x<8 && y<8 && x>=0 && y>=0); for(i=0; i<h; i++) { dst[0] = (A*src[0] + B*src[1] + C*src[stride+0] + D*src[stride+1] + 32 - 4) >> 6; dst[1] = (A*src[1] + B*src[2] + C*src[stride+1] + D*src[stride+2] + 32 - 4) >> 6; dst[2] = (A*src[2] + B*src[3] + C*src[stride+2] + D*src[stride+3] + 32 - 4) >> 6; dst[3] = (A*src[3] + B*src[4] + C*src[stride+3] + D*src[stride+4] + 32 - 4) >> 6; dst[4] = (A*src[4] + B*src[5] + C*src[stride+4] + D*src[stride+5] + 32 - 4) >> 6; dst[5] = (A*src[5] + B*src[6] + C*src[stride+5] + D*src[stride+6] + 32 - 4) >> 6; dst[6] = (A*src[6] + B*src[7] + C*src[stride+6] + D*src[stride+7] + 32 - 4) >> 6; dst[7] = (A*src[7] + B*src[8] + C*src[stride+7] + D*src[stride+8] + 32 - 4) >> 6; dst+= stride; src+= stride; } } static void put_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, uint8_t *src, int stride, int h, int x, int y){ const int A=(8-x)*(8-y); const int B=( x)*(8-y); const int C=(8-x)*( y); const int D=( x)*( y); int i; assert(x<8 && y<8 && x>=0 && y>=0); for(i=0; i<h; i++) { dst[0] = (A*src[0] + B*src[1] + C*src[stride+0] + D*src[stride+1] + 32 - 4) >> 6; dst[1] = (A*src[1] + B*src[2] + C*src[stride+1] + D*src[stride+2] + 32 - 4) >> 6; dst[2] = (A*src[2] + B*src[3] + C*src[stride+2] + D*src[stride+3] + 32 - 4) >> 6; dst[3] = (A*src[3] + B*src[4] + C*src[stride+3] + D*src[stride+4] + 32 - 4) >> 6; dst+= stride; src+= stride; } } #define avg2(a,b) ((a+b+1)>>1) static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int x, int y){ const int A=(8-x)*(8-y); const int B=( x)*(8-y); const int C=(8-x)*( y); const int D=( x)*( y); int i; assert(x<8 && y<8 && x>=0 && y>=0); for(i=0; i<h; i++) { dst[0] = avg2(dst[0], ((A*src[0] + B*src[1] + C*src[stride+0] + D*src[stride+1] + 32 - 4) >> 6)); dst[1] = avg2(dst[1], ((A*src[1] + B*src[2] + C*src[stride+1] + D*src[stride+2] + 32 - 4) >> 6)); dst[2] = avg2(dst[2], ((A*src[2] + B*src[3] + C*src[stride+2] + D*src[stride+3] + 32 - 4) >> 6)); dst[3] = avg2(dst[3], ((A*src[3] + B*src[4] + C*src[stride+3] + D*src[stride+4] + 32 - 4) >> 6)); dst[4] = avg2(dst[4], ((A*src[4] + B*src[5] + C*src[stride+4] + D*src[stride+5] + 32 - 4) >> 6)); dst[5] = avg2(dst[5], ((A*src[5] + B*src[6] + C*src[stride+5] + D*src[stride+6] + 32 - 4) >> 6)); dst[6] = avg2(dst[6], ((A*src[6] + B*src[7] + C*src[stride+6] + D*src[stride+7] + 32 - 4) >> 6)); dst[7] = avg2(dst[7], ((A*src[7] + B*src[8] + C*src[stride+7] + D*src[stride+8] + 32 - 4) >> 6)); dst+= stride; src+= stride; } } #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER static void sprite_h_c(uint8_t *dst, const uint8_t *src, int offset, int advance, int count) { while (count--) { int a = src[(offset >> 16) ]; int b = src[(offset >> 16) + 1]; *dst++ = a + ((b - a) * (offset&0xFFFF) >> 16); offset += advance; } } static av_always_inline void sprite_v_template(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, int two_sprites, const uint8_t *src2a, const uint8_t *src2b, int offset2, int alpha, int scaled, int width) { int a1, b1, a2, b2; while (width--) { a1 = *src1a++; if (scaled) { b1 = *src1b++; a1 = a1 + ((b1 - a1) * offset1 >> 16); } if (two_sprites) { a2 = *src2a++; if (scaled > 1) { b2 = *src2b++; a2 = a2 + ((b2 - a2) * offset2 >> 16); } a1 = a1 + ((a2 - a1) * alpha >> 16); } *dst++ = a1; } } static void sprite_v_single_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset, int width) { sprite_v_template(dst, src1a, src1b, offset, 0, NULL, NULL, 0, 0, 1, width); } static void sprite_v_double_noscale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src2a, int alpha, int width) { sprite_v_template(dst, src1a, NULL, 0, 1, src2a, NULL, 0, alpha, 0, width); } static void sprite_v_double_onescale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, int alpha, int width) { sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, NULL, 0, alpha, 1, width); } static void sprite_v_double_twoscale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, const uint8_t *src2b, int offset2, int alpha, int width) { sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2, alpha, 2, width); } #endif av_cold void ff_vc1dsp_init(VC1DSPContext* dsp) { dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c; dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c; dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c; dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c; dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c; dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c; dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c; dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c; dsp->vc1_h_overlap = vc1_h_overlap_c; dsp->vc1_v_overlap = vc1_v_overlap_c; dsp->vc1_h_s_overlap = vc1_h_s_overlap_c; dsp->vc1_v_s_overlap = vc1_v_s_overlap_c; dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c; dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c; dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c; dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c; dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c; dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c; dsp->put_vc1_mspel_pixels_tab[ 0] = ff_put_pixels8x8_c; dsp->put_vc1_mspel_pixels_tab[ 1] = put_vc1_mspel_mc10_c; dsp->put_vc1_mspel_pixels_tab[ 2] = put_vc1_mspel_mc20_c; dsp->put_vc1_mspel_pixels_tab[ 3] = put_vc1_mspel_mc30_c; dsp->put_vc1_mspel_pixels_tab[ 4] = put_vc1_mspel_mc01_c; dsp->put_vc1_mspel_pixels_tab[ 5] = put_vc1_mspel_mc11_c; dsp->put_vc1_mspel_pixels_tab[ 6] = put_vc1_mspel_mc21_c; dsp->put_vc1_mspel_pixels_tab[ 7] = put_vc1_mspel_mc31_c; dsp->put_vc1_mspel_pixels_tab[ 8] = put_vc1_mspel_mc02_c; dsp->put_vc1_mspel_pixels_tab[ 9] = put_vc1_mspel_mc12_c; dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c; dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c; dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c; dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c; dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c; dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c; dsp->avg_vc1_mspel_pixels_tab[ 0] = ff_avg_pixels8x8_c; dsp->avg_vc1_mspel_pixels_tab[ 1] = avg_vc1_mspel_mc10_c; dsp->avg_vc1_mspel_pixels_tab[ 2] = avg_vc1_mspel_mc20_c; dsp->avg_vc1_mspel_pixels_tab[ 3] = avg_vc1_mspel_mc30_c; dsp->avg_vc1_mspel_pixels_tab[ 4] = avg_vc1_mspel_mc01_c; dsp->avg_vc1_mspel_pixels_tab[ 5] = avg_vc1_mspel_mc11_c; dsp->avg_vc1_mspel_pixels_tab[ 6] = avg_vc1_mspel_mc21_c; dsp->avg_vc1_mspel_pixels_tab[ 7] = avg_vc1_mspel_mc31_c; dsp->avg_vc1_mspel_pixels_tab[ 8] = avg_vc1_mspel_mc02_c; dsp->avg_vc1_mspel_pixels_tab[ 9] = avg_vc1_mspel_mc12_c; dsp->avg_vc1_mspel_pixels_tab[10] = avg_vc1_mspel_mc22_c; dsp->avg_vc1_mspel_pixels_tab[11] = avg_vc1_mspel_mc32_c; dsp->avg_vc1_mspel_pixels_tab[12] = avg_vc1_mspel_mc03_c; dsp->avg_vc1_mspel_pixels_tab[13] = avg_vc1_mspel_mc13_c; dsp->avg_vc1_mspel_pixels_tab[14] = avg_vc1_mspel_mc23_c; dsp->avg_vc1_mspel_pixels_tab[15] = avg_vc1_mspel_mc33_c; dsp->put_no_rnd_vc1_chroma_pixels_tab[0]= put_no_rnd_vc1_chroma_mc8_c; dsp->avg_no_rnd_vc1_chroma_pixels_tab[0]= avg_no_rnd_vc1_chroma_mc8_c; dsp->put_no_rnd_vc1_chroma_pixels_tab[1] = put_no_rnd_vc1_chroma_mc4_c; #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER dsp->sprite_h = sprite_h_c; dsp->sprite_v_single = sprite_v_single_c; dsp->sprite_v_double_noscale = sprite_v_double_noscale_c; dsp->sprite_v_double_onescale = sprite_v_double_onescale_c; dsp->sprite_v_double_twoscale = sprite_v_double_twoscale_c; #endif if (HAVE_ALTIVEC) ff_vc1dsp_init_altivec(dsp); if (HAVE_MMX) ff_vc1dsp_init_mmx(dsp); }