/* * TwinVQ decoder * Copyright (c) 2009 Vitor Sessak * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <math.h> #include <stdint.h> #include "libavutil/channel_layout.h" #include "libavutil/float_dsp.h" #include "avcodec.h" #include "fft.h" #include "internal.h" #include "lsp.h" #include "sinewin.h" #include "twinvq.h" /** * Evaluate a single LPC amplitude spectrum envelope coefficient from the line * spectrum pairs. * * @param lsp a vector of the cosine of the LSP values * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude * @param order the order of the LSP (and the size of the *lsp buffer). Must * be a multiple of four. * @return the LPC value * * @todo reuse code from Vorbis decoder: vorbis_floor0_decode */ static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) { int j; float p = 0.5f; float q = 0.5f; float two_cos_w = 2.0f * cos_val; for (j = 0; j + 1 < order; j += 2 * 2) { // Unroll the loop once since order is a multiple of four q *= lsp[j] - two_cos_w; p *= lsp[j + 1] - two_cos_w; q *= lsp[j + 2] - two_cos_w; p *= lsp[j + 3] - two_cos_w; } p *= p * (2.0f - two_cos_w); q *= q * (2.0f + two_cos_w); return 0.5 / (p + q); } /** * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs. */ static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc) { int i; const TwinVQModeTab *mtab = tctx->mtab; int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub; for (i = 0; i < size_s / 2; i++) { float cos_i = tctx->cos_tabs[0][i]; lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp); } } static void interpolate(float *out, float v1, float v2, int size) { int i; float step = (v1 - v2) / (size + 1); for (i = 0; i < size; i++) { v2 += step; out[i] = v2; } } static inline float get_cos(int idx, int part, const float *cos_tab, int size) { return part ? -cos_tab[size - idx - 1] : cos_tab[idx]; } /** * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs. * Probably for speed reasons, the coefficients are evaluated as * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ... * where s is an evaluated value, i is a value interpolated from the others * and b might be either calculated or interpolated, depending on an * unexplained condition. * * @param step the size of a block "siiiibiiii" * @param in the cosine of the LSP data * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI * (negative cosine values) * @param size the size of the whole output */ static inline void eval_lpcenv_or_interp(TwinVQContext *tctx, enum TwinVQFrameType ftype, float *out, const float *in, int size, int step, int part) { int i; const TwinVQModeTab *mtab = tctx->mtab; const float *cos_tab = tctx->cos_tabs[ftype]; // Fill the 's' for (i = 0; i < size; i += step) out[i] = eval_lpc_spectrum(in, get_cos(i, part, cos_tab, size), mtab->n_lsp); // Fill the 'iiiibiiii' for (i = step; i <= size - 2 * step; i += step) { if (out[i + step] + out[i - step] > 1.95 * out[i] || out[i + step] >= out[i - step]) { interpolate(out + i - step + 1, out[i], out[i - step], step - 1); } else { out[i - step / 2] = eval_lpc_spectrum(in, get_cos(i - step / 2, part, cos_tab, size), mtab->n_lsp); interpolate(out + i - step + 1, out[i - step / 2], out[i - step], step / 2 - 1); interpolate(out + i - step / 2 + 1, out[i], out[i - step / 2], step / 2 - 1); } } interpolate(out + size - 2 * step + 1, out[size - step], out[size - 2 * step], step - 1); } static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype, const float *buf, float *lpc, int size, int step) { eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0); eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2, 2 * step, 1); interpolate(lpc + size / 2 - step + 1, lpc[size / 2], lpc[size / 2 - step], step); twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step], 2 * step - 1); } /** * Inverse quantization. Read CB coefficients for cb1 and cb2 from the * bitstream, sum the corresponding vectors and write the result to *out * after permutation. */ static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out, enum TwinVQFrameType ftype, const int16_t *cb0, const int16_t *cb1, int cb_len) { int pos = 0; int i, j; for (i = 0; i < tctx->n_div[ftype]; i++) { int tmp0, tmp1; int sign0 = 1; int sign1 = 1; const int16_t *tab0, *tab1; int length = tctx->length[ftype][i >= tctx->length_change[ftype]]; int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]); int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; tmp0 = *cb_bits++; if (bits == 7) { if (tmp0 & 0x40) sign0 = -1; tmp0 &= 0x3F; } bits = tctx->bits_main_spec[1][ftype][bitstream_second_part]; tmp1 = *cb_bits++; if (bits == 7) { if (tmp1 & 0x40) sign1 = -1; tmp1 &= 0x3F; } tab0 = cb0 + tmp0 * cb_len; tab1 = cb1 + tmp1 * cb_len; for (j = 0; j < length; j++) out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] + sign1 * tab1[j]; pos += length; } } static void dec_gain(TwinVQContext *tctx, enum TwinVQFrameType ftype, float *out) { const TwinVQModeTab *mtab = tctx->mtab; const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame]; int i, j; int sub = mtab->fmode[ftype].sub; float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1); float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1); if (ftype == TWINVQ_FT_LONG) { for (i = 0; i < tctx->avctx->channels; i++) out[i] = (1.0 / (1 << 13)) * twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i], TWINVQ_AMP_MAX, TWINVQ_MULAW_MU); } else { for (i = 0; i < tctx->avctx->channels; i++) { float val = (1.0 / (1 << 23)) * twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i], TWINVQ_AMP_MAX, TWINVQ_MULAW_MU); for (j = 0; j < sub; j++) out[i * sub + j] = val * twinvq_mulawinv(sub_step * 0.5 + sub_step * bits->sub_gain_bits[i * sub + j], TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU); } } } /** * Rearrange the LSP coefficients so that they have a minimum distance of * min_dist. This function does it exactly as described in section of 3.2.4 * of the G.729 specification (but interestingly is different from what the * reference decoder actually does). */ static void rearrange_lsp(int order, float *lsp, float min_dist) { int i; float min_dist2 = min_dist * 0.5; for (i = 1; i < order; i++) if (lsp[i] - lsp[i - 1] < min_dist) { float avg = (lsp[i] + lsp[i - 1]) * 0.5; lsp[i - 1] = avg - min_dist2; lsp[i] = avg + min_dist2; } } static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, int lpc_hist_idx, float *lsp, float *hist) { const TwinVQModeTab *mtab = tctx->mtab; int i, j; const float *cb = mtab->lspcodebook; const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp; const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp; const int8_t funny_rounding[4] = { -2, mtab->lsp_split == 4 ? -2 : 1, mtab->lsp_split == 4 ? -2 : 1, 0 }; j = 0; for (i = 0; i < mtab->lsp_split; i++) { int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) / mtab->lsp_split; for (; j < chunk_end; j++) lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] + cb2[lpc_idx2[i] * mtab->n_lsp + j]; } rearrange_lsp(mtab->n_lsp, lsp, 0.0001); for (i = 0; i < mtab->n_lsp; i++) { float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i]; float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i]; hist[i] = lsp[i]; lsp[i] = lsp[i] * tmp1 + tmp2; } rearrange_lsp(mtab->n_lsp, lsp, 0.0001); rearrange_lsp(mtab->n_lsp, lsp, 0.000095); ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp); } static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp, enum TwinVQFrameType ftype, float *lpc) { int i; int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub; for (i = 0; i < tctx->mtab->n_lsp; i++) lsp[i] = 2 * cos(lsp[i]); switch (ftype) { case TWINVQ_FT_LONG: eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8); break; case TWINVQ_FT_MEDIUM: eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2); break; case TWINVQ_FT_SHORT: eval_lpcenv(tctx, lsp, lpc); break; } } static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 }; static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float *in, float *prev, int ch) { FFTContext *mdct = &tctx->mdct_ctx[ftype]; const TwinVQModeTab *mtab = tctx->mtab; int bsize = mtab->size / mtab->fmode[ftype].sub; int size = mtab->size; float *buf1 = tctx->tmp_buf; int j, first_wsize, wsize; // Window size float *out = tctx->curr_frame + 2 * ch * mtab->size; float *out2 = out; float *prev_buf; int types_sizes[] = { mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub, mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub, mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2), }; wsize = types_sizes[wtype_to_wsize[wtype]]; first_wsize = wsize; prev_buf = prev + (size - bsize) / 2; for (j = 0; j < mtab->fmode[ftype].sub; j++) { int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype; if (!j && wtype == 4) sub_wtype = 4; else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7) sub_wtype = 7; wsize = types_sizes[wtype_to_wsize[sub_wtype]]; mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j); tctx->fdsp->vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2, buf1 + bsize * j, ff_sine_windows[av_log2(wsize)], wsize / 2); out2 += wsize; memcpy(out2, buf1 + bsize * j + wsize / 2, (bsize - wsize / 2) * sizeof(float)); out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize; prev_buf = buf1 + bsize * j + bsize / 2; } tctx->last_block_pos[ch] = (size + first_wsize) / 2; } static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype, int wtype, float **out, int offset) { const TwinVQModeTab *mtab = tctx->mtab; float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; int size1, size2, i; float *out1, *out2; for (i = 0; i < tctx->avctx->channels; i++) imdct_and_window(tctx, ftype, wtype, tctx->spectrum + i * mtab->size, prev_buf + 2 * i * mtab->size, i); if (!out) return; size2 = tctx->last_block_pos[0]; size1 = mtab->size - size2; out1 = &out[0][0] + offset; memcpy(out1, prev_buf, size1 * sizeof(*out1)); memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1)); if (tctx->avctx->channels == 2) { out2 = &out[1][0] + offset; memcpy(out2, &prev_buf[2 * mtab->size], size1 * sizeof(*out2)); memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size], size2 * sizeof(*out2)); tctx->fdsp->butterflies_float(out1, out2, mtab->size); } } static void read_and_decode_spectrum(TwinVQContext *tctx, float *out, enum TwinVQFrameType ftype) { const TwinVQModeTab *mtab = tctx->mtab; TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame]; int channels = tctx->avctx->channels; int sub = mtab->fmode[ftype].sub; int block_size = mtab->size / sub; float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX]; float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4]; int i, j; dequant(tctx, bits->main_coeffs, out, ftype, mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, mtab->fmode[ftype].cb_len_read); dec_gain(tctx, ftype, gain); if (ftype == TWINVQ_FT_LONG) { int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) / tctx->n_div[3]; dequant(tctx, bits->ppc_coeffs, ppc_shape, TWINVQ_FT_PPC, mtab->ppc_shape_cb, mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE, cb_len_p); } for (i = 0; i < channels; i++) { float *chunk = out + mtab->size * i; float lsp[TWINVQ_LSP_COEFS_MAX]; for (j = 0; j < sub; j++) { tctx->dec_bark_env(tctx, bits->bark1[i][j], bits->bark_use_hist[i][j], i, tctx->tmp_buf, gain[sub * i + j], ftype); tctx->fdsp->vector_fmul(chunk + block_size * j, chunk + block_size * j, tctx->tmp_buf, block_size); } if (ftype == TWINVQ_FT_LONG) tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i], ppc_shape + i * mtab->ppc_shape_len, chunk); decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i], bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]); dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); for (j = 0; j < mtab->fmode[ftype].sub; j++) { tctx->fdsp->vector_fmul(chunk, chunk, tctx->tmp_buf, block_size); chunk += block_size; } } } const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = { TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM, TWINVQ_FT_MEDIUM }; int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; TwinVQContext *tctx = avctx->priv_data; const TwinVQModeTab *mtab = tctx->mtab; float **out = NULL; int ret; /* get output buffer */ if (tctx->discarded_packets >= 2) { frame->nb_samples = mtab->size * tctx->frames_per_packet; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; out = (float **)frame->extended_data; } if (buf_size < avctx->block_align) { av_log(avctx, AV_LOG_ERROR, "Frame too small (%d bytes). Truncated file?