/*
 * SVQ1 Encoder
 * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Sorenson Vector Quantizer #1 (SVQ1) video codec.
 * For more information of the SVQ1 algorithm, visit:
 *   http://www.pcisys.net/~melanson/codecs/
 */

#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#include "h263.h"
#include "internal.h"
#include "svq1.h"
#include "svq1enc_cb.h"

#undef NDEBUG
#include <assert.h>

typedef struct SVQ1Context {
    /* FIXME: Needed for motion estimation, should not be used for anything
     * else, the idea is to make the motion estimation eventually independent
     * of MpegEncContext, so this will be removed then. */
    MpegEncContext m;
    AVCodecContext *avctx;
    DSPContext dsp;
    AVFrame picture;
    AVFrame current_picture;
    AVFrame last_picture;
    PutBitContext pb;
    GetBitContext gb;

    /* why ooh why this sick breadth first order,
     * everything is slower and more complex */
    PutBitContext reorder_pb[6];

    int frame_width;
    int frame_height;

    /* Y plane block dimensions */
    int y_block_width;
    int y_block_height;

    /* U & V plane (C planes) block dimensions */
    int c_block_width;
    int c_block_height;

    uint16_t *mb_type;
    uint32_t *dummy;
    int16_t (*motion_val8[3])[2];
    int16_t (*motion_val16[3])[2];

    int64_t rd_total;

    uint8_t *scratchbuf;
} SVQ1Context;

static void svq1_write_header(SVQ1Context *s, int frame_type)
{
    int i;

    /* frame code */
    put_bits(&s->pb, 22, 0x20);

    /* temporal reference (sure hope this is a "don't care") */
    put_bits(&s->pb, 8, 0x00);

    /* frame type */
    put_bits(&s->pb, 2, frame_type - 1);

    if (frame_type == AV_PICTURE_TYPE_I) {
        /* no checksum since frame code is 0x20 */
        /* no embedded string either */
        /* output 5 unknown bits (2 + 2 + 1) */
        put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */

        i = ff_match_2uint16(ff_svq1_frame_size_table,
                             FF_ARRAY_ELEMS(ff_svq1_frame_size_table),
                             s->frame_width, s->frame_height);
        put_bits(&s->pb, 3, i);

        if (i == 7) {
            put_bits(&s->pb, 12, s->frame_width);
            put_bits(&s->pb, 12, s->frame_height);
        }
    }

    /* no checksum or extra data (next 2 bits get 0) */
    put_bits(&s->pb, 2, 0);
}

#define QUALITY_THRESHOLD    100
#define THRESHOLD_MULTIPLIER 0.6

static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref,
                        uint8_t *decoded, int stride, int level,
                        int threshold, int lambda, int intra)
{
    int count, y, x, i, j, split, best_mean, best_score, best_count;
    int best_vector[6];
    int block_sum[7] = { 0, 0, 0, 0, 0, 0 };
    int w            = 2 << (level + 2 >> 1);
    int h            = 2 << (level + 1 >> 1);
    int size         = w * h;
    int16_t block[7][256];
    const int8_t *codebook_sum, *codebook;
    const uint16_t(*mean_vlc)[2];
    const uint8_t(*multistage_vlc)[2];

    best_score = 0;
    // FIXME: Optimize, this does not need to be done multiple times.
    if (intra) {
        codebook_sum   = svq1_intra_codebook_sum[level];
        codebook       = ff_svq1_intra_codebooks[level];
        mean_vlc       = ff_svq1_intra_mean_vlc;
        multistage_vlc = ff_svq1_intra_multistage_vlc[level];
        for (y = 0; y < h; y++) {
            for (x = 0; x < w; x++) {
                int v = src[x + y * stride];
                block[0][x + w * y] = v;
                best_score         += v * v;
                block_sum[0]       += v;
            }
        }
    } else {
        codebook_sum   = svq1_inter_codebook_sum[level];
        codebook       = ff_svq1_inter_codebooks[level];
        mean_vlc       = ff_svq1_inter_mean_vlc + 256;
        multistage_vlc = ff_svq1_inter_multistage_vlc[level];
        for (y = 0; y < h; y++) {
            for (x = 0; x < w; x++) {
                int v = src[x + y * stride] - ref[x + y * stride];
                block[0][x + w * y] = v;
                best_score         += v * v;
                block_sum[0]       += v;
            }
        }
    }

