/* * VC-1 and WMV3 decoder common code * Copyright (c) 2006-2007 Konstantin Shishkov * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/vc1.c * VC-1 and WMV3 decoder common code * */ #include "internal.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "vc1.h" #include "vc1data.h" #include "msmpeg4data.h" #include "unary.h" #include "simple_idct.h" #undef NDEBUG #include <assert.h> /***********************************************************************/ /** * @defgroup vc1bitplane VC-1 Bitplane decoding * @see 8.7, p56 * @{ */ /** * Imode types * @{ */ enum Imode { IMODE_RAW, IMODE_NORM2, IMODE_DIFF2, IMODE_NORM6, IMODE_DIFF6, IMODE_ROWSKIP, IMODE_COLSKIP }; /** @} */ //imode defines /** Decode rows by checking if they are skipped * @param plane Buffer to store decoded bits * @param[in] width Width of this buffer * @param[in] height Height of this buffer * @param[in] stride of this buffer */ static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){ int x, y; for (y=0; y<height; y++){ if (!get_bits1(gb)) //rowskip memset(plane, 0, width); else for (x=0; x<width; x++) plane[x] = get_bits1(gb); plane += stride; } } /** Decode columns by checking if they are skipped * @param plane Buffer to store decoded bits * @param[in] width Width of this buffer * @param[in] height Height of this buffer * @param[in] stride of this buffer * @todo FIXME: Optimize */ static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){ int x, y; for (x=0; x<width; x++){ if (!get_bits1(gb)) //colskip for (y=0; y<height; y++) plane[y*stride] = 0; else for (y=0; y<height; y++) plane[y*stride] = get_bits1(gb); plane ++; } } /** Decode a bitplane's bits * @param data bitplane where to store the decode bits * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly * @param v VC-1 context for bit reading and logging * @return Status * @todo FIXME: Optimize */ static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v) { GetBitContext *gb = &v->s.gb; int imode, x, y, code, offset; uint8_t invert, *planep = data; int width, height, stride; width = v->s.mb_width; height = v->s.mb_height; stride = v->s.mb_stride; invert = get_bits1(gb); imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1); *raw_flag = 0; switch (imode) { case IMODE_RAW: //Data is actually read in the MB layer (same for all tests == "raw") *raw_flag = 1; //invert ignored return invert; case IMODE_DIFF2: case IMODE_NORM2: if ((height * width) & 1) { *planep++ = get_bits1(gb); offset = 1; } else offset = 0; // decode bitplane as one long line for (y = offset; y < height * width; y += 2) { code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1); *planep++ = code & 1; offset++; if(offset == width) { offset = 0; planep += stride - width; } *planep++ = code >> 1; offset++; if(offset == width) { offset = 0; planep += stride - width; } } break; case IMODE_DIFF6: case IMODE_NORM6: if(!(height % 3) && (width % 3)) { // use 2x3 decoding for(y = 0; y < height; y+= 3) { for(x = width & 1; x < width; x += 2) { code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2); if(code < 0){ av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); return -1; } planep[x + 0] = (code >> 0) & 1; planep[x + 1] = (code >> 1) & 1; planep[x + 0 + stride] = (code >> 2) & 1; planep[x + 1 + stride] = (code >> 3) & 1; planep[x + 0 + stride * 2] = (code >> 4) & 1; planep[x + 1 + stride * 2] = (code >> 5) & 1; } planep += stride * 3; } if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb); } else { // 3x2 planep += (height & 1) * stride; for(y = height & 1; y < height; y += 2) { for(x = width % 3; x < width; x += 3) { code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2); if(code < 0){ av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); return -1; } planep[x + 0] = (code >> 0) & 1; planep[x + 1] = (code >> 1) & 1; planep[x + 2] = (code >> 2) & 1; planep[x + 0 + stride] = (code >> 3) & 1; planep[x + 1 + stride] = (code >> 4) & 1; planep[x + 2 + stride] = (code >> 5) & 1; } planep += stride * 2; } x = width % 3; if(x) decode_colskip(data , x, height , stride, &v->s.gb); if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb); } break; case IMODE_ROWSKIP: decode_rowskip(data, width, height, stride, &v->s.gb); break; case IMODE_COLSKIP: decode_colskip(data, width, height, stride, &v->s.gb); break; default: break; } /* Applying diff operator */ if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6) { planep = data; planep[0] ^= invert; for (x=1; x<width; x++) planep[x] ^= planep[x-1]; for (y=1; y<height; y++) { planep += stride; planep[0] ^= planep[-stride]; for (x=1; x<width; x++) { if (planep[x-1] != planep[x-stride]) planep[x] ^= invert; else planep[x] ^= planep[x-1]; } } } else if (invert) { planep = data; for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride } return (imode<<1) + invert; } /** @} */ //Bitplane group /***********************************************************************/ /** VOP Dquant decoding * @param v VC-1 Context */ static int vop_dquant_decoding(VC1Context *v) { GetBitContext *gb = &v->s.gb; int pqdiff; //variable size if (v->dquant == 2) { pqdiff = get_bits(gb, 3); if (pqdiff == 7) v->altpq = get_bits(gb, 5); else v->altpq = v->pq + pqdiff + 1; } else { v->dquantfrm = get_bits1(gb); if ( v->dquantfrm ) { v->dqprofile = get_bits(gb, 2); switch (v->dqprofile) { case DQPROFILE_SINGLE_EDGE: case DQPROFILE_DOUBLE_EDGES: v->dqsbedge = get_bits(gb, 2); break; case DQPROFILE_ALL_MBS: v->dqbilevel = get_bits1(gb); if(!v->dqbilevel) v->halfpq = 0; default: break; //Forbidden ? } if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS) { pqdiff = get_bits(gb, 3); if (pqdiff == 7) v->altpq = get_bits(gb, 5); else v->altpq = v->pq + pqdiff + 1; } } } return 0; } static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb); /** * Decode Simple/Main Profiles sequence header * @see Figure 7-8, p16-17 * @param avctx Codec context * @param gb GetBit context initialized from Codec context extra_data * @return Status */ int vc1_decode_sequence_header(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb) { av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32)); v->profile = get_bits(gb, 2); if (v->profile == PROFILE_COMPLEX) { av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n"); } if (v->profile == PROFILE_ADVANCED) { v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz; v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz; return decode_sequence_header_adv(v, gb); } else { v->zz_8x4 = wmv2_scantableA; v->zz_4x8 = wmv2_scantableB; v->res_sm = get_bits(gb, 2); //reserved if (v->res_sm) { av_log(avctx, AV_LOG_ERROR, "Reserved RES_SM=%i is forbidden\n", v->res_sm); return -1; } } // (fps-2)/4 (->30) v->frmrtq_postproc = get_bits(gb, 3); //common // (bitrate-32kbps)/64kbps v->bitrtq_postproc = get_bits(gb, 5); //common v->s.loop_filter = get_bits1(gb); //common if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE) { av_log(avctx, AV_LOG_ERROR, "LOOPFILTER shall not be enabled in Simple Profile\n"); } if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL) v->s.loop_filter = 0; v->res_x8 = get_bits1(gb); //reserved v->multires = get_bits1(gb); v->res_fasttx = get_bits1(gb); if (!v->res_fasttx) { v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct; v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add; v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add; v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add; v->s.dsp.vc1_inv_trans_8x8_dc = ff_simple_idct_add; v->s.dsp.vc1_inv_trans_8x4_dc = ff_simple_idct84_add; v->s.dsp.vc1_inv_trans_4x8_dc = ff_simple_idct48_add; v->s.dsp.vc1_inv_trans_4x4_dc = ff_simple_idct44_add; } v->fastuvmc = get_bits1(gb); //common if (!v->profile && !v->fastuvmc) { av_log(avctx, AV_LOG_ERROR, "FASTUVMC unavailable in Simple Profile\n"); return -1; } v->extended_mv = get_bits1(gb); //common if (!v->profile && v->extended_mv) { av_log(avctx, AV_LOG_ERROR, "Extended MVs unavailable in Simple Profile\n"); return -1; } v->dquant = get_bits(gb, 2); //common v->vstransform = get_bits1(gb); //common v->res_transtab = get_bits1(gb); if (v->res_transtab) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_TRANSTAB is forbidden\n"); return -1; } v->overlap = get_bits1(gb); //common v->s.resync_marker = get_bits1(gb); v->rangered = get_bits1(gb); if (v->rangered && v->profile == PROFILE_SIMPLE) { av_log(avctx, AV_LOG_INFO, "RANGERED should be set to 0 in Simple Profile\n"); } v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common v->quantizer_mode = get_bits(gb, 2); //common v->finterpflag = get_bits1(gb); //common v->res_rtm_flag = get_bits1(gb); //reserved if (!v->res_rtm_flag) { // av_log(avctx, AV_LOG_ERROR, // "0 for reserved RES_RTM_FLAG is forbidden\n"); av_log(avctx, AV_LOG_ERROR, "Old WMV3 version detected, only I-frames will be decoded\n"); //return -1; } //TODO: figure out what they mean (always 0x402F) if(!v->res_fasttx) skip_bits(gb, 