/* * Duck/ON2 TrueMotion 2 Decoder * Copyright (c) 2005 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Duck TrueMotion2 decoder. */ #include "avcodec.h" #include "bytestream.h" #include "get_bits.h" #include "dsputil.h" #define TM2_ESCAPE 0x80000000 #define TM2_DELTAS 64 /* Huffman-coded streams of different types of blocks */ enum TM2_STREAMS{ TM2_C_HI = 0, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE, TM2_NUM_STREAMS}; /* Block types */ enum TM2_BLOCKS{ TM2_HI_RES = 0, TM2_MED_RES, TM2_LOW_RES, TM2_NULL_RES, TM2_UPDATE, TM2_STILL, TM2_MOTION}; typedef struct TM2Context{ AVCodecContext *avctx; AVFrame pic; GetBitContext gb; DSPContext dsp; uint8_t *buffer; int buffer_size; /* TM2 streams */ int *tokens[TM2_NUM_STREAMS]; int tok_lens[TM2_NUM_STREAMS]; int tok_ptrs[TM2_NUM_STREAMS]; int deltas[TM2_NUM_STREAMS][TM2_DELTAS]; /* for blocks decoding */ int D[4]; int CD[4]; int *last; int *clast; /* data for current and previous frame */ int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base; int *Y1, *U1, *V1, *Y2, *U2, *V2; int y_stride, uv_stride; int cur; } TM2Context; /** * Huffman codes for each of streams */ typedef struct TM2Codes{ VLC vlc; ///< table for FFmpeg bitstream reader int bits; int *recode; ///< table for converting from code indexes to values int length; } TM2Codes; /** * structure for gathering Huffman codes information */ typedef struct TM2Huff{ int val_bits; ///< length of literal int max_bits; ///< maximum length of code int min_bits; ///< minimum length of code int nodes; ///< total number of nodes in tree int num; ///< current number filled int max_num; ///< total number of codes int *nums; ///< literals uint32_t *bits; ///< codes int *lens; ///< codelengths } TM2Huff; static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff) { if(length > huff->max_bits) { av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n", huff->max_bits); return -1; } if(!get_bits1(&ctx->gb)) { /* literal */ if (length == 0) { length = 1; } if(huff->num >= huff->max_num) { av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n"); return -1; } huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits); huff->bits[huff->num] = prefix; huff->lens[huff->num] = length; huff->num++; return 0; } else { /* non-terminal node */ if(tm2_read_tree(ctx, prefix << 1, length + 1, huff) == -1) return -1; if(tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff) == -1) return -1; } return 0; } static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code) { TM2Huff huff; int res = 0; huff.val_bits = get_bits(&ctx->gb, 5); huff.max_bits = get_bits(&ctx->gb, 5); huff.min_bits = get_bits(&ctx->gb, 5); huff.nodes = get_bits_long(&ctx->gb, 17); huff.num = 0; /* check for correct codes parameters */ if((huff.val_bits < 1) || (huff.val_bits > 32) || (huff.max_bits < 0) || (huff.max_bits > 25)) { av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal length: %i, max code length: %i\n", huff.val_bits, huff.max_bits); return -1; } if((huff.nodes <= 0) || (huff.nodes > 0x10000)) { av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree nodes: %i\n", huff.nodes); return -1; } /* one-node tree */ if(huff.max_bits == 0) huff.max_bits = 1; /* allocate space for codes - it is exactly ceil(nodes / 2) entries */ huff.max_num = (huff.nodes + 1) >> 1; huff.nums = av_mallocz(huff.max_num * sizeof(int)); huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t)); huff.lens = av_mallocz(huff.max_num * sizeof(int)); if(tm2_read_tree(ctx, 0, 0, &huff) == -1) res = -1; if(huff.num != huff.max_num) { av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n", huff.num, huff.max_num); res = -1; } /* convert codes to vlc_table */ if(res != -1) { int i; res = init_vlc(&code->vlc, huff.max_bits, huff.max_num, huff.lens, sizeof(int), sizeof(int), huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0); if(res < 0) { av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n"); res = -1; } else res = 0; if(res != -1) { code->bits = huff.max_bits; code->length = huff.max_num; code->recode = av_malloc(code->length * sizeof(int)); for(i = 0; i < code->length; i++) code->recode[i] = huff.nums[i]; } } /* free allocated memory */ av_free(huff.nums); av_free(huff.bits); av_free(huff.lens); return res; } static void tm2_free_codes(TM2Codes *code) { av_free(code->recode); if(code->vlc.table) ff_free_vlc(&code->vlc); } static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code) { int val; val = get_vlc2(gb, code->vlc.table, code->bits, 1); return code->recode[val]; } static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf) { uint32_t