\n", buf_size); return AVERROR(EINVAL); } if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0) return ret; for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet; tctx->cur_frame++) { read_and_decode_spectrum(tctx, tctx->spectrum, tctx->bits[tctx->cur_frame].ftype); imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype, tctx->bits[tctx->cur_frame].window_type, out, tctx->cur_frame * mtab->size); FFSWAP(float *, tctx->curr_frame, tctx->prev_frame); } if (tctx->discarded_packets < 2) { tctx->discarded_packets++; *got_frame_ptr = 0; return buf_size; } *got_frame_ptr = 1; // VQF can deliver packets 1 byte greater than block align if (buf_size == avctx->block_align + 1) return buf_size; return avctx->block_align; } /** * Init IMDCT and windowing tables */ static av_cold int init_mdct_win(TwinVQContext *tctx) { int i, j, ret; const TwinVQModeTab *mtab = tctx->mtab; int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub; int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub; int channels = tctx->avctx->channels; float norm = channels == 1 ? 2.0 : 1.0; for (i = 0; i < 3; i++) { int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub; if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, -sqrt(norm / bsize) / (1 << 15)))) return ret; } FF_ALLOC_ARRAY_OR_GOTO(tctx->avctx, tctx->tmp_buf, mtab->size, sizeof(*tctx->tmp_buf), alloc_fail); FF_ALLOC_ARRAY_OR_GOTO(tctx->avctx, tctx->spectrum, 2 * mtab->size, channels * sizeof(*tctx->spectrum), alloc_fail); FF_ALLOC_ARRAY_OR_GOTO(tctx->avctx, tctx->curr_frame, 2 * mtab->size, channels * sizeof(*tctx->curr_frame), alloc_fail); FF_ALLOC_ARRAY_OR_GOTO(tctx->avctx, tctx->prev_frame, 2 * mtab->size, channels * sizeof(*tctx->prev_frame), alloc_fail); for (i = 0; i < 3; i++) { int m = 4 * mtab->size / mtab->fmode[i].sub; double freq = 2 * M_PI / m; FF_ALLOC_ARRAY_OR_GOTO(tctx->avctx, tctx->cos_tabs[i], (m / 4), sizeof(*tctx->cos_tabs[i]), alloc_fail); for (j = 0; j <= m / 8; j++) tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq); for (j = 1; j < m / 8; j++) tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j]; } ff_init_ff_sine_windows(av_log2(size_m)); ff_init_ff_sine_windows(av_log2(size_s / 2)); ff_init_ff_sine_windows(av_log2(mtab->size)); return 0; alloc_fail: return AVERROR(ENOMEM); } /** * Interpret the data as if it were a num_blocks x line_len[0] matrix and for * each line do a cyclic permutation, i.e. * abcdefghijklm -> defghijklmabc * where the amount to be shifted is evaluated depending on the column. */ static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, int block_size, const uint8_t line_len[2], int length_div, enum TwinVQFrameType ftype) { int i, j; for (i = 0; i < line_len[0]; i++) { int shift; if (num_blocks == 1 || (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) || (ftype != TWINVQ_FT_LONG && num_vect & 1) || i == line_len[1]) { shift = 0; } else if (ftype == TWINVQ_FT_LONG) { shift = i; } else shift = i * i; for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++) tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect; } } /** * Interpret the input data as in the following table: * * @verbatim * * abcdefgh * ijklmnop * qrstuvw * x123456 * * @endverbatim * * and transpose it, giving the output * aiqxbjr1cks2dlt3emu4fvn5gow6hp */ static void transpose_perm(int16_t *out, int16_t *in, int num_vect, const uint8_t line_len[2], int length_div) { int i, j; int cont = 0; for (i = 0; i < num_vect; i++) for (j = 0; j < line_len[i >= length_div]; j++) out[cont++] = in[j * num_vect + i]; } static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) { int block_size = size / n_blocks; int i; for (i = 0; i < size; i++) out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; } static av_cold void construct_perm_table(TwinVQContext *tctx, enum TwinVQFrameType ftype) { int block_size, size; const TwinVQModeTab *mtab = tctx->mtab; int16_t *tmp_perm = (int16_t *)tctx->tmp_buf; if (ftype == TWINVQ_FT_PPC) { size = tctx->avctx->channels; block_size = mtab->ppc_shape_len; } else { size = tctx->avctx->channels * mtab->fmode[ftype].sub; block_size = mtab->size / mtab->fmode[ftype].sub; } permutate_in_line(tmp_perm, tctx->n_div[ftype], size, block_size, tctx->length[ftype], tctx->length_change[ftype], ftype); transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], tctx->length[ftype], tctx->length_change[ftype]); linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, size * block_size); } static av_cold void init_bitstream_params(TwinVQContext *tctx) { const TwinVQModeTab *mtab = tctx->mtab; int n_ch = tctx->avctx->channels; int total_fr_bits = tctx->avctx->bit_rate * mtab->size / tctx->avctx->sample_rate; int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 + mtab->lsp_split * mtab->lsp_bit2); int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit + mtab->ppc_period_bit); int bsize_no_main_cb[3], bse_bits[3], i; enum TwinVQFrameType frametype; for (i = 0; i < 3; i++) // +1 for history usage switch bse_bits[i] = n_ch * (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1); bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS; for (i = 0; i < 2; i++) bsize_no_main_cb[i] = lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS + TWINVQ_WINDOW_TYPE_BITS + mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS); if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) { bsize_no_main_cb[1] += 2; bsize_no_main_cb[2] += 2; } // The remaining bits are all used for the main spectrum coefficients for (i = 0; i < 4; i++) { int bit_size, vect_size; int rounded_up, rounded_down, num_rounded_down, num_rounded_up; if (i == 3) { bit_size = n_ch * mtab->ppc_shape_bit; vect_size = n_ch * mtab->ppc_shape_len; } else { bit_size = total_fr_bits - bsize_no_main_cb[i]; vect_size = n_ch * mtab->size; } tctx->n_div[i] = (bit_size + 13) / 14; rounded_up = (bit_size + tctx->n_div[i] - 1) / tctx->n_div[i]; rounded_down = (bit_size) / tctx->n_div[i]; num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; num_rounded_up = tctx->n_div[i] - num_rounded_down; tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2; tctx->bits_main_spec[1][i][0] = rounded_up / 2; tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2; tctx->bits_main_spec[1][i][1] = rounded_down / 2; tctx->bits_main_spec_change[i] = num_rounded_up; rounded_up = (vect_size + tctx->n_div[i] - 1) / tctx->n_div[i]; rounded_down = (vect_size) / tctx->n_div[i]; num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; num_rounded_up = tctx->n_div[i] - num_rounded_down; tctx->length[i][0] = rounded_up; tctx->length[i][1] = rounded_down; tctx->length_change[i] = num_rounded_up; } for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++) construct_perm_table(tctx, frametype); } av_cold int ff_twinvq_decode_close(AVCodecContext *avctx) { TwinVQContext *tctx = avctx->priv_data; int i; for (i = 0; i < 3; i++) { ff_mdct_end(&tctx->mdct_ctx[i]); av_freep(&tctx->cos_tabs[i]); } av_freep(&tctx->curr_frame); av_freep(&tctx->spectrum); av_freep(&tctx->prev_frame); av_freep(&tctx->tmp_buf); av_freep(&tctx->fdsp); return 0; } av_cold int ff_twinvq_decode_init(AVCodecContext *avctx) { int ret; TwinVQContext *tctx = avctx->priv_data; tctx->avctx = avctx; avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; if (!avctx->block_align) { avctx->block_align = tctx->frame_size + 7 >> 3; } else if (avctx->block_align * 8 < tctx->frame_size) { av_log(avctx, AV_LOG_ERROR, "Block align is %d bits, expected %d\n", avctx->block_align * 8, tctx->frame_size); return AVERROR_INVALIDDATA; } tctx->frames_per_packet = avctx->block_align * 8 / tctx->frame_size; if (tctx->frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) { av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%d)\n", tctx->frames_per_packet); return AVERROR_INVALIDDATA; } tctx->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!tctx->fdsp) { ff_twinvq_decode_close(avctx); return AVERROR(ENOMEM); } if ((ret = init_mdct_win(tctx))) { av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); ff_twinvq_decode_close(avctx); return ret; } init_bitstream_params(tctx); twinvq_memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist)); return 0; }