16); av_log(avctx, AV_LOG_DEBUG, "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n" "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n" "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n", v->profile, v->frmrtq_postproc, v->bitrtq_postproc, v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv, v->rangered, v->vstransform, v->overlap, v->s.resync_marker, v->dquant, v->quantizer_mode, avctx->max_b_frames ); return 0; } static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb) { v->res_rtm_flag = 1; v->level = get_bits(gb, 3); if(v->level >= 5) { av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level); } v->chromaformat = get_bits(gb, 2); if (v->chromaformat != 1) { av_log(v->s.avctx, AV_LOG_ERROR, "Only 4:2:0 chroma format supported\n"); return -1; } // (fps-2)/4 (->30) v->frmrtq_postproc = get_bits(gb, 3); //common // (bitrate-32kbps)/64kbps v->bitrtq_postproc = get_bits(gb, 5); //common v->postprocflag = get_bits1(gb); //common v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1; v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1; v->s.avctx->width = v->s.avctx->coded_width; v->s.avctx->height = v->s.avctx->coded_height; v->broadcast = get_bits1(gb); v->interlace = get_bits1(gb); v->tfcntrflag = get_bits1(gb); v->finterpflag = get_bits1(gb); skip_bits1(gb); // reserved v->s.h_edge_pos = v->s.avctx->coded_width; v->s.v_edge_pos = v->s.avctx->coded_height; av_log(v->s.avctx, AV_LOG_DEBUG, "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n" "TFCTRflag=%i, FINTERPflag=%i\n", v->level, v->frmrtq_postproc, v->bitrtq_postproc, v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace, v->tfcntrflag, v->finterpflag ); v->psf = get_bits1(gb); if(v->psf) { //PsF, 6.1.13 av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n"); return -1; } v->s.max_b_frames = v->s.avctx->max_b_frames = 7; if(get_bits1(gb)) { //Display Info - decoding is not affected by it int w, h, ar = 0; av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n"); v->s.avctx->width = w = get_bits(gb, 14) + 1; v->s.avctx->height = h = get_bits(gb, 14) + 1; av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h); if(get_bits1(gb)) ar = get_bits(gb, 4); if(ar && ar < 14){ v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar]; }else if(ar == 15){ w = get_bits(gb, 8); h = get_bits(gb, 8); v->s.avctx->sample_aspect_ratio = (AVRational){w, h}; } av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den); if(get_bits1(gb)){ //framerate stuff if(get_bits1(gb)) { v->s.avctx->time_base.num = 32; v->s.avctx->time_base.den = get_bits(gb, 16) + 1; } else { int nr, dr; nr = get_bits(gb, 8); dr = get_bits(gb, 4); if(nr && nr < 8 && dr && dr < 3){ v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1]; v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000; } } } if(get_bits1(gb)){ v->color_prim = get_bits(gb, 8); v->transfer_char = get_bits(gb, 8); v->matrix_coef = get_bits(gb, 8); } } v->hrd_param_flag = get_bits1(gb); if(v->hrd_param_flag) { int i; v->hrd_num_leaky_buckets = get_bits(gb, 5); skip_bits(gb, 4); //bitrate exponent skip_bits(gb, 4); //buffer size exponent for(i = 0; i < v->hrd_num_leaky_buckets; i++) { skip_bits(gb, 16); //hrd_rate[n] skip_bits(gb, 16); //hrd_buffer[n] } } return 0; } int vc1_decode_entry_point(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb) { int i; av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32)); v->broken_link = get_bits1(gb); v->closed_entry = get_bits1(gb); v->panscanflag = get_bits1(gb); v->refdist_flag = get_bits1(gb); v->s.loop_filter = get_bits1(gb); v->fastuvmc = get_bits1(gb); v->extended_mv = get_bits1(gb); v->dquant = get_bits(gb, 2); v->vstransform = get_bits1(gb); v->overlap = get_bits1(gb); v->quantizer_mode = get_bits(gb, 2); if(v->hrd_param_flag){ for(i = 0; i < v->hrd_num_leaky_buckets; i++) { skip_bits(gb, 8); //hrd_full[n] } } if(get_bits1(gb)){ avctx->coded_width = (get_bits(gb, 12)+1)<<1; avctx->coded_height = (get_bits(gb, 12)+1)<<1; } if(v->extended_mv) v->extended_dmv = get_bits1(gb); if((v->range_mapy_flag = get_bits1(gb))) { av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n"); v->range_mapy = get_bits(gb, 3); } if((v->range_mapuv_flag = get_bits1(gb))) { av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n"); v->range_mapuv = get_bits(gb, 3); } av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n" "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n" "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n" "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n", v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter, v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode); return 