/* * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/intmath.h" #include "libavutil/log.h" #include "libavutil/opt.h" #include "avcodec.h" #include "internal.h" #include "snow_dwt.h" #include "snow.h" #include "rangecoder.h" #include "mathops.h" #include "mpegvideo.h" #include "h263.h" #define FF_ME_ITER 50 static av_cold int encode_init(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; int plane_index, ret; int i; if(avctx->prediction_method == DWT_97 && (avctx->flags & AV_CODEC_FLAG_QSCALE) && avctx->global_quality == 0){ av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n"); return -1; } #if FF_API_MOTION_EST FF_DISABLE_DEPRECATION_WARNINGS if (avctx->me_method == ME_ITER) s->motion_est = FF_ME_ITER; FF_ENABLE_DEPRECATION_WARNINGS #endif s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type s->mv_scale = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4; s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0; for(plane_index=0; plane_index<3; plane_index++){ s->plane[plane_index].diag_mc= 1; s->plane[plane_index].htaps= 6; s->plane[plane_index].hcoeff[0]= 40; s->plane[plane_index].hcoeff[1]= -10; s->plane[plane_index].hcoeff[2]= 2; s->plane[plane_index].fast_mc= 1; } if ((ret = ff_snow_common_init(avctx)) < 0) { return ret; } ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx); ff_snow_alloc_blocks(s); s->version=0; s->m.avctx = avctx; s->m.bit_rate= avctx->bit_rate; s->m.me.temp = s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t)); if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad) return AVERROR(ENOMEM); ff_h263_encode_init(&s->m); //mv_penalty s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES); if(avctx->flags&AV_CODEC_FLAG_PASS1){ if(!avctx->stats_out) avctx->stats_out = av_mallocz(256); if (!avctx->stats_out) return AVERROR(ENOMEM); } if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){ if(ff_rate_control_init(&s->m) < 0) return -1; } s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2)); switch(avctx->pix_fmt){ case AV_PIX_FMT_YUV444P: // case AV_PIX_FMT_YUV422P: case AV_PIX_FMT_YUV420P: // case AV_PIX_FMT_YUV411P: case AV_PIX_FMT_YUV410P: s->nb_planes = 3; s->colorspace_type= 0; break; case AV_PIX_FMT_GRAY8: s->nb_planes = 1; s->colorspace_type = 1; break; /* case AV_PIX_FMT_RGB32: s->colorspace= 1; break;*/ default: av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n"); return -1; } avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp); ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp); s->input_picture = av_frame_alloc(); if (!s->input_picture) return AVERROR(ENOMEM); if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0) return ret; if(s->motion_est == FF_ME_ITER){ int size= s->b_width * s->b_height << 2*s->block_max_depth; for(i=0; i<s->max_ref_frames; i++){ s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2])); s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t)); if (!s->ref_mvs[i] || !s->ref_scores[i]) return AVERROR(ENOMEM); } } return 0; } //near copy & paste from dsputil, FIXME static int pix_sum(uint8_t * pix, int line_size, int w, int h) { int s, i, j; s = 0; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { s += pix[0]; pix ++; } pix += line_size - w; } return s; } //near copy & paste from dsputil, FIXME static int pix_norm1(uint8_t * pix, int line_size, int w) { int s, i, j; uint32_t *sq = ff_square_tab + 256; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j ++) { s += sq[pix[0]]; pix ++; } pix += line_size - w; } return s; } static inline int get_penalty_factor(int lambda, int lambda2, int type){ switch(type&0xFF){ default: case FF_CMP_SAD: return lambda>>FF_LAMBDA_SHIFT; case FF_CMP_DCT: return (3*lambda)>>(FF_LAMBDA_SHIFT+1); case FF_CMP_W53: return (4*lambda)>>(FF_LAMBDA_SHIFT); case FF_CMP_W97: return (2*lambda)>>(FF_LAMBDA_SHIFT); case FF_CMP_SATD: case FF_CMP_DCT264: return (2*lambda)>>FF_LAMBDA_SHIFT; case FF_CMP_RD: case FF_CMP_PSNR: case FF_CMP_SSE: case FF_CMP_NSSE: return lambda2>>FF_LAMBDA_SHIFT; case FF_CMP_BIT: return 1; } } //FIXME copy&paste #define P_LEFT P[1] #define P_TOP P[2] #define P_TOPRIGHT P[3] #define P_MEDIAN P[4] #define P_MV1 P[9] #define FLAG_QPEL 1 //must be 1 static int encode_q_branch(SnowContext *s, int level, int x, int y){ uint8_t p_buffer[1024]; uint8_t i_buffer[1024]; uint8_t p_state[sizeof(s->block_state)]; uint8_t i_state[sizeof(s->block_state)]; RangeCoder pc, ic; uint8_t *pbbak= s->c.bytestream; uint8_t *pbbak_start= s->c.bytestream_start; int score, score2, iscore, i_len, p_len, block_s, sum, base_bits; const int w= s->b_width << s->block_max_depth; const int h= s->b_height << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; const int block_w= 1<<(LOG2_MB_SIZE - level); int trx= (x+1)<<rem_depth; int try= (y+1)<<rem_depth; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *right = trx<w ? &s->block[index+1] : &null_block; const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt int pl = left->color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx, pmy; int mx=0, my=0; int l,cr,cb; const int stride= s->current_picture->linesize[0]; const int uvstride= s->current_picture->linesize[1]; uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w, s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift), s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)}; int P[10][2]; int16_t last_mv[3][2]; int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused const int shift= 1+qpel; MotionEstContext *c= &s->m.me; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)); int my_context= av_log2(2*FFABS(left->my - top->my)); int s_context= 2*left->level + 2*top->level + tl->level + tr->level; int ref, best_ref, ref_score, ref_mx, ref_my; av_assert0(sizeof(s->block_state) >= 256); if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); return 0; } // clip predictors / edge ? P_LEFT[0]= left->mx; P_LEFT[1]= left->my; P_TOP [0]= top->mx; P_TOP [1]= top->my; P_TOPRIGHT[0]= tr->mx; P_TOPRIGHT[1]= tr->my; last_mv[0][0]= s->block[index].mx; last_mv[0][1]= s->block[index].my; last_mv[1][0]= right->mx; last_mv[1][1]= right->my; last_mv[2][0]= bottom->mx; last_mv[2][1]= bottom->my; s->m.mb_stride=2; s->m.mb_x= s->m.mb_y= 0; c->skip= 0; av_assert1(c-> stride == stride); av_assert1(c->uvstride == uvstride); c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp); c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp); c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp); c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV; c->xmin = - x*block_w - 16+3; c->ymin = - y*block_w - 16+3; c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift); if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift); if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift); if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift); if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift); if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift); P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]); P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]); if (!y) { c->pred_x= P_LEFT[0]; c->pred_y= P_LEFT[1]; } else { c->pred_x = P_MEDIAN[0]; c->pred_y = P_MEDIAN[1]; } score= INT_MAX; best_ref= 0; for(ref=0; ref<s->ref_frames; ref++){ init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0); ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv, (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w); av_assert2(ref_mx >= c->xmin); av_assert2(ref_mx <= c->xmax); av_assert2(ref_my >= c->ymin); av_assert2(ref_my <= c->ymax); ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w); ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0); ref_score+= 2*av_log2(2*ref)*c->penalty_factor; if(s->ref_mvs[ref]){ s->ref_mvs[ref][index][0]= ref_mx; s->ref_mvs[ref][index][1]= ref_my; s->ref_scores[ref][index]= ref_score; } if(score > ref_score){ score= ref_score; best_ref= ref; mx= ref_mx; my= ref_my; } } //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2 // subpel search base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start); pc= s->c; pc.bytestream_start= pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo memcpy(p_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&pc, &p_state[4 + s_context], 1); put_rac(&pc, &p_state[1 + left->type + top->type], 0); if(s->ref_frames > 1) put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0); pred_mv(s, &pmx, &pmy, best_ref, left, top, tr); put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1); put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1); p_len= pc.bytestream - pc.bytestream_start; score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT; block_s= block_w*block_w; sum = pix_sum(current_data[0], stride, block_w, block_w); l= (sum + block_s/2)/block_s; iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s; if (s->nb_planes > 2) { block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift); sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift); cb= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s; sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift); cr= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s; }else cb = cr = 0; ic= s->c; ic.bytestream_start= ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo memcpy(i_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&ic, &i_state[4 + s_context], 1); put_rac(&ic, &i_state[1 + left->type + top->type], 1); put_symbol(&ic, &i_state[32], l-pl , 1); if (s->nb_planes > 2) { put_symbol(&ic, &i_state[64], cb-pcb, 1); put_symbol(&ic, &i_state[96], cr-pcr, 1); } i_len= ic.bytestream - ic.bytestream_start; iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT; av_assert1(iscore < 255*255*256 + s->lambda2*10); av_assert1(iscore >= 0); av_assert1(l>=0 && l<=255); av_assert1(pl>=0 && pl<=255); if(level==0){ int varc= iscore >> 8; int vard= score >> 8; if (vard <= 64 || vard < varc) c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc); else c->scene_change_score+= s->m.qscale; } if(level!=s->block_max_depth){ put_rac(&s->c, &s->block_state[4 + s_context], 0); score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1); score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead if(score2 < score && score2 < iscore) return score2; } if(iscore < score){ pred_mv(s, &pmx, &pmy, 0, left, top, tr); memcpy(pbbak, i_buffer, i_len); s->c= ic; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + i_len; set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA); memcpy(s->block_state, i_state, sizeof(s->block_state)); return iscore; }else{ memcpy(pbbak, p_buffer, p_len); s->c= pc; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + p_len; set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0); memcpy(s->block_state, p_state, sizeof(s->block_state)); return score; } } static void encode_q_branch2(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<<rem_depth; BlockNode *b= &s->block[index]; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt int pl = left->color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx, pmy; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref; int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref; int s_context= 2*left->level + 2*top->level + tl->level + tr->level; if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); return; } if(level!=s->block_max_depth){ if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){ put_rac(&s->c, &s->block_state[4 + s_context], 1); }else{ put_rac(&s->c, &s->block_state[4 + s_context], 0); encode_q_branch2(s, level+1, 2*x+0, 2*y+0); encode_q_branch2(s, level+1, 2*x+1, 2*y+0); encode_q_branch2(s, level+1, 2*x+0, 2*y+1); encode_q_branch2(s, level+1, 2*x+1, 2*y+1); return; } } if(b->type & BLOCK_INTRA){ pred_mv(s, &pmx, &pmy, 0, left, top, tr); put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1); put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1); if (s->nb_planes > 2) { put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1); put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1); } set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA); }else{ pred_mv(s, &pmx, &pmy, b->ref, left, top, tr); put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0); if(s->ref_frames > 1) put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0); put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1); put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1); set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0); } } static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, x2, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; const int