/* * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "dsputil.h" #include "snow.h" #include "rangecoder.h" #include "mathops.h" #include "mpegvideo.h" #undef NDEBUG #include <assert.h> static const int8_t quant3[256]={ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, }; static const int8_t quant3b[256]={ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, }; static const int8_t quant3bA[256]={ 0, 0, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, }; static const int8_t quant5[256]={ 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1, }; static const int8_t quant7[256]={ 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1, }; static const int8_t quant9[256]={ 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1, }; static const int8_t quant11[256]={ 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1, }; static const int8_t quant13[256]={ 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6, -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6, -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6, -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6, -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1, }; #if 0 //64*cubic static const uint8_t obmc32[1024]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 16, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 8, 8, 12, 16, 16, 20, 24, 24, 28, 28, 32, 32, 32, 32, 28, 28, 24, 24, 20, 16, 16, 12, 8, 8, 4, 4, 0, 0, 0, 0, 4, 8, 8, 12, 16, 24, 28, 32, 36, 40, 44, 48, 48, 48, 48, 48, 48, 44, 40, 36, 32, 28, 24, 16, 12, 8, 8, 4, 0, 0, 0, 4, 4, 8, 12, 20, 24, 32, 40, 44, 52, 56, 60, 64, 68, 72, 72, 68, 64, 60, 56, 52, 44, 40, 32, 24, 20, 12, 8, 4, 4, 0, 0, 4, 4, 12, 16, 24, 32, 40, 52, 60, 68, 76, 80, 88, 88, 92, 92, 88, 88, 80, 76, 68, 60, 52, 40, 32, 24, 16, 12, 4, 4, 0, 0, 4, 8, 16, 24, 32, 40, 52, 64, 76, 84, 92,100,108,112,116,116,112,108,100, 92, 84, 76, 64, 52, 40, 32, 24, 16, 8, 4, 0, 0, 4, 8, 16, 28, 40, 52, 64, 76, 88,100,112,124,132,136,140,140,136,132,124,112,100, 88, 76, 64, 52, 40, 28, 16, 8, 4, 0, 0, 4, 12, 20, 32, 44, 60, 76, 88,104,120,132,144,152,160,164,164,160,152,144,132,120,104, 88, 76, 60, 44, 32, 20, 12, 4, 0, 0, 4, 12, 24, 36, 48, 68, 84,100,120,136,152,164,176,180,184,184,180,176,164,152,136,120,100, 84, 68, 48, 36, 24, 12, 4, 0, 0, 4, 12, 24, 40, 56, 76, 92,112,132,152,168,180,192,204,208,208,204,192,180,168,152,132,112, 92, 76, 56, 40, 24, 12, 4, 0, 0, 4, 16, 28, 44, 60, 80,100,124,144,164,180,196,208,220,224,224,220,208,196,180,164,144,124,100, 80, 60, 44, 28, 16, 4, 0, 0, 8, 16, 28, 48, 64, 88,108,132,152,176,192,208,224,232,240,240,232,224,208,192,176,152,132,108, 88, 64, 48, 28, 16, 8, 0, 0, 4, 16, 32, 48, 68, 88,112,136,160,180,204,220,232,244,248,248,244,232,220,204,180,160,136,112, 88, 68, 48, 32, 16, 4, 0, 1, 8, 16, 32, 48, 72, 92,116,140,164,184,208,224,240,248,255,255,248,240,224,208,184,164,140,116, 92, 72, 48, 32, 16, 8, 1, 1, 8, 16, 32, 48, 72, 92,116,140,164,184,208,224,240,248,255,255,248,240,224,208,184,164,140,116, 92, 72, 48, 32, 16, 8, 1, 0, 4, 16, 32, 48, 68, 88,112,136,160,180,204,220,232,244,248,248,244,232,220,204,180,160,136,112, 88, 68, 48, 32, 16, 4, 0, 0, 8, 16, 28, 48, 64, 88,108,132,152,176,192,208,224,232,240,240,232,224,208,192,176,152,132,108, 88, 64, 48, 28, 16, 8, 0, 0, 4, 16, 28, 44, 60, 80,100,124,144,164,180,196,208,220,224,224,220,208,196,180,164,144,124,100, 80, 60, 44, 28, 16, 4, 0, 0, 4, 12, 24, 40, 56, 76, 92,112,132,152,168,180,192,204,208,208,204,192,180,168,152,132,112, 92, 76, 56, 40, 24, 12, 4, 0, 0, 4, 12, 24, 36, 48, 68, 84,100,120,136,152,164,176,180,184,184,180,176,164,152,136,120,100, 84, 68, 48, 36, 24, 12, 4, 0, 0, 4, 12, 20, 32, 44, 60, 76, 88,104,120,132,144,152,160,164,164,160,152,144,132,120,104, 88, 76, 60, 44, 32, 20, 12, 4, 0, 0, 4, 8, 16, 28, 40, 52, 64, 76, 88,100,112,124,132,136,140,140,136,132,124,112,100, 88, 76, 64, 52, 40, 28, 16, 8, 4, 0, 0, 4, 8, 16, 24, 32, 40, 52, 64, 76, 84, 92,100,108,112,116,116,112,108,100, 92, 84, 76, 64, 52, 40, 32, 24, 16, 8, 4, 0, 0, 4, 4, 12, 16, 24, 32, 40, 52, 60, 68, 76, 80, 88, 88, 92, 92, 88, 88, 80, 76, 68, 60, 52, 40, 32, 24, 16, 12, 4, 4, 0, 0, 4, 4, 8, 12, 20, 24, 32, 40, 44, 52, 56, 60, 64, 68, 72, 72, 68, 64, 60, 56, 