    best_count  = 0;
    best_score -= (int)((unsigned)block_sum[0] * block_sum[0] >> (level + 3));
    best_mean   = block_sum[0] + (size >> 1) >> (level + 3);

    if (level < 4) {
        for (count = 1; count < 7; count++) {
            int best_vector_score = INT_MAX;
            int best_vector_sum   = -999, best_vector_mean = -999;
            const int stage       = count - 1;
            const int8_t *vector;

            for (i = 0; i < 16; i++) {
                int sum = codebook_sum[stage * 16 + i];
                int sqr, diff, score;

                vector = codebook + stage * size * 16 + i * size;
                sqr    = s->dsp.ssd_int8_vs_int16(vector, block[stage], size);
                diff   = block_sum[stage] - sum;
                score  = sqr - (diff * (int64_t)diff >> (level + 3)); // FIXME: 64bit slooow
                if (score < best_vector_score) {
                    int mean = diff + (size >> 1) >> (level + 3);
                    assert(mean > -300 && mean < 300);
                    mean               = av_clip(mean, intra ? 0 : -256, 255);
                    best_vector_score  = score;
                    best_vector[stage] = i;
                    best_vector_sum    = sum;
                    best_vector_mean   = mean;
                }
            }
            assert(best_vector_mean != -999);
            vector = codebook + stage * size * 16 + best_vector[stage] * size;
            for (j = 0; j < size; j++)
                block[stage + 1][j] = block[stage][j] - vector[j];
            block_sum[stage + 1] = block_sum[stage] - best_vector_sum;
            best_vector_score   += lambda *
                                   (+1 + 4 * count +
                                    multistage_vlc[1 + count][1]
                                    + mean_vlc[best_vector_mean][1]);

            if (best_vector_score < best_score) {
                best_score = best_vector_score;
                best_count = count;
                best_mean  = best_vector_mean;
            }
        }
    }

    split = 0;
    if (best_score > threshold && level) {
        int score  = 0;
        int offset = level & 1 ? stride * h / 2 : w / 2;
        PutBitContext backup[6];

        for (i = level - 1; i >= 0; i--)
            backup[i] = s->reorder_pb[i];
        score += encode_block(s, src, ref, decoded, stride, level - 1,
                              threshold >> 1, lambda, intra);
        score += encode_block(s, src + offset, ref + offset, decoded + offset,
                              stride, level - 1, threshold >> 1, lambda, intra);
        score += lambda;

        if (score < best_score) {
            best_score = score;
            split      = 1;
        } else {
            for (i = level - 1; i >= 0; i--)
                s->reorder_pb[i] = backup[i];
        }
    }
    if (level > 0)
        put_bits(&s->reorder_pb[level], 1, split);

    if (!split) {
        assert(best_mean >= 0 && best_mean < 256 || !intra);
        assert(best_mean >= -256 && best_mean < 256);
        assert(best_count >= 0 && best_count < 7);
        assert(level < 4 || best_count == 0);

        /* output the encoding */
        put_bits(&s->reorder_pb[level],
                 multistage_vlc[1 + best_count][1],
                 multistage_vlc[1 + best_count][0]);
        put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
                 mean_vlc[best_mean][0]);

        for (i = 0; i < best_count; i++) {
            assert(best_vector[i] >= 0 && best_vector[i] < 16);
            put_bits(&s->reorder_pb[level], 4, best_vector[i]);
        }

        for (y = 0; y < h; y++)
            for (x = 0; x < w; x++)
                decoded[x + y * stride] = src[x + y * stride] -
                                          block[best_count][x + w * y] +
                                          best_mean;
    }

    return best_score;
}

static int svq1_encode_plane(SVQ1Context *s, int plane,
                             unsigned char *src_plane,
                             unsigned char *ref_plane,
                             unsigned char *decoded_plane,
                             int width, int height, int src_stride, int stride)
{
    int x, y;
    int i;
    int block_width, block_height;
    int level;
    int threshold[6];
    uint8_t *src     = s->scratchbuf + stride * 16;
    const int lambda = (s->picture.quality * s->picture.quality) >>
                       (2 * FF_LAMBDA_SHIFT);