ref_stride= s->current_picture->linesize[plane_index]; uint8_t *src= s-> input_picture->data[plane_index]; IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int index= mb_x + mb_y*b_stride; BlockNode *b= &s->block[index]; BlockNode backup= *b; int ab=0; int aa=0; av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above b->type|= BLOCK_INTRA; b->color[plane_index]= 0; memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM)); for(i=0; i<4; i++){ int mb_x2= mb_x + (i &1) - 1; int mb_y2= mb_y + (i>>1) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_h*mb_y2 + block_h/2; add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc, x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index); for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){ for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){ int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride; int obmc_v= obmc[index]; int d; if(y<0) obmc_v += obmc[index + block_h*obmc_stride]; if(x<0) obmc_v += obmc[index + block_w]; if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride]; if(x+block_w>w) obmc_v += obmc[index - block_w]; //FIXME precalculate this or simplify it somehow else d = -dst[index] + (1<<(FRAC_BITS-1)); dst[index] = d; ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v; aa += obmc_v * obmc_v; //FIXME precalculate this } } } *b= backup; return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping } static inline int get_block_bits(SnowContext *s, int x, int y, int w){ const int b_stride = s->b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; int index= x + y*b_stride; const BlockNode *b = &s->block[index]; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-b_stride] : &null_block; const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left; const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl; int dmx, dmy; // int mx_context= av_log2(2*FFABS(left->mx - top->mx)); // int my_context= av_log2(2*FFABS(left->my - top->my)); if(x<0 || x>=b_stride || y>=b_height) return 0; /* 1 0 0 01X 1-2 1 001XX 3-6 2-3 0001XXX 7-14 4-7 00001XXXX 15-30 8-15 */ //FIXME try accurate rate //FIXME intra and inter predictors if surrounding blocks are not the same type if(b->type & BLOCK_INTRA){ return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0])) + av_log2(2*FFABS(left->color[1] - b->color[1])) + av_log2(2*FFABS(left->color[2] - b->color[2]))); }else{ pred_mv(s, &dmx, &dmy, b->ref, left, top, tr); dmx-= b->mx; dmy-= b->my; return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda + av_log2(2*FFABS(dmy)) + av_log2(2*b->ref)); } } static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){ Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; const int ref_stride= s->current_picture->linesize[plane_index]; uint8_t *dst= s->current_picture->data[plane_index]; uint8_t *src= s-> input_picture->data[plane_index]; IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; uint8_t *cur = s->scratchbuf; uint8_t *tmp = s->emu_edge_buffer; const int b_stride = s->b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; const int w= p->width; const int h= p->height; int distortion; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); int sx= block_w*mb_x - block_w/2; int sy= block_h*mb_y - block_h/2; int x0= FFMAX(0,-sx); int y0= FFMAX(0,-sy); int x1= FFMIN(block_w*2, w-sx); int y1= FFMIN(block_h*2, h-sy); int i,x,y; av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h); for(y=y0; y<y1; y++){ const uint8_t *obmc1= obmc_edged[y]; const IDWTELEM *pred1 = pred + y*obmc_stride; uint8_t *cur1 = cur + y*ref_stride; uint8_t *dst1 = dst + sx + (sy+y)*ref_stride; for(x=x0; x<x1; x++){ #if FRAC_BITS >= LOG2_OBMC_MAX int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX); #else int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS); #endif v = (v + pred1[x]) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst1[x] = v; } } /* copy the regions where obmc[] = (uint8_t)256 */ if(LOG2_OBMC_MAX == 8 && (mb_x == 0 || mb_x == b_stride-1) && (mb_y == 0 || mb_y == b_height-1)){ if(mb_x == 0) x1 = block_w; else x0 = block_w; if(mb_y == 0) y1 = block_h; else y0 = block_h; for(y=y0; y<y1; y++) memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0); } if(block_w==16){ /* FIXME rearrange dsputil to fit 32x32 cmp functions */ /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */ /* FIXME cmps overlap but do not cover the wavelet's whole support. * So improving the score of one block is not strictly guaranteed * to improve the score of the whole frame, thus iterative motion * estimation does not always converge. */ if(s->avctx->me_cmp == FF_CMP_W97) distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); else if(s->avctx->me_cmp == FF_CMP_W53) distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); else{ distortion = 0; for(i=0; i<4; i++){ int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride; distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16); } } }else{ av_assert2(block_w==8); distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2); } if(plane_index==0){ for(i=0; i<4; i++){ /* ..RRr * .RXx. * rxx.. */ rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1); } if(mb_x == b_stride-2) rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1); } return distortion + rate*penalty_factor; } static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; const int ref_stride= s->current_picture->linesize[plane_index]; uint8_t *dst= s->current_picture->data[plane_index]; uint8_t *src= s-> input_picture->data[plane_index]; //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst // const has only been removed from zero_dst to suppress a warning static IDWTELEM zero_dst[4096]; //FIXME const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int distortion= 0; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below for(i=0; i<9; i++){ int mb_x2= mb_x + (i%3) - 1; int mb_y2= mb_y + (i/3) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_h*mb_y2 + block_h/2; add_yblock(s, 0, NULL, zero_dst, dst, obmc, x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index); //FIXME find a cleaner/simpler way to skip the outside stuff for(y2= y; y2<0; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); for(y2= h; y2<y+block_h; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); if(x<0){ for(y2= y; y2<y+block_h; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x); } if(x+block_w > w){ for(y2= y; y2<y+block_h; y2++) memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w); } av_assert1(block_w== 8 || block_w==16); distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h); } if(plane_index==0){ BlockNode *b= &s->block[mb_x+mb_y*b_stride]; int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1); /* ..RRRr * .RXXx. * .RXXx. * rxxx. */ if(merged) rate = get_block_bits(s, mb_x, mb_y, 2); for(i=merged?4:0; i<9; i++){ static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}}; rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1); } } return distortion + rate*penalty_factor; } static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){ const int w= b->width; const int h= b->height; int x, y; if(1){ int run=0; int *runs = s->run_buffer; int run_index=0; int max_index; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v, p=0; int /*ll=0, */l=0, lt=0, t=0, rt=0; v= src[x + y*stride]; if(y){ t= src[x + (y-1)*stride]; if(x){ lt= src[x - 1 + (y-1)*stride]; } if(x + 1 < w){ rt= src[x + 1 + (y-1)*stride]; } } if(x){ l= src[x - 1 + y*stride]; /*if(x > 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(px<b->parent->width && py<b->parent->height) p= parent[px + py*2*stride]; } if(!(/*ll|*/l|lt|t|rt|p)){ if(v){ runs[run_index++]= run; run=0; }else{ run++; } } } } max_index= run_index; runs[run_index++]= run; run_index=0; run= runs[run_index++]; put_symbol2(&s->c, b->state[30], max_index, 0); if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); for(y=0; y<h; y++){ if(s->c.bytestream_end - s->c.bytestream < w*40){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } for(x=0; x<w; x++){ int v, p=0; int /*ll=0, */l=0, lt=0, t=0, rt=0; v= src[x + y*stride]; if(y){ t= src[x + (y-1)*stride]; if(x){ lt= src[x - 1 + (y-1)*stride]; } if(x + 1 < w){ rt= src[x + 1 + (y-1)*stride]; } } if(x){ l= src[x - 1 + y*stride]; /*if(x > 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(px<b->parent->width && py<b->parent->height) p= parent[px + py*2*stride]; } if(/*ll|*/l|lt|t|rt|p){ int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); put_rac(&s->c, &b->state[0][context], !!v); }else{ if(!run){ run= runs[run_index++]; if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); av_assert2(v); }else{ run--; av_assert2(!v); } } if(v){ int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); int l2= 2*FFABS(l) + (l<0); int t2= 2*FFABS(t) + (t<0); put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4); put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0); } } } } return 0; } static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){ // encode_subband_qtree(s, b, src, parent, stride, orientation); // encode_subband_z0run(s, b, src, parent, stride, orientation); return encode_subband_c0run(s, b, src, parent, stride, orientation); // encode_subband_dzr(s, b, src, parent, stride, orientation); } static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup= *block; unsigned value; int rd, index; av_assert2(mb_x>=0 && mb_y>=0); av_assert2(mb_x<b_stride); if(intra){ block->color[0] = p[0]; block->color[1] = p[1]; block->color[2] = p[2]; block->type |= BLOCK_INTRA; }else{ index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1); value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p[0]; block->my= p[1]; block->type &= ~BLOCK_INTRA; } rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra; //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ *block= backup; return 0; } } /* special case for int[2] args we discard afterwards, * fixes compilation problem with gcc 2.95 */ static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ int p[2] = {p0, p1}; return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd); } static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup[4]; unsigned value; int rd, index; /* We don't initialize backup[] during variable declaration, because * that fails to compile on MSVC: "cannot convert from 'BlockNode' to * 'int16_t'". */ backup[0] = block[0]; backup[1] = block[1]; backup[2] = block[b_stride]; backup[3] = block[b_stride + 1]; av_assert2(mb_x>=0 && mb_y>=0); av_assert2(mb_x<b_stride); av_assert2(((mb_x|mb_y)&1) == 0); index= (p0 + 31*p1) & (ME_CACHE_SIZE-1); value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p0; block->my= p1; block->ref= ref; block->type &= ~BLOCK_INTRA; block[1]= block[b_stride]= block[b_stride+1]= *block; rd= get_4block_rd(s, mb_x, mb_y, 0); //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ block[0]= backup[0]; block[1]= backup[1]; block[b_stride]= backup[2]; block[b_stride+1]= backup[3]; return 0; } } static void iterative_me(SnowContext *s){ int pass, mb_x, mb_y; const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; int color[3]; { RangeCoder r = s->c; uint8_t state[sizeof(s->block_state)]; memcpy(state, s->block_state, sizeof(s->block_state)); for(mb_y= 0; mb_y<s->b_height; mb_y++) for(mb_x= 0; mb_x<s->b_width; mb_x++) encode_q_branch(s, 0, mb_x, mb_y); s->c = r; memcpy(s->block_state, state, sizeof(s->block_state)); } for(pass=0; pass<25; pass++){ int change= 0; for(mb_y= 0; mb_y<b_height; mb_y++){ for(mb_x= 0; mb_x<b_width; mb_x++){ int dia_change, i, j, ref; int best_rd= INT_MAX, ref_rd; BlockNode backup, ref_b; const int index= mb_x + mb_y * b_stride; BlockNode *block= &s->block[index]; BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL; BlockNode *lb = mb_x ? &s->block[index -1] : NULL; BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL; BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL; BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL; BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL; BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL; BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL; const int b_w= (MB_SIZE >> s->block_max_depth); uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2]; if(pass && (block->type & BLOCK_OPT)) continue; block->type |= BLOCK_OPT; backup= *block; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; //FIXME precalculate { int x, y; for (y = 0; y < b_w * 