0; } int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb) { int pqindex, lowquant, status; if(v->finterpflag) v->interpfrm = get_bits1(gb); skip_bits(gb, 2); //framecnt unused v->rangeredfrm = 0; if (v->rangered) v->rangeredfrm = get_bits1(gb); v->s.pict_type = get_bits1(gb); if (v->s.avctx->max_b_frames) { if (!v->s.pict_type) { if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE; else v->s.pict_type = FF_B_TYPE; } else v->s.pict_type = FF_P_TYPE; } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE; v->bi_type = 0; if(v->s.pict_type == FF_B_TYPE) { v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1); v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index]; if(v->bfraction == 0) { v->s.pict_type = FF_BI_TYPE; } } if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) skip_bits(gb, 7); // skip buffer fullness if(v->parse_only) return 0; /* calculate RND */ if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) v->rnd = 1; if(v->s.pict_type == FF_P_TYPE) v->rnd ^= 1; /* Quantizer stuff */ pqindex = get_bits(gb, 5); if(!pqindex) return -1; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = ff_vc1_pquant_table[0][pqindex]; else v->pq = ff_vc1_pquant_table[1][pqindex]; v->pquantizer = 1; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pquantizer = pqindex < 9; if (v->quantizer_mode == QUANT_NON_UNIFORM) v->pquantizer = 0; v->pqindex = pqindex; if (pqindex < 9) v->halfpq = get_bits1(gb); else v->halfpq = 0; if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits1(gb); v->dquantfrm = 0; if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3); v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 v->range_x = 1 << (v->k_x - 1); v->range_y = 1 << (v->k_y - 1); if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2); if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){ v->x8_type = get_bits1(gb); }else v->x8_type = 0; //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n", // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm); if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0; switch(v->s.pict_type) { case FF_P_TYPE: if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; lowquant = (v->pq > 12) ? 0 : 1; v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)]; if (v->mv_mode == MV_PMODE_INTENSITY_COMP) { int scale, shift, i; v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)]; v->lumscale = get_bits(gb, 6); v->lumshift = get_bits(gb, 6); v->use_ic = 1; /* fill lookup tables for intensity compensation */ if(!v->lumscale) { scale = -64; shift = (255 - v->lumshift * 2) << 6; if(v->lumshift > 31) shift += 128 << 6; } else { scale = v->lumscale + 32; if(v->lumshift > 31) shift = (v->lumshift - 64) << 6; else shift = v->lumshift << 6; } for(i = 0; i < 256; i++) { v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6); v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6); } } if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else v->s.quarter_sample = 1; } else v->s.quarter_sample = 1; v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)); if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); } else { v->mv_type_is_raw = 0; memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height); } status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); /* Hopefully this is correct for P frames */ v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; //FIXME Is that so ? if (v->vstransform) { v->ttmbf = get_bits1(gb); if (v->ttmbf) { v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; case FF_B_TYPE: if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN; v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV); v->s.mspel = v->s.quarter_sample; status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); v->s.mv_table_index = get_bits(gb, 2); v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; if (v->vstransform) { v->ttmbf = get_bits1(gb); if (v->ttmbf) { v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; } if(!v->x8_type) { /* AC Syntax */ v->c_ac_table_index = decode012(gb); if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) { v->y_ac_table_index = decode012(gb); } /* DC Syntax */ v->s.dc_table_index = get_bits1(gb); } if(v->s.pict_type == FF_BI_TYPE) { v->s.pict_type = FF_B_TYPE; v->bi_type = 1; } return 0; } int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb) { int pqindex, lowquant; int status; v->p_frame_skipped = 0; if(v->interlace){ v->fcm = decode012(gb); if(v->fcm) return -1; // interlaced frames/fields are not implemented } switch(get_unary(gb, 0, 4)) { case 0: v->s.pict_type = FF_P_TYPE; break; case 1: v->s.pict_type = FF_B_TYPE; break; case 2: v->s.pict_type = FF_I_TYPE; break; case 3: v->s.pict_type = FF_BI_TYPE; break; case 4: v->s.pict_type = FF_P_TYPE; // skipped pic v->p_frame_skipped = 1; return 0; } if(v->tfcntrflag) skip_bits(gb, 8); if(v->broadcast) { if(!v->interlace || v->psf) { v->rptfrm = get_bits(gb, 2); } else { v->tff = get_bits1(gb); v->rptfrm = get_bits1(gb); } } if(v->panscanflag) { //... } v->rnd = get_bits1(gb); if(v->interlace) v->uvsamp = get_bits1(gb); if(v->finterpflag) v->interpfrm = get_bits1(gb); if(v->s.pict_type == FF_B_TYPE) { v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1); v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index]; if(v->bfraction == 0) { v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */ } } pqindex = get_bits(gb, 5); if(!pqindex) return -1; v->pqindex = pqindex; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = ff_vc1_pquant_table[0][pqindex]; else v->pq = ff_vc1_pquant_table[1][pqindex]; v->pquantizer = 1; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pquantizer = pqindex < 9; if (v->quantizer_mode == QUANT_NON_UNIFORM) v->pquantizer = 0; v->pqindex = pqindex; if (pqindex < 9) v->halfpq = get_bits1(gb); else v->halfpq = 0; if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits1(gb); if(v->postprocflag) v->postproc = get_bits(gb, 2); if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0; if(v->parse_only) return 0; switch(v->s.pict_type) { case FF_I_TYPE: case FF_BI_TYPE: status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); v->condover = CONDOVER_NONE; if(v->overlap && v->pq <= 8) { v->condover = decode012(gb); if(v->condover == CONDOVER_SELECT) { status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); } } break; case FF_P_TYPE: if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3); else v->mvrange = 0; v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 v->range_x = 1 << (v->k_x - 1); v->range_y = 1 << (v->k_y - 1); if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; lowquant = (v->pq > 12) ? 0 : 1; v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)]; if (v->mv_mode == MV_PMODE_INTENSITY_COMP) { int scale, shift, i; v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)]; v->lumscale = get_bits(gb, 6); v->lumshift = get_bits(gb, 6); /* fill lookup tables for intensity compensation */ if(!v->lumscale) { scale = -64; shift = (255 - v->lumshift * 2) << 6; if(v->lumshift > 31) shift += 128 << 6; } else { scale = v->lumscale + 32; if(v->lumshift > 31) shift = (v->lumshift - 64) << 6; else shift = v->lumshift << 6; } for(i = 0; i < 256; i++) { v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6); v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6); } v->use_ic = 1; } if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else v->s.quarter_sample = 1; } else v->s.quarter_sample = 1; v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)); if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); } else { v->mv_type_is_raw = 0; memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height); } status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); /* Hopefully this is correct for P frames */ v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; //FIXME Is that so ? if (v->vstransform) { v->ttmbf = get_bits1(gb); if (v->ttmbf) { v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; case FF_B_TYPE: if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3); else v->mvrange = 0; v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 v->range_x = 1 << (v->k_x - 1); v->range_y = 1 << (v->k_y - 1); if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN; v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV); v->s.mspel = v->s.quarter_sample; status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); v->s.mv_table_index = get_bits(gb, 2); v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; if (v->vstransform) { v->ttmbf = get_bits1(gb); if (v->ttmbf) { v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; } /* AC Syntax */ v->c_ac_table_index = decode012(gb); if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) { v->y_ac_table_index = decode012(gb); } /* DC Syntax */ v->s.dc_table_index = get_bits1(gb); if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->bi_type = 0; if(v->s.pict_type == FF_BI_TYPE) { v->s.pict_type = FF_B_TYPE; v->bi_type = 1; } return 0; }