magic; const uint8_t *obuf; obuf = buf; magic = AV_RL32(buf); buf += 4; if(magic == 0x00000100) { /* old header */ /* av_log (ctx->avctx, AV_LOG_ERROR, "TM2 old header: not implemented (yet)\n"); */ return 40; } else if(magic == 0x00000101) { /* new header */ return 40; } else { av_log (ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08X\n", magic); return -1; } return buf - obuf; } static int tm2_read_deltas(TM2Context *ctx, int stream_id) { int d, mb; int i, v; d = get_bits(&ctx->gb, 9); mb = get_bits(&ctx->gb, 5); if((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) { av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb); return -1; } for(i = 0; i < d; i++) { v = get_bits_long(&ctx->gb, mb); if(v & (1 << (mb - 1))) ctx->deltas[stream_id][i] = v - (1 << mb); else ctx->deltas[stream_id][i] = v; } for(; i < TM2_DELTAS; i++) ctx->deltas[stream_id][i] = 0; return 0; } static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size) { int i; int skip = 0; int len, toks, pos; TM2Codes codes; GetByteContext gb; if (buf_size < 4) { av_log(ctx->avctx, AV_LOG_ERROR, "not enough space for len left\n"); return AVERROR_INVALIDDATA; } /* get stream length in dwords */ bytestream2_init(&gb, buf, buf_size); len = bytestream2_get_be32(&gb); skip = len * 4 + 4; if(len == 0) return 4; if (len >= INT_MAX/4-1 || len < 0 || skip > buf_size) { av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n"); return -1; } toks = bytestream2_get_be32(&gb); if(toks & 1) { len = bytestream2_get_be32(&gb); if(len == TM2_ESCAPE) { len = bytestream2_get_be32(&gb); } if(len > 0) { pos = bytestream2_tell(&gb); if (skip <= pos) return -1; init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8); if(tm2_read_deltas(ctx, stream_id) == -1) return -1; bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2); } } /* skip unused fields */ len = bytestream2_get_be32(&gb); if(len == TM2_ESCAPE) { /* some unknown length - could be escaped too */ bytestream2_skip(&gb, 8); /* unused by decoder */ } else { bytestream2_skip(&gb, 4); /* unused by decoder */ } pos = bytestream2_tell(&gb); if (skip <= pos) return -1; init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8); if(tm2_build_huff_table(ctx, &codes) == -1) return -1; bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2); toks >>= 1; /* check if we have sane number of tokens */ if((toks < 0) || (toks > 0xFFFFFF)){ av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks); tm2_free_codes(&codes); return -1; } ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int)); ctx->tok_lens[stream_id] = toks; len = bytestream2_get_be32(&gb); if(len > 0) { pos = bytestream2_tell(&gb); if (skip <= pos) return -1; init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8); for(i = 0; i < toks; i++) { if (get_bits_left(&ctx->gb) <= 0) { av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks); return -1; } ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes); if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) { av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n", ctx->tokens[stream_id][i], stream_id, i); return AVERROR_INVALIDDATA; } } } else { for(i = 0; i < toks; i++) { ctx->tokens[stream_id][i] = codes.recode[0]; if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) { av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n", ctx->tokens[stream_id][i], stream_id, i); return AVERROR_INVALIDDATA; } } } tm2_free_codes(&codes); return skip; } static inline int GET_TOK(TM2Context *ctx,int type) { if(ctx->tok_ptrs[type] >= ctx->tok_lens[type]) { av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]); return 0; } if(type <= TM2_MOT) { if (ctx->tokens[type][ctx->tok_ptrs[type]] >= TM2_DELTAS) { av_log(ctx->avctx, AV_LOG_ERROR, "token %d is too large\n", ctx->tokens[type][ctx->tok_ptrs[type]]); return 0; } return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]]; } return ctx->tokens[type][ctx->tok_ptrs[type]++]; } /* blocks decoding routines */ /* common Y, U, V pointers initialisation */ #define TM2_INIT_POINTERS() \ int *last, *clast; \ int *Y, *U, *V;\ int Ystride, Ustride, Vstride;\ \ Ystride = ctx->y_stride;\ Vstride = ctx->uv_stride;\ Ustride = ctx->uv_stride;\ Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\ V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\ U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\ last = ctx->last + bx * 4;\ clast = ctx->clast + bx * 4; #define TM2_INIT_POINTERS_2() \ int *Yo, *Uo, *Vo;\ int oYstride, oUstride, oVstride;\ \ TM2_INIT_POINTERS();\ oYstride = Ystride;\ oVstride = Vstride;\ oUstride = Ustride;\ Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\ Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\ Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2; /* recalculate last and delta values for next blocks */ #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\ CD[0] = CHR[1] - last[1];\ CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\ last[0] = (int)CHR[stride + 0];\ last[1] = (int)CHR[stride + 1];} /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */ static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last) { int ct, d; int i, j; for(j = 0; j < 4; j++){ ct = ctx->D[j]; for(i = 0; i < 4; i++){ d = deltas[i + j * 4]; ct += d; last[i] += ct; Y[i] = av_clip_uint8(last[i]); } Y += stride; ctx->D[j] = ct; } } static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas) { int i, j; for(j = 0; j < 2; j++){ for(i = 0; i < 2; i++){ CD[j] += deltas[i + j * 2]; last[i] += CD[j]; data[i] = last[i]; } data += stride; } } static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx) { int t; int l; int prev; if(bx > 0) prev = clast[-3]; else prev = 0; t = (CD[0] + CD[1]) >> 1; l = (prev - CD[0] - CD[1] + clast[1]) >> 1; CD[1] = CD[0] + CD[1] - t; CD[0] = t; clast[0] = l; tm2_high_chroma(data, stride, clast, CD, deltas); } static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i; int deltas[16]; TM2_INIT_POINTERS(); /* hi-res chroma */ for(i = 0; i < 4; i++) { deltas[i] = GET_TOK(ctx, TM2_C_HI); deltas[i + 4] = GET_TOK(ctx, TM2_C_HI); } tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas); tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4); /* hi-res luma */ for(i = 0; i < 16; i++) deltas[i] = GET_TOK(ctx, TM2_L_HI); tm2_apply_deltas(ctx, Y, Ystride, deltas, last); } static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i; int deltas[16]; TM2_INIT_POINTERS(); /* low-res chroma */ deltas[0] = GET_TOK(ctx, TM2_C_LO); deltas[1] = deltas[2] = deltas[3] = 0; tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx); deltas[0] = GET_TOK(ctx, TM2_C_LO); deltas[1] = deltas[2] = deltas[3] = 0; tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx); /* hi-res luma */ for(i = 0; i < 16; i++) deltas[i] = GET_TOK(ctx, TM2_L_HI); tm2_apply_deltas(ctx, Y, Ystride, deltas, last); } static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i; int t1, t2; int deltas[16]; TM2_INIT_POINTERS(); /* low-res chroma */ deltas[0] = GET_TOK(ctx, TM2_C_LO); deltas[1] = deltas[2] = deltas[3] = 0; tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx); deltas[0] = GET_TOK(ctx, TM2_C_LO); deltas[1] = deltas[2] = deltas[3] = 0; tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx); /* low-res luma */ for(i = 0; i < 16; i++) deltas[i] = 0; deltas[ 0] = GET_TOK(ctx, TM2_L_LO); deltas[ 2] = GET_TOK(ctx, TM2_L_LO); deltas[ 8] = GET_TOK(ctx, TM2_L_LO); deltas[10] = GET_TOK(ctx, TM2_L_LO); if(bx > 0) last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1; else last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1; last[2] = (last[1] + last[3]) >> 1; t1 = ctx->D[0] + ctx->D[1]; ctx->D[0] = t1 >> 1; ctx->D[1] = t1 - (t1 >> 1); t2 = ctx->D[2] + ctx->D[3]; ctx->D[2] = t2 >> 1; ctx->D[3] = t2 - (t2 >> 1); tm2_apply_deltas(ctx, Y, Ystride, deltas, last); } static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i; int ct; int left, right, diff; int deltas[16]; TM2_INIT_POINTERS(); /* null chroma */ deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0; tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx); deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0; tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx); /* null luma */ for(i = 0; i < 16; i++) deltas[i] = 0; ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3]; if(bx > 0) left = last[-1] - ct; else left = 0; right = last[3]; diff = right - left; last[0] = left + (diff >> 2); last[1] = left + (diff >> 1); last[2] = right - (diff >> 2); last[3] = right; { int tp = left; ctx->D[0] = (tp + (ct >> 2)) - left; left += ctx->D[0]; ctx->D[1] = (tp + (ct >> 1)) - left; left += ctx->D[1]; ctx->D[2] = ((tp + ct) - (ct >> 2)) - left; left += ctx->D[2]; ctx->D[3] = (tp + ct) - left; } tm2_apply_deltas(ctx, Y, Ystride, deltas, last); } static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i, j; TM2_INIT_POINTERS_2(); /* update chroma */ for(j = 0; j < 2; j++){ for(i = 0; i < 2; i++){ U[i] = Uo[i]; V[i] = Vo[i]; } U += Ustride; V += Vstride; Uo += oUstride; Vo += oVstride; } U -= Ustride * 2; V -= Vstride * 2; TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD); TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2)); /* update deltas */ ctx->D[0] = Yo[3] - last[3]; ctx->D[1] = Yo[3 + oYstride] - Yo[3]; ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride]; ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2]; for(j = 0; j < 4; j++){ for(i = 0; i < 4; i++){ Y[i] = Yo[i]; last[i] = Yo[i]; } Y += Ystride; Yo += oYstride; } } static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i, j; int d; TM2_INIT_POINTERS_2(); /* update chroma */ for(j = 0; j < 2; j++){ for(i = 0; i < 2; i++){ U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD); V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD); } U += Ustride; V += Vstride; Uo += oUstride; Vo += oVstride; } U -= Ustride * 2; V -= Vstride * 2; TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD); TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2)); /* update deltas */ ctx->D[0] = Yo[3] - last[3]; ctx->D[1] = Yo[3 + oYstride] - Yo[3]; ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride]; ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2]; for(j = 0; j < 4; j++){ d = last[3]; for(i = 0; i < 4; i++){ Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD); last[i] = Y[i]; } ctx->D[j] = last[3] - d; Y += Ystride; Yo += oYstride; } } static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by) { int i, j; int mx, my; TM2_INIT_POINTERS_2(); mx = GET_TOK(ctx, TM2_MOT); my = GET_TOK(ctx, TM2_MOT); mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4); my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4); if (4*bx+mx<0 || 4*by+my<0 || 4*bx+mx+4 > ctx->avctx->width || 4*by+my+4 > ctx->avctx->height) { av_log(0,0, "MV out of picture\n"); return; } Yo += my * oYstride + mx; Uo += (my >> 1) * oUstride + (mx >> 1); Vo += (my >> 1) * oVstride + (mx >> 1); /* copy chroma */ for(j = 0; j < 2; j++){ for(i = 0; i < 2; i++){ U[i] = Uo[i]; V[i] = Vo[i]; } U += Ustride; V += Vstride; Uo += oUstride; Vo += oVstride; } U -= Ustride * 2; V -= Vstride * 2; TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD); TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2)); /* copy luma */ for(j = 0; j < 4; j++){ for(i = 0; i < 4; i++){ Y[i] = Yo[i]; } Y += Ystride; Yo += oYstride; } /* calculate deltas */ Y -= Ystride * 4; ctx->D[0] = Y[3] - last[3]; ctx->D[1] = Y[3 + Ystride] - Y[3]; ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride]; ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2]; for(i = 0; i < 4; i++) last[i] = Y[i + Ystride * 3]; } static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p) { int i, j; int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1; int type; int keyframe = 1; int *Y, *U, *V; uint8_t *dst; for(i = 0; i < TM2_NUM_STREAMS; i++) ctx->tok_ptrs[i] = 0; if (ctx->tok_lens[TM2_TYPE]<bw*bh){ av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh); return -1; } memset(ctx->last, 0, 4 * bw * sizeof(int)); memset(ctx->clast, 0, 4 * bw * sizeof(int)); for(j = 0; j < bh; j++) { memset(ctx->D, 0, 4 * sizeof(int)); memset(ctx->CD, 0, 4 * sizeof(int)); for(i = 0; i < bw; i++) { type = GET_TOK(ctx, TM2_TYPE); switch(type) { case TM2_HI_RES: tm2_hi_res_block(ctx, p, i, j); break; case TM2_MED_RES: tm2_med_res_block(ctx, p, i, j); break; case TM2_LOW_RES: tm2_low_res_block(ctx, p, i, j); break; case TM2_NULL_RES: tm2_null_res_block(ctx, p, i, j); break; case TM2_UPDATE: tm2_update_block(ctx, p, i, j); keyframe = 0; break; case TM2_STILL: tm2_still_block(ctx, p, i, j); keyframe = 0; break; case TM2_MOTION: tm2_motion_block(ctx, p, i, j); keyframe = 0; break; default: av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type); } } } /* copy data from our buffer to AVFrame */ Y = (ctx->cur?ctx->Y2:ctx->Y1); U = (ctx->cur?ctx->U2:ctx->U1); V = (ctx->cur?ctx->V2:ctx->V1); dst = p->data[0]; for(j = 0; j < h; j++){ for(i = 0; i < w; i++){ int y = Y[i], u = U[i >> 1], v = V[i >> 1]; dst[3*i+0] = av_clip_uint8(y + v); dst[3*i+1] = av_clip_uint8(y); dst[3*i+2] = av_clip_uint8(y + u); } /* horizontal edge extension */ Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0]; Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1]; /* vertical edge extension */ if (j == 0) { memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride); memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride); memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride); memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride); } else if (j == h - 1) { memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride); memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride); memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride); memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride); } Y += ctx->y_stride; if (j & 1) { /* horizontal edge extension */ U[-2] = U[-1] = U[0]; V[-2] = V[-1] = V[0]; U[cw + 1] = U[cw] = U[cw - 1]; V[cw + 1] = V[cw] = V[cw - 1]; /* vertical edge extension */ if (j == 1) { memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride); memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride); memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride); memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride); } else if (j == h - 1) { memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride); memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride); memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride); memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride); } U += ctx->uv_stride; V += ctx->uv_stride; } dst += p->linesize[0]; } return keyframe; } static const int tm2_stream_order[TM2_NUM_STREAMS] = { TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE }; static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size & ~3; TM2Context * const l = avctx->priv_data; AVFrame * const p = &l->pic; int i, skip, t; av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size); if(!l->buffer){ av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n"); return -1; } p->reference = 3; p->buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE; if(avctx->reget_buffer(avctx, p) < 0){ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } l->dsp.bswap_buf((uint32_t*)l->buffer, (const uint32_t*)buf, buf_size >> 2); skip = tm2_read_header(l, l->buffer); if(skip == -1){ return -1; } for(i = 0; i < TM2_NUM_STREAMS; i++){ if (skip >= buf_size) { av_log(avctx, AV_LOG_ERROR, "no space for tm2_read_stream\n"); return AVERROR_INVALIDDATA; } t = tm2_read_stream(l, l->buffer + skip, tm2_stream_order[i], buf_size - skip); if(t < 0){ return t; } skip += t; } p->key_frame = tm2_decode_blocks(l, p); if(p->key_frame) p->pict_type = AV_PICTURE_TYPE_I; else p->pict_type = AV_PICTURE_TYPE_P; l->cur = !l->cur; *data_size = sizeof(AVFrame); *(AVFrame*)data = l->pic; return buf_size; } static av_cold int decode_init(AVCodecContext *avctx){ TM2Context * const l = avctx->priv_data; int i, w = avctx->width, h = avctx->height; if((avctx->width & 3) || (avctx->height & 3)){ av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n"); return -1; } l->avctx = avctx; l->pic.data[0]=NULL; avctx->pix_fmt = PIX_FMT_BGR24; avcodec_get_frame_defaults(&l->pic); ff_dsputil_init(&l->dsp, avctx); l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2)); l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2)); for(i = 0; i < TM2_NUM_STREAMS; i++) { l->tokens[i] = NULL; l->tok_lens[i] = 0; } w += 8; h += 8; l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h); l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h); l->y_stride = w; w = (w + 1) >> 1; h = (h + 1) >> 1; l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h); l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h); l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h); l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h); l->uv_stride = w; l->cur = 0; if (!l->Y1_base || !l->Y2_base || !l->U1_base || !l->V1_base || !l->U2_base || !l->V2_base || !l->last || !l->clast) { av_freep(l->Y1_base); av_freep(l->Y2_base); av_freep(l->U1_base); av_freep(l->U2_base); av_freep(l->V1_base); av_freep(l->V2_base); av_freep(l->last); av_freep(l->clast); return AVERROR(ENOMEM); } l->Y1 = l->Y1_base + l->y_stride * 4 + 4; l->Y2 = l->Y2_base + l->y_stride * 4 + 4; l->U1 = l->U1_base + l->uv_stride * 2 + 2; l->U2 = l->U2_base + l->uv_stride * 2 + 2; l->V1 = l->V1_base + l->uv_stride * 2 + 2; l->V2 = l->V2_base + l->uv_stride * 2 + 2; return 0; } static av_cold int decode_end(AVCodecContext *avctx){ TM2Context * const l = avctx->priv_data; AVFrame *pic = &l->pic; int i; av_free(l->last); av_free(l->clast); for(i = 0; i < TM2_NUM_STREAMS; i++) av_free(l->tokens[i]); if(l->Y1){ av_free(l->Y1_base); av_free(l->U1_base); av_free(l->V1_base); av_free(l->Y2_base); av_free(l->U2_base); av_free(l->V2_base); } av_freep(&l->buffer); l->buffer_size = 0; if (pic->data[0]) avctx->release_buffer(avctx, pic); return 0; } AVCodec ff_truemotion2_decoder = { .name = "truemotion2", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_TRUEMOTION2, .priv_data_size = sizeof(TM2Context), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"), };