    /* figure out the acceptable level thresholds in advance */
    threshold[5] = QUALITY_THRESHOLD;
    for (level = 4; level >= 0; level--)
        threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;

    block_width  = (width  + 15) / 16;
    block_height = (height + 15) / 16;

    if (s->picture.pict_type == AV_PICTURE_TYPE_P) {
        s->m.avctx                         = s->avctx;
        s->m.current_picture_ptr           = &s->m.current_picture;
        s->m.last_picture_ptr              = &s->m.last_picture;
        s->m.last_picture.f.data[0]        = ref_plane;
        s->m.linesize                      =
        s->m.last_picture.f.linesize[0]    =
        s->m.new_picture.f.linesize[0]     =
        s->m.current_picture.f.linesize[0] = stride;
        s->m.width                         = width;
        s->m.height                        = height;
        s->m.mb_width                      = block_width;
        s->m.mb_height                     = block_height;
        s->m.mb_stride                     = s->m.mb_width + 1;
        s->m.b8_stride                     = 2 * s->m.mb_width + 1;
        s->m.f_code                        = 1;
        s->m.pict_type                     = s->picture.pict_type;
        s->m.me_method                     = s->avctx->me_method;
        s->m.me.scene_change_score         = 0;
        s->m.flags                         = s->avctx->flags;
        // s->m.out_format                    = FMT_H263;
        // s->m.unrestricted_mv               = 1;
        s->m.lambda                        = s->picture.quality;
        s->m.qscale                        = s->m.lambda * 139 +
                                             FF_LAMBDA_SCALE * 64 >>
                                             FF_LAMBDA_SHIFT + 7;
        s->m.lambda2                       = s->m.lambda * s->m.lambda +
                                             FF_LAMBDA_SCALE / 2 >>
                                             FF_LAMBDA_SHIFT;

        if (!s->motion_val8[plane]) {
            s->motion_val8[plane]  = av_mallocz((s->m.b8_stride *
                                                 block_height * 2 + 2) *
                                                2 * sizeof(int16_t));
            s->motion_val16[plane] = av_mallocz((s->m.mb_stride *
                                                 (block_height + 2) + 1) *
                                                2 * sizeof(int16_t));
        }

        s->m.mb_type = s->mb_type;

        // dummies, to avoid segfaults
        s->m.current_picture.mb_mean   = (uint8_t *)s->dummy;
        s->m.current_picture.mb_var    = (uint16_t *)s->dummy;
        s->m.current_picture.mc_mb_var = (uint16_t *)s->dummy;
        s->m.current_picture.f.mb_type = s->dummy;

        s->m.current_picture.f.motion_val[0] = s->motion_val8[plane] + 2;
        s->m.p_mv_table                      = s->motion_val16[plane] +
                                               s->m.mb_stride + 1;
        s->m.dsp                             = s->dsp; // move
        ff_init_me(&s->m);

        s->m.me.dia_size      = s->avctx->dia_size;
        s->m.first_slice_line = 1;
        for (y = 0; y < block_height; y++) {
            s->m.new_picture.f.data[0] = src - y * 16 * stride; // ugly
            s->m.mb_y                  = y;

            for (i = 0; i < 16 && i + 16 * y < height; i++) {
                memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride],
                       width);
                for (x = width; x < 16 * block_width; x++)
                    src[i * stride + x] = src[i * stride + x - 1];
            }
            for (; i < 16 && i + 16 * y < 16 * block_height; i++)
                memcpy(&src[i * stride], &src[(i - 1) * stride],
                       16 * block_width);

            for (x = 0; x < block_width; x++) {
                s->m.mb_x = x;
                ff_init_block_index(&s->m);
                ff_update_block_index(&s->m);

                ff_estimate_p_frame_motion(&s->m, x, y);
            }
            s->m.first_slice_line = 0;
        }

        ff_fix_long_p_mvs(&s->m);
        ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code,
                        CANDIDATE_MB_TYPE_INTER, 0);
    }

    s->m.first_slice_line = 1;
    for (y = 0; y < block_height; y++) {
        for (i = 0; i < 16 && i + 16 * y < height; i++) {
            memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride],
                   width);
            for (x = width; x < 16 * block_width; x++)
                src[i * stride + x] = src[i * stride + x - 1];
        }
        for (; i < 16 && i + 16 * y < 16 * block_height; i++)
            memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width);

        s->m.mb_y = y;
        for (x = 0; x < block_width; x++) {
            uint8_t reorder_buffer[3][6][7 * 32];
            int count[3][6];
            int offset       = y * 16 * stride + x * 16;
            uint8_t *decoded = decoded_plane + offset;
            uint8_t *ref     = ref_plane + offset;
            int score[4]     = { 0, 0, 0, 0 }, best;
            uint8_t *temp    = s->scratchbuf;