2; y++) memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2); if(mb_x==0) for(y=0; y<b_w*2; y++) memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w); if(mb_x==b_stride-1) for(y=0; y<b_w*2; y++) memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w); if(mb_y==0){ for(x=0; x<b_w*2; x++) obmc_edged[0][x] += obmc_edged[b_w-1][x]; for(y=1; y<b_w; y++) memcpy(obmc_edged[y], obmc_edged[0], b_w*2); } if(mb_y==b_height-1){ for(x=0; x<b_w*2; x++) obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x]; for(y=b_w; y<b_w*2-1; y++) memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2); } } //skip stuff outside the picture if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){ uint8_t *src= s-> input_picture->data[0]; uint8_t *dst= s->current_picture->data[0]; const int stride= s->current_picture->linesize[0]; const int block_w= MB_SIZE >> s->block_max_depth; const int block_h= MB_SIZE >> s->block_max_depth; const int sx= block_w*mb_x - block_w/2; const int sy= block_h*mb_y - block_h/2; const int w= s->plane[0].width; const int h= s->plane[0].height; int y; for(y=sy; y<0; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); for(y=h; y<sy+block_h*2; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); if(sx<0){ for(y=sy; y<sy+block_h*2; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, -sx); } if(sx+block_w*2 > w){ for(y=sy; y<sy+block_h*2; y++) memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w); } } // intra(black) = neighbors' contribution to the current block for(i=0; i < s->nb_planes; i++) color[i]= get_dc(s, mb_x, mb_y, i); // get previous score (cannot be cached due to OBMC) if(pass > 0 && (block->type&BLOCK_INTRA)){ int color0[3]= {block->color[0], block->color[1], block->color[2]}; check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd); }else check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd); ref_b= *block; ref_rd= best_rd; for(ref=0; ref < s->ref_frames; ref++){ int16_t (*mvr)[2]= &s->ref_mvs[ref][index]; if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold continue; block->ref= ref; best_rd= INT_MAX; check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd); check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd); if(tb) check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd); if(lb) check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd); if(rb) check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd); if(bb) check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd); /* fullpel ME */ //FIXME avoid subpel interpolation / round to nearest integer do{ int newx = block->mx; int newy = block->my; int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1); dia_change=0; for(i=0; i < dia_size; i++){ for(j=0; j<i; j++){ dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd); } } }while(dia_change); /* subpel ME */ do{ static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},}; dia_change=0; for(i=0; i<8; i++) dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd); }while(dia_change); //FIXME or try the standard 2 pass qpel or similar mvr[0][0]= block->mx; mvr[0][1]= block->my; if(ref_rd > best_rd){ ref_rd= best_rd; ref_b= *block; } } best_rd= ref_rd; *block= ref_b; check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd); //FIXME RD style color selection if(!same_block(block, &backup)){ if(tb ) tb ->type &= ~BLOCK_OPT; if(lb ) lb ->type &= ~BLOCK_OPT; if(rb ) rb ->type &= ~BLOCK_OPT; if(bb ) bb ->type &= ~BLOCK_OPT; if(tlb) tlb->type &= ~BLOCK_OPT; if(trb) trb->type &= ~BLOCK_OPT; if(blb) blb->type &= ~BLOCK_OPT; if(brb) brb->type &= ~BLOCK_OPT; change ++; } } } av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change); if(!change) break; } if(s->block_max_depth == 1){ int change= 0; for(mb_y= 0; mb_y<b_height; mb_y+=2){ for(mb_x= 0; mb_x<b_width; mb_x+=2){ int i; int best_rd, init_rd; const int index= mb_x + mb_y * b_stride; BlockNode *b[4]; b[0]= &s->block[index]; b[1]= b[0]+1; b[2]= b[0]+b_stride; b[3]= b[2]+1; if(same_block(b[0], b[1]) && same_block(b[0], b[2]) && same_block(b[0], b[3])) continue; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0); //FIXME more multiref search? check_4block_inter(s, mb_x, mb_y, (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2, (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd); for(i=0; i<4; i++) if(!(b[i]->type&BLOCK_INTRA)) check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd); if(init_rd != best_rd) change++; } } av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4); } } static void encode_blocks(SnowContext *s, int search){ int x, y; int w= s->b_width; int h= s->b_height; if(s->motion_est == FF_ME_ITER && !s->keyframe && search) iterative_me(s); for(y=0; y<h; y++){ if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return; } for(x=0; x<w; x++){ if(s->motion_est == FF_ME_ITER || !search) encode_q_branch2(s, 0, x, y); else encode_q_branch (s, 0, x, y); } } } static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){ const int w= b->width; const int h= b->height; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS); int x,y, thres1, thres2; if(s->qlog == LOSSLESS_QLOG){ for(y=0; y<h; y++) for(x=0; x<w; x++) dst[x + y*stride]= src[x + y*stride]; return; } bias= bias ? 0 : (3*qmul)>>3; thres1= ((qmul - bias)>>QEXPSHIFT) - 1; thres2= 2*thres1; if(!bias){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= src[x + y*stride]; if((unsigned)(i+thres1) > thres2){ if(i>=0){ i<<= QEXPSHIFT; i/= qmul; //FIXME optimize dst[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i/= qmul; //FIXME optimize dst[x + y*stride]= -i; } }else dst[x + y*stride]= 0; } } }else{ for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= src[x + y*stride]; if((unsigned)(i+thres1) > thres2){ if(i>=0){ i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize dst[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize dst[x + y*stride]= -i; } }else dst[x + y*stride]= 0; } } } } static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){ const int w= b->width; const int h= b->height; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; if(s->qlog == LOSSLESS_QLOG) return; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= src[x + y*stride]; if(i<0){ src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } } static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ const int w= b->width; const int h= b->height; int x,y; for(y=h-1; y>=0; y--){ for(x=w-1; x>=0; x--){ int i= x + y*stride; if(x){ if(use_median){ if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); else src[i] -= src[i - 1]; }else{ if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); else src[i] -= src[i - 1]; } }else{ if(y) src[i] -= src[i - stride]; } } } } static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ const int w= b->width; const int h= b->height; int x,y; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= x + y*stride; if(x){ if(use_median){ if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); else src[i] += src[i - 1]; }else{ if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); else src[i] += src[i - 1]; } }else{ if(y) src[i] += src[i - stride]; } } } } static void encode_qlogs(SnowContext *s){ int plane_index, level, orientation; for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){ for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ if(orientation==2) continue; put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1); } } } } static void encode_header(SnowContext *s){ int plane_index, i; uint8_t kstate[32]; memset(kstate, MID_STATE, sizeof(kstate)); put_rac(&s->c, kstate, s->keyframe); if(s->keyframe || s->always_reset){ ff_snow_reset_contexts(s); s->last_spatial_decomposition_type= s->last_qlog= s->last_qbias= s->last_mv_scale= s->last_block_max_depth= 0; for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; p->last_htaps=0; p->last_diag_mc=0; memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff)); } } if(s->keyframe){ put_symbol(&s->c, s->header_state, s->version, 0); put_rac(&s->c, s->header_state, s->always_reset); put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0); put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->colorspace_type, 0); if (s->nb_planes > 2) { put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0); put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0); } put_rac(&s->c, s->header_state, s->spatial_scalability); // put_rac(&s->c, s->header_state, s->rate_scalability); put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0); encode_qlogs(s); } if(!s->keyframe){ int update_mc=0; for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){ Plane *p= &s->plane[plane_index]; update_mc |= p->last_htaps != p->htaps; update_mc |= p->last_diag_mc != p->diag_mc; update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); } put_rac(&s->c, s->header_state, update_mc); if(update_mc){ for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){ Plane *p= &s->plane[plane_index]; put_rac(&s->c, s->header_state, p->diag_mc); put_symbol(&s->c, s->header_state, p->htaps/2-1, 0); for(i= p->htaps/2; i; i--) put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0); } } if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ put_rac(&s->c, s->header_state, 1); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); encode_qlogs(s); }else put_rac(&s->c, s->header_state, 0); } put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1); put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1); put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1); put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1); put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1); } static void update_last_header_values(SnowContext *s){ int plane_index; if(!s->keyframe){ for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; p->last_diag_mc= p->diag_mc; p->last_htaps = p->htaps; memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); } } s->last_spatial_decomposition_type = s->spatial_decomposition_type; s->last_qlog = s->qlog; s->last_qbias = s->qbias; s->last_mv_scale = s->mv_scale; s->last_block_max_depth = s->block_max_depth; s->last_spatial_decomposition_count = s->spatial_decomposition_count; } static int qscale2qlog(int qscale){ return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA)) + 61*QROOT/8; ///< 64 > 60 } static int ratecontrol_1pass(SnowContext *s, AVFrame *pict) { /* Estimate the frame's complexity as a sum of weighted dwt coefficients. * FIXME we know exact mv bits at this point, * but ratecontrol isn't set up to include them. */ uint32_t coef_sum= 0; int level, orientation, delta_qlog; for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[0].band[level][orientation]; IDWTELEM *buf= b->ibuf; const int w= b->width; const int h= b->height; const int stride= b->stride; const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16); const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qdiv= (1<<16)/qmul; int x, y; //FIXME this is ugly for(y=0; y<h; y++) for(x=0; x<w; x++) buf[x+y*stride]= b->buf[x+y*stride]; if(orientation==0) decorrelate(s, b, buf, stride, 1, 0); for(y=0; y<h; y++) for(x=0; x<w; x++) coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16; } } /* ugly, ratecontrol just takes a sqrt again */ av_assert0(coef_sum < INT_MAX); coef_sum = (uint64_t)coef_sum * coef_sum >> 16; if(pict->pict_type == AV_PICTURE_TYPE_I){ s->m.current_picture.mb_var_sum= coef_sum; s->m.current_picture.mc_mb_var_sum= 0; }else{ s->m.current_picture.mc_mb_var_sum= coef_sum; s->m.current_picture.mb_var_sum= 0; } pict->quality= ff_rate_estimate_qscale(&s->m, 1); if (pict->quality < 0) return INT_MIN; s->lambda= pict->quality * 3/2; delta_qlog= qscale2qlog(pict->quality) - s->qlog; s->qlog+= delta_qlog; return delta_qlog; } static void calculate_visual_weight(SnowContext *s, Plane *p){ int width = p->width; int height= p->height; int level, orientation, x, y; for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *ibuf= b->ibuf; int64_t error=0; memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height); ibuf[b->width/2 + b->height/2*b->stride]= 256*16; ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count); for(y=0; y<height; y++){ for(x=0; x<width; x++){ int64_t d= s->spatial_idwt_buffer[x + y*width]*16; error += d*d; } } b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5); } } } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; AVFrame *pic; const int width= s->avctx->width; const int height= s->avctx->height; int level, orientation, plane_index, i, y, ret; uint8_t rc_header_bak[sizeof(s->header_state)]; uint8_t rc_block_bak[sizeof(s->block_state)]; if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0) return