/* * SVQ1 Encoder * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file svq1enc.c * Sorenson Vector Quantizer #1 (SVQ1) video codec. * For more information of the SVQ1 algorithm, visit: * http://www.pcisys.net/~melanson/codecs/ */ #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" #include "svq1.h" #include "svq1enc_cb.h" #undef NDEBUG #include <assert.h> typedef struct SVQ1Context { MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX) AVCodecContext *avctx; DSPContext dsp; AVFrame picture; AVFrame current_picture; AVFrame last_picture; PutBitContext pb; GetBitContext gb; PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex int frame_width; int frame_height; /* Y plane block dimensions */ int y_block_width; int y_block_height; /* U & V plane (C planes) block dimensions */ int c_block_width; int c_block_height; uint16_t *mb_type; uint32_t *dummy; int16_t (*motion_val8[3])[2]; int16_t (*motion_val16[3])[2]; int64_t rd_total; } SVQ1Context; static void svq1_write_header(SVQ1Context *s, int frame_type) { int i; /* frame code */ put_bits(&s->pb, 22, 0x20); /* temporal reference (sure hope this is a "don't care") */ put_bits(&s->pb, 8, 0x00); /* frame type */ put_bits(&s->pb, 2, frame_type - 1); if (frame_type == FF_I_TYPE) { /* no checksum since frame code is 0x20 */ /* no embedded string either */ /* output 5 unknown bits (2 + 2 + 1) */ put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */ for (i = 0; i < 7; i++) { if ((ff_svq1_frame_size_table[i].width == s->frame_width) && (ff_svq1_frame_size_table[i].height == s->frame_height)) { put_bits(&s->pb, 3, i); break; } } if (i == 7) { put_bits(&s->pb, 3, 7); put_bits(&s->pb, 12, s->frame_width); put_bits(&s->pb, 12, s->frame_height); } } /* no checksum or extra data (next 2 bits get 0) */ put_bits(&s->pb, 2, 0); } #define QUALITY_THRESHOLD 100 #define THRESHOLD_MULTIPLIER 0.6 #if defined(HAVE_ALTIVEC) #undef vector #endif static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){ int count, y, x, i, j, split, best_mean, best_score, best_count; int best_vector[6]; int block_sum[7]= {0, 0, 0, 0, 0, 0}; int w= 2<<((level+2)>>1); int h= 2<<((level+1)>>1); int size=w*h; int16_t block[7][256]; const int8_t *codebook_sum, *codebook; const uint16_t (*mean_vlc)[2]; const uint8_t (*multistage_vlc)[2]; best_score=0; //FIXME optimize, this doenst need to be done multiple times if(intra){ codebook_sum= svq1_intra_codebook_sum[level]; codebook= ff_svq1_intra_codebooks[level]; mean_vlc= ff_svq1_intra_mean_vlc; multistage_vlc= ff_svq1_intra_multistage_vlc[level]; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v= src[x + y*stride]; block[0][x + w*y]= v; best_score += v*v; block_sum[0] += v; } } }else{ codebook_sum= svq1_inter_codebook_sum[level]; codebook= ff_svq1_inter_codebooks[level]; mean_vlc= ff_svq1_inter_mean_vlc + 256; multistage_vlc= ff_svq1_inter_multistage_vlc[level]; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v= src[x + y*stride] - ref[x + y*stride]; block[0][x + w*y]= v; best_score += v*v; block_sum[0] += v; } } } best_count=0; best_score -= ((block_sum[0]*block_sum[0])>>(level+3)); best_mean= (block_sum[0] + (size>>1)) >> (level+3); if(level<4){ for(count=1; count<7; count++){ int best_vector_score= INT_MAX; int best_vector_sum=-999, best_vector_mean=-999; const int stage= count-1; const int8_t *vector; for(i=0; i<16; i++){ int sum= codebook_sum[stage*16 + i]; int sqr, diff, score; vector = codebook + stage*size*16 + i*size; sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size); diff= block_sum[stage] - sum; score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow if(score < best_vector_score){ int mean= (diff + (size>>1)) >> (level+3); assert(mean >-300 && mean<300); mean= av_clip(mean, intra?0:-256, 255); best_vector_score= score; best_vector[stage]= i; best_vector_sum= sum; best_vector_mean= mean; } } assert(best_vector_mean != -999); vector= codebook + stage*size*16 + best_vector[stage]*size; for(j=0; j<size; j++){ block[stage+1][j] = block[stage][j] - vector[j]; } block_sum[stage+1]= block_sum[stage] - best_vector_sum; best_vector_score += lambda*(+ 1 + 4*count + multistage_vlc[1+count][1] + mean_vlc[best_vector_mean][1]); if(best_vector_score < best_score){ best_score= best_vector_score; best_count= count; best_mean= best_vector_mean; } } } split=0; if(best_score > threshold && level){ int score=0; int offset= (level&1) ? stride*h/2 : w/2; PutBitContext backup[6]; for(i=level-1; i>=0; i--){ backup[i]= s->reorder_pb[i]; } score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra); score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra); score += lambda; if(score < best_score){ best_score= score; split=1; }else{ for(i=level-1; i>=0; i--){ s->reorder_pb[i]= backup[i]; } } } if (level > 0) put_bits(&s->reorder_pb[level], 1, split); if(!split){ assert((best_mean >= 0 && best_mean<256) || !intra); assert(best_mean >= -256 && best_mean<256); assert(best_count >=0 && best_count<7); assert(level<4 || best_count==0); /* output the encoding */ put_bits(&s->reorder_pb[level], multistage_vlc[1 + best_count][1], multistage_vlc[1 + best_count][0]); put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1], mean_vlc[best_mean][0]); for (i = 0; i < best_count; i++){ assert(best_vector[i]>=0 && best_vector[i]<16); put_bits(&s->reorder_pb[level], 4, best_vector[i]); } for(y=0; y<h; y++){ for(x=0; x<w; x++){ decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean; } } } return best_score; } static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane, int width, int height, int src_stride, int stride) { int x, y; int i; int block_width, block_height; int level; int threshold[6]; const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT); /* figure out the acceptable level thresholds in advance */ threshold[5] = QUALITY_THRESHOLD; for (level = 4; level >= 0; level--) threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER; block_width = (width + 15) / 16; block_height = (height + 15) / 16; if(s->picture.pict_type == FF_P_TYPE){ s->m.avctx= s->avctx; s->m.current_picture_ptr= &s->m.current_picture; s->m.last_picture_ptr = &s->m.last_picture; s->m.last_picture.data[0]= ref_plane; s->m.linesize= s->m.last_picture.linesize[0]= s->m.new_picture.linesize[0]= s->m.current_picture.linesize[0]= stride; s->m.width= width; s->m.height= height; s->m.mb_width= block_width; s->m.mb_height= block_height; s->m.mb_stride= s->m.mb_width+1; s->m.b8_stride= 2*s->m.mb_width+1; s->m.f_code=1; s->m.pict_type= s->picture.pict_type; s->m.me_method= s->avctx->me_method; s->m.me.scene_change_score=0; s->m.flags= s->avctx->flags; // s->m.out_format = FMT_H263; // s->m.unrestricted_mv= 1; s->m.lambda= s->picture.quality; s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; if(!s->motion_val8[plane]){ s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t)); s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t)); } s->m.mb_type= s->mb_type; //dummies, to avoid segfaults s->m.current_picture.mb_mean= (uint8_t *)s->dummy; s->m.current_picture.mb_var= (uint16_t*)s->dummy; s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy; s->m.current_picture.mb_type= s->dummy; s->m.current_picture.motion_val[0]= s->motion_val8[plane] + 2; s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1; s->m.dsp= s->dsp; //move ff_init_me(&s->m); s->m.me.dia_size= s->avctx->dia_size; s->m.first_slice_line=1; for (y = 0; y < block_height; y++) { uint8_t src[stride*16]; s->m.new_picture.data[0]= src - y*16*stride; //ugly s->m.mb_y= y; for(i=0; i<16 && i + 16*y<height; i++){ memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width); for(x=width; x<16*block_width; x++) src[i*stride+x]= src[i*stride+x-1]; } for(; i<16 && i + 16*y<16*block_height; i++) memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width); for (x = 0; x < block_width; x++) { s->m.mb_x= x; ff_init_block_index(&s->m); ff_update_block_index(&s->m); ff_estimate_p_frame_motion(&s->m, x, y); } s->m.first_slice_line=0; } ff_fix_long_p_mvs(&s->m); ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0); } s->m.first_slice_line=1; for (y = 0; y < block_height; y++) { uint8_t src[stride*16]; for(i=0; i<16 && i + 16*y<height; i++){ memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width); for(x=width; x<16*block_width; x++) src[i*stride+x]= src[i*stride+x-1]; } for(; i<16 && i + 16*y<16*block_height; i++) memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width); s->m.mb_y= y; for (x = 0; x < block_width; x++) { uint8_t reorder_buffer[3][6][7*32]; int count[3][6]; int offset = y * 16 * stride + x * 16; uint8_t *decoded= decoded_plane + offset; uint8_t *ref= ref_plane + offset; int score[4]={0,0,0,0}, best; uint8_t temp[16*stride]; if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } s->m.mb_x= x; ff_init_block_index(&s->m); ff_update_block_index(&s->m); if(s->picture.pict_type == FF_I_TYPE || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){ for(i=0; i<6; i++){ init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32); } if(s->picture.pict_type == FF_P_TYPE){ const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA]; put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); score[0]= vlc[1]*lambda; } score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1); for(i=0; i<6; i++){ count[0][i]= put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } }else score[0]= INT_MAX; best=0; if(s->picture.pict_type == FF_P_TYPE){ const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER]; int mx, my, pred_x, pred_y, dxy; int16_t *motion_ptr; motion_ptr= h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y); if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){ for(i=0; i<6; i++) init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32); put_bits(&s->reorder_pb[5], vlc[1], vlc[0]); s->m.pb= s->reorder_pb[5]; mx= motion_ptr[0]; my= motion_ptr[1]; assert(mx>=-32 && mx<=31); assert(my>=-32 && my<=31); assert(pred_x>=-32 && pred_x<=31); assert(pred_y>=-32 && pred_y<=31); ff_h263_encode_motion(&s->m, mx - pred_x, 1); ff_h263_encode_motion(&s->m, my - pred_y, 1); s->reorder_pb[5]= s->m.pb; score[1] += lambda*put_bits_count(&s->reorder_pb[5]); dxy= (mx&1) + 2*(my&1); s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16); score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0); best= score[1] <= score[0]; vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP]; score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16); score[2]+= vlc[1]*lambda; if(score[2] < score[best] && mx==0 && my==0){ best=2; s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16); for(i=0; i<6; i++){ count[2][i]=0; } put_bits(&s->pb, vlc[1], vlc[0]); } } if(best==1){ for(i=0; i<6; i++){ count[1][i]= put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } }else{ motion_ptr[0 ] = motion_ptr[1 ]= motion_ptr[2 ] = motion_ptr[3 ]= motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]= motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0; } } s->rd_total += score[best]; for(i=5; i>=0; i--){ ff_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]); } if(best==0){ s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16); } } s->m.first_slice_line=0; } return 0; } static av_cold int svq1_encode_init(AVCodecContext *avctx) { SVQ1Context * const s = avctx->priv_data; dsputil_init(&s->dsp, avctx); avctx->coded_frame= (AVFrame*)&s->picture; s->frame_width = avctx->width; s->frame_height = avctx->height; s->y_block_width = (s->frame_width + 15) / 16; s->y_block_height = (s->frame_height + 15) / 16; s->c_block_width = (s->frame_width / 4 + 15) / 16; s->c_block_height = (s->frame_height / 4 + 15) / 16; s->avctx= avctx; s->m.avctx= avctx; s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->mb_type = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t)); s->dummy = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t)); h263_encode_init(&s->m); //mv_penalty return 0; } static int svq1_encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data) { SVQ1Context * const s = avctx->priv_data; AVFrame *pict = data; AVFrame * const p= (AVFrame*)&s->picture; AVFrame temp; int i; if(avctx->pix_fmt != PIX_FMT_YUV410P){ av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n"); return -1; } if(!s->current_picture.data[0]){ avctx->get_buffer(avctx, &s->current_picture); avctx->get_buffer(avctx, &s->last_picture); } temp= s->current_picture; s->current_picture= s->last_picture; s->last_picture= temp; init_put_bits(&s->pb, buf, buf_size); *p = *pict; p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? FF_P_TYPE : FF_I_TYPE; p->key_frame = p->pict_type == FF_I_TYPE; svq1_write_header(s, p->pict_type); for(i=0; i<3; i++){ if(svq1_encode_plane(s, i, s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i], s->frame_width / (i?4:1), s->frame_height / (i?4:1), s->picture.linesize[i], s->current_picture.linesize[i]) < 0) return -1; } // align_put_bits(&s->pb); while(put_bits_count(&s->pb) & 31) put_bits(&s->pb, 1, 0); flush_put_bits(&s->pb); return put_bits_count(&s->pb) / 8; } static av_cold int svq1_encode_end(AVCodecContext *avctx) { SVQ1Context * const s = avctx->priv_data; int i; av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number)); av_freep(&s->m.me.scratchpad); av_freep(&s->m.me.map); av_freep(&s->m.me.score_map); av_freep(&s->mb_type); av_freep(&s->dummy); for(i=0; i<3; i++){ av_freep(&s->motion_val8[i]); av_freep(&s->motion_val16[i]); } return 0; } AVCodec svq1_encoder = { "svq1", CODEC_TYPE_VIDEO, CODEC_ID_SVQ1, sizeof(SVQ1Context), svq1_encode_init, svq1_encode_frame, svq1_encode_end, .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV410P, PIX_FMT_NONE}, .long_name= "Sorenson Vector Quantizer 1", };