            if (s->pb.buf_end - s->pb.buf -
                (put_bits_count(&s->pb) >> 3) < 3000) { // FIXME: check size
                av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
                return -1;
            }

            s->m.mb_x = x;
            ff_init_block_index(&s->m);
            ff_update_block_index(&s->m);

            if (s->picture.pict_type == AV_PICTURE_TYPE_I ||
                (s->m.mb_type[x + y * s->m.mb_stride] &
                 CANDIDATE_MB_TYPE_INTRA)) {
                for (i = 0; i < 6; i++)
                    init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i],
                                  7 * 32);
                if (s->picture.pict_type == AV_PICTURE_TYPE_P) {
                    const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
                    put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
                    score[0] = vlc[1] * lambda;
                }
                score[0] += encode_block(s, src + 16 * x, NULL, temp, stride,
                                         5, 64, lambda, 1);
                for (i = 0; i < 6; i++) {
                    count[0][i] = put_bits_count(&s->reorder_pb[i]);
                    flush_put_bits(&s->reorder_pb[i]);
                }
            } else
                score[0] = INT_MAX;

            best = 0;

            if (s->picture.pict_type == AV_PICTURE_TYPE_P) {
                const uint8_t *vlc = ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
                int mx, my, pred_x, pred_y, dxy;
                int16_t *motion_ptr;

                motion_ptr = ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
                if (s->m.mb_type[x + y * s->m.mb_stride] &
                    CANDIDATE_MB_TYPE_INTER) {
                    for (i = 0; i < 6; i++)
                        init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i],
                                      7 * 32);

                    put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);

                    s->m.pb = s->reorder_pb[5];
                    mx      = motion_ptr[0];
                    my      = motion_ptr[1];
                    assert(mx     >= -32 && mx     <= 31);
                    assert(my     >= -32 && my     <= 31);
                    assert(pred_x >= -32 && pred_x <= 31);
                    assert(pred_y >= -32 && pred_y <= 31);
                    ff_h263_encode_motion(&s->m, mx - pred_x, 1);
                    ff_h263_encode_motion(&s->m, my - pred_y, 1);
                    s->reorder_pb[5] = s->m.pb;
                    score[1]        += lambda * put_bits_count(&s->reorder_pb[5]);

                    dxy = (mx & 1) + 2 * (my & 1);

                    s->dsp.put_pixels_tab[0][dxy](temp + 16,
                                                  ref + (mx >> 1) +
                                                  stride * (my >> 1),
                                                  stride, 16);

                    score[1] += encode_block(s, src + 16 * x, temp + 16,
                                             decoded, stride, 5, 64, lambda, 0);
                    best      = score[1] <= score[0];

                    vlc       = ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
                    score[2]  = s->dsp.sse[0](NULL, src + 16 * x, ref,
                                              stride, 16);
                    score[2] += vlc[1] * lambda;
                    if (score[2] < score[best] && mx == 0 && my == 0) {
                        best = 2;
                        s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
                        for (i = 0; i < 6; i++)
                            count[2][i] = 0;
                        put_bits(&s->pb, vlc[1], vlc[0]);
                    }
                }

                if (best == 1) {
                    for (i = 0; i < 6; i++) {
                        count[1][i] = put_bits_count(&s->reorder_pb[i]);
                        flush_put_bits(&s->reorder_pb[i]);
                    }
                } else {
                    motion_ptr[0]                      =
                    motion_ptr[1]                      =
                    motion_ptr[2]                      =
                    motion_ptr[3]                      =
                    motion_ptr[0 + 2 * s->m.b8_stride] =
                    motion_ptr[1 + 2 * s->m.b8_stride] =
                    motion_ptr[2 + 2 * s->m.b8_stride] =
                    motion_ptr[3 + 2 * s->m.b8_stride] = 0;
                }
            }

            s->rd_total += score[best];

            for (i = 5; i >= 0; i--)
                avpriv_copy_bits(&s->pb, reorder_buffer[best][i],
                                 count[best][i]);
            if (best == 0)
                s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
        }
        s->m.first_slice_line = 0;
    }
    return 0;
}

static av_cold int svq1_encode_init(AVCodecContext *avctx)
{
    SVQ1Context *const s = avctx->priv_data;

    ff_dsputil_init(&s->dsp, avctx);
    avctx->coded_frame = &s->picture;