ret; ff_init_range_encoder(c, pkt->data, pkt->size); ff_build_rac_states(c, (1LL<<32)/20, 256-8); for(i=0; i < s->nb_planes; i++){ int hshift= i ? s->chroma_h_shift : 0; int vshift= i ? s->chroma_v_shift : 0; for(y=0; y<FF_CEIL_RSHIFT(height, vshift); y++) memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]], &pict->data[i][y * pict->linesize[i]], FF_CEIL_RSHIFT(width, hshift)); s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i], FF_CEIL_RSHIFT(width, hshift), FF_CEIL_RSHIFT(height, vshift), EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift, EDGE_TOP | EDGE_BOTTOM); } emms_c(); pic = s->input_picture; pic->pict_type = pict->pict_type; pic->quality = pict->quality; s->m.picture_number= avctx->frame_number; if(avctx->flags&AV_CODEC_FLAG_PASS2){ s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type; s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I; if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) { pic->quality = ff_rate_estimate_qscale(&s->m, 0); if (pic->quality < 0) return -1; } }else{ s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0; s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; } if(s->pass1_rc && avctx->frame_number == 0) pic->quality = 2*FF_QP2LAMBDA; if (pic->quality) { s->qlog = qscale2qlog(pic->quality); s->lambda = pic->quality * 3/2; } if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) { s->qlog= LOSSLESS_QLOG; s->lambda = 0; }//else keep previous frame's qlog until after motion estimation if (s->current_picture->data[0] #if FF_API_EMU_EDGE && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE) #endif ) { int w = s->avctx->width; int h = s->avctx->height; s->mpvencdsp.draw_edges(s->current_picture->data[0], s->current_picture->linesize[0], w , h , EDGE_WIDTH , EDGE_WIDTH , EDGE_TOP | EDGE_BOTTOM); if (s->current_picture->data[2]) { s->mpvencdsp.draw_edges(s->current_picture->data[1], s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift, EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM); s->mpvencdsp.draw_edges(s->current_picture->data[2], s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift, EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM); } } ff_snow_frame_start(s); av_frame_unref(avctx->coded_frame); ret = av_frame_ref(avctx->coded_frame, s->current_picture); if (ret < 0) return ret; s->m.current_picture_ptr= &s->m.current_picture; s->m.current_picture.f = s->current_picture; s->m.current_picture.f->pts = pict->pts; if(pic->pict_type == AV_PICTURE_TYPE_P){ int block_width = (width +15)>>4; int block_height= (height+15)>>4; int stride= s->current_picture->linesize[0]; av_assert0(s->current_picture->data[0]); av_assert0(s->last_picture[0]->data[0]); s->m.avctx= s->avctx; s->m. last_picture.f = s->last_picture[0]; s->m. new_picture.f = s->input_picture; s->m. last_picture_ptr= &s->m. last_picture; s->m.linesize = stride; s->m.uvlinesize= s->current_picture->linesize[1]; s->m.width = width; s->m.height= height; s->m.mb_width = block_width; s->m.mb_height= block_height; s->m.mb_stride= s->m.mb_width+1; s->m.b8_stride= 2*s->m.mb_width+1; s->m.f_code=1; s->m.pict_type = pic->pict_type; #if FF_API_MOTION_EST s->m.me_method= s->avctx->me_method; #endif s->m.motion_est= s->motion_est; s->m.me.scene_change_score=0; s->m.me.dia_size = avctx->dia_size; s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0; s->m.out_format= FMT_H263; s->m.unrestricted_mv= 1; s->m.lambda = s->lambda; s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; s->m.mecc= s->mecc; //move s->m.qdsp= s->qdsp; //move s->m.hdsp = s->hdsp; ff_init_me(&s->m); s->hdsp = s->m.hdsp; s->mecc= s->m.mecc; } if(s->pass1_rc){ memcpy(rc_header_bak, s->header_state, sizeof(s->header_state)); memcpy(rc_block_bak, s->block_state, sizeof(s->block_state)); } redo_frame: s->spatial_decomposition_count= 5; while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count)) || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count))) s->spatial_decomposition_count--; if (s->spatial_decomposition_count <= 0) { av_log(avctx, AV_LOG_ERROR, "Resolution too low\n"); return AVERROR(EINVAL); } s->m.pict_type = pic->pict_type; s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0; ff_snow_common_init_after_header(avctx); if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ for(plane_index=0; plane_index < s->nb_planes; plane_index++){ calculate_visual_weight(s, &s->plane[plane_index]); } } encode_header(s); s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start); encode_blocks(s, 1); s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits; for(plane_index=0; plane_index < s->nb_planes; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; // int bits= put_bits_count(&s->c.pb); if (!s->memc_only) { //FIXME optimize if(pict->data[plane_index]) //FIXME gray hack for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS; } } predict_plane(s, s->spatial_idwt_buffer, plane_index, 0); if( plane_index==0 && pic->pict_type == AV_PICTURE_TYPE_P && !(avctx->flags&AV_CODEC_FLAG_PASS2) && s->m.me.scene_change_score > s->avctx->scenechange_threshold){ ff_init_range_encoder(c, pkt->data, pkt->size); ff_build_rac_states(c, (1LL<<32)/20, 256-8); pic->pict_type= AV_PICTURE_TYPE_I; s->keyframe=1; s->current_picture->key_frame=1; goto redo_frame; } if(s->qlog == LOSSLESS_QLOG){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS; } } }else{ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS; } } } ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->pass1_rc && plane_index==0){ int delta_qlog = ratecontrol_1pass(s, pic); if (delta_qlog <= INT_MIN) return -1; if(delta_qlog){ //reordering qlog in the bitstream would eliminate this reset ff_init_range_encoder(c, pkt->data, pkt->size); memcpy(s->header_state, rc_header_bak, sizeof(s->header_state)); memcpy(s->block_state, rc_block_bak, sizeof(s->block_state)); encode_header(s); encode_blocks(s, 0); } } for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias); if(orientation==0) decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0); if (!s->no_bitstream) encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation); av_assert0(b->parent==NULL || b->parent->stride == b->stride*2); if(orientation==0) correlate(s, b, b->ibuf, b->stride, 1, 0); } } for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; dequantize(s, b, b->ibuf, b->stride); } } ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->qlog == LOSSLESS_QLOG){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS; } } } predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); }else{ //ME/MC only if(pic->pict_type == AV_PICTURE_TYPE_I){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]; } } }else{ memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h); predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); } } if(s->avctx->flags&AV_CODEC_FLAG_PSNR){ int64_t error= 0; if(pict->data[plane_index]) //FIXME gray hack for(y=0; y<h; y++){ for(x=0; x<w; x++){ int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x]; error += d*d; } } s->avctx->error[plane_index] += error; s->encoding_error[plane_index] = error; } } update_last_header_values(s); ff_snow_release_buffer(avctx); s->current_picture->coded_picture_number = avctx->frame_number; s->current_picture->pict_type = pic->pict_type; s->current_picture->quality = pic->quality; s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start); s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits; s->m.current_picture.f->display_picture_number = s->m.current_picture.f->coded_picture_number = avctx->frame_number; s->m.current_picture.f->quality = pic->quality; s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start); if(s->pass1_rc) if (ff_rate_estimate_qscale(&s->m, 0) < 0) return -1; if(avctx->flags&AV_CODEC_FLAG_PASS1) ff_write_pass1_stats(&s->m); s->m.last_pict_type = s->m.pict_type; avctx->frame_bits = s->m.frame_bits; avctx->mv_bits = s->m.mv_bits; avctx->misc_bits = s->m.misc_bits; avctx->p_tex_bits = s->m.p_tex_bits; emms_c(); ff_side_data_set_encoder_stats(pkt, s->current_picture->quality, s->encoding_error, (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? 4 : 0, s->current_picture->pict_type); #if FF_API_ERROR_FRAME FF_DISABLE_DEPRECATION_WARNINGS memcpy(s->current_picture->error, s->encoding_error, sizeof(s->encoding_error)); FF_ENABLE_DEPRECATION_WARNINGS #endif pkt->size = ff_rac_terminate(c); if (s->current_picture->key_frame) pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } static av_cold int encode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; ff_snow_common_end(s); ff_rate_control_uninit(&s->m); av_frame_free(&s->input_picture); av_freep(&avctx->stats_out); return 0; } #define OFFSET(x) offsetof(SnowContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { FF_MPV_COMMON_OPTS { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, FF_MPV_OPT_FLAGS, "motion_est" }, { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, { "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE }, { "iterative_dia_size", "Dia size for the iterative ME", OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE }, { NULL }, }; static const AVClass snowenc_class = { .class_name = "snow encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_snow_encoder = { .name = "snow", .long_name = NULL_IF_CONFIG_SMALL("Snow"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_SNOW, .priv_data_size = sizeof(SnowContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }, .priv_class = &snowenc_class, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, }; #ifdef TEST #undef malloc #undef free #undef printf #include "libavutil/lfg.h" #include "libavutil/mathematics.h" int main(void){ #define width 256 #define height 256 int buffer[2][width*height]; SnowContext s; int i; AVLFG prng; s.spatial_decomposition_count=6; s.spatial_decomposition_type=1; s.temp_dwt_buffer = av_mallocz_array(width, sizeof(DWTELEM)); s.temp_idwt_buffer = av_mallocz_array(width, sizeof(IDWTELEM)); if (!s.temp_dwt_buffer || !s.temp_idwt_buffer) { fprintf(stderr, "Failed to allocate memory\n"); return 1; } av_lfg_init(&prng, 1); printf("testing 5/3 DWT\n"); for(i=0; i<width*height; i++) buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345; ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(i=0; i<width*height; i++) if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]); printf("testing 9/7 DWT\n"); s.spatial_decomposition_type=0; for(i=0; i<width*height; i++) buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345; ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(i=0; i<width*height; i++) if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]); { int level, orientation, x, y; int64_t errors[8][4]; int64_t g=0; memset(errors, 0, sizeof(errors)); s.spatial_decomposition_count=3; s.spatial_decomposition_type=0; for(level=0; level<s.spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ int w= width >> (s.spatial_decomposition_count-level); int h= height >> (s.spatial_decomposition_count-level); int stride= width << (s.spatial_decomposition_count-level); DWTELEM *buf= buffer[0]; int64_t error=0; if(orientation&1) buf+=w; if(orientation>1) buf+=stride>>1; memset(buffer[0], 0, sizeof(int)*width*height); buf[w/2 + h/2*stride]= 256*256; ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(y=0; y<height; y++){ for(x=0; x<width; x++){ int64_t d= buffer[0][x + y*width]; error += d*d; if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d); } if(FFABS(height/2-y)<9 && level==2) printf("\n"); } error= (int)(sqrt(error)+0.5); errors[level][orientation]= error; if(g) g=av_gcd(g, error); else g= error; } } printf("static int const visual_weight[][4]={\n"); for(level=0; level<s.spatial_decomposition_count; level++){ printf(" {"); for(orientation=0; orientation<4; orientation++){ printf("%8"PRId64",", errors[level][orientation]/g); } printf("},\n"); } printf("};\n"); { int level=2; int w= width >> (s.spatial_decomposition_count-level); //int h= height >> (s.spatial_decomposition_count-level); int stride= width << (s.spatial_decomposition_count-level); DWTELEM *buf= buffer[0]; int64_t error=0; buf+=w; buf+=stride>>1; memset(buffer[0], 0, sizeof(int)*width*height); for(y=0; y<height; y++){ for(x=0; x<width; x++){ int tab[4]={0,2,3,1}; buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)]; } } ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(y=0; y<height; y++){ for(x=0; x<width; x++){ int64_t d= buffer[0][x + y*width]; error += d*d; if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d); } if(FFABS(height/2-y)<9) printf("\n"); } } } return 0; } #endif /* TEST */