    s->frame_width  = avctx->width;
    s->frame_height = avctx->height;

    s->y_block_width  = (s->frame_width  + 15) / 16;
    s->y_block_height = (s->frame_height + 15) / 16;

    s->c_block_width  = (s->frame_width  / 4 + 15) / 16;
    s->c_block_height = (s->frame_height / 4 + 15) / 16;

    s->avctx               = avctx;
    s->m.avctx             = avctx;
    s->m.picture_structure = PICT_FRAME;
    s->m.me.temp           =
    s->m.me.scratchpad     = av_mallocz((avctx->width + 64) *
                                        2 * 16 * 2 * sizeof(uint8_t));
    s->m.me.map            = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t));
    s->m.me.score_map      = av_mallocz(ME_MAP_SIZE * sizeof(uint32_t));
    s->mb_type             = av_mallocz((s->y_block_width + 1) *
                                        s->y_block_height * sizeof(int16_t));
    s->dummy               = av_mallocz((s->y_block_width + 1) *
                                        s->y_block_height * sizeof(int32_t));
    ff_h263_encode_init(&s->m); // mv_penalty

    return 0;
}

static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                             const AVFrame *pict, int *got_packet)
{
    SVQ1Context *const s = avctx->priv_data;
    AVFrame *const p     = &s->picture;
    AVFrame temp;
    int i, ret;

    if (!pkt->data &&
        (ret = av_new_packet(pkt, s->y_block_width * s->y_block_height *
                             MAX_MB_BYTES * 3 + FF_MIN_BUFFER_SIZE) < 0)) {
        av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
        return ret;
    }

    if (avctx->pix_fmt != AV_PIX_FMT_YUV410P) {
        av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
        return -1;
    }

    if (!s->current_picture.data[0]) {
        ff_get_buffer(avctx, &s->current_picture);
        ff_get_buffer(avctx, &s->last_picture);
        s->scratchbuf = av_malloc(s->current_picture.linesize[0] * 16 * 2);
    }

    temp               = s->current_picture;
    s->current_picture = s->last_picture;
    s->last_picture    = temp;

    init_put_bits(&s->pb, pkt->data, pkt->size);

    *p           = *pict;
    p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ?
                   AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
    p->key_frame = p->pict_type == AV_PICTURE_TYPE_I;

    svq1_write_header(s, p->pict_type);
    for (i = 0; i < 3; i++)
        if (svq1_encode_plane(s, i,
                              s->picture.data[i],
                              s->last_picture.data[i],
                              s->current_picture.data[i],
                              s->frame_width  / (i ? 4 : 1),
                              s->frame_height / (i ? 4 : 1),
                              s->picture.linesize[i],
                              s->current_picture.linesize[i]) < 0)
            return -1;

    // avpriv_align_put_bits(&s->pb);
    while (put_bits_count(&s->pb) & 31)
        put_bits(&s->pb, 1, 0);

    flush_put_bits(&s->pb);

    pkt->size = put_bits_count(&s->pb) / 8;
    if (p->pict_type == AV_PICTURE_TYPE_I)
        pkt->flags |= AV_PKT_FLAG_KEY;
    *got_packet = 1;

    return 0;
}

static av_cold int svq1_encode_end(AVCodecContext *avctx)
{
    SVQ1Context *const s = avctx->priv_data;
    int i;

    av_log(avctx, AV_LOG_DEBUG, "RD: %f\n",
           s->rd_total / (double)(avctx->width * avctx->height *
                                  avctx->frame_number));

    av_freep(&s->m.me.scratchpad);
    av_freep(&s->m.me.map);
    av_freep(&s->m.me.score_map);
    av_freep(&s->mb_type);
    av_freep(&s->dummy);
    av_freep(&s->scratchbuf);

    for (i = 0; i < 3; i++) {
        av_freep(&s->motion_val8[i]);
        av_freep(&s->motion_val16[i]);
    }

    return 0;
}

AVCodec ff_svq1_encoder = {
    .name           = "svq1",
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_SVQ1,
    .priv_data_size = sizeof(SVQ1Context),
    .init           = svq1_encode_init,
    .encode2        = svq1_encode_frame,
    .close          = svq1_encode_end,
    .pix_fmts       = (const enum PixelFormat[]) { AV_PIX_FMT_YUV410P,
                                                   AV_PIX_FMT_NONE },
    .long_name      = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
};