52, 44, 40, 32, 24, 20, 12, 8, 4, 4, 0, 0, 0, 4, 8, 8, 12, 16, 24, 28, 32, 36, 40, 44, 48, 48, 48, 48, 48, 48, 44, 40, 36, 32, 28, 24, 16, 12, 8, 8, 4, 0, 0, 0, 0, 4, 4, 8, 8, 12, 16, 16, 20, 24, 24, 28, 28, 32, 32, 32, 32, 28, 28, 24, 24, 20, 16, 16, 12, 8, 8, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 16, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //error:0.000022 }; static const uint8_t obmc16[256]={ 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 8, 16, 20, 20, 24, 24, 20, 20, 16, 8, 4, 4, 0, 0, 4, 16, 24, 36, 44, 52, 60, 60, 52, 44, 36, 24, 16, 4, 0, 0, 8, 24, 44, 60, 80, 96,104,104, 96, 80, 60, 44, 24, 8, 0, 0, 16, 36, 60, 92,116,136,152,152,136,116, 92, 60, 36, 16, 0, 0, 20, 44, 80,116,152,180,196,196,180,152,116, 80, 44, 20, 0, 4, 20, 52, 96,136,180,212,228,228,212,180,136, 96, 52, 20, 4, 4, 24, 60,104,152,196,228,248,248,228,196,152,104, 60, 24, 4, 4, 24, 60,104,152,196,228,248,248,228,196,152,104, 60, 24, 4, 4, 20, 52, 96,136,180,212,228,228,212,180,136, 96, 52, 20, 4, 0, 20, 44, 80,116,152,180,196,196,180,152,116, 80, 44, 20, 0, 0, 16, 36, 60, 92,116,136,152,152,136,116, 92, 60, 36, 16, 0, 0, 8, 24, 44, 60, 80, 96,104,104, 96, 80, 60, 44, 24, 8, 0, 0, 4, 16, 24, 36, 44, 52, 60, 60, 52, 44, 36, 24, 16, 4, 0, 0, 4, 4, 8, 16, 20, 20, 24, 24, 20, 20, 16, 8, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, //error:0.000033 }; #elif 1 // 64*linear static const uint8_t obmc32[1024]={ 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0, 0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0, 0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4, 4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4, 4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4, 4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4, 4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4, 4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4, 4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4, 4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4, 8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8, 8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8, 8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8, 8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8, 8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8, 8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8, 8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8, 8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8, 4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4, 4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4, 4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4, 4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4, 4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4, 4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4, 4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4, 0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0, 0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, //error:0.000020 }; static const uint8_t obmc16[256]={ 0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0, 4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4, 4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4, 8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8, 8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8, 12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12, 12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12, 16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16, 16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16, 12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12, 12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12, 8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8, 8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8, 4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4, 4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4, 0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0, //error:0.000015 }; #else //64*cos static const uint8_t obmc32[1024]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 12, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 8, 8, 12, 16, 20, 20, 24, 28, 28, 28, 28, 28, 28, 28, 28, 24, 20, 20, 16, 12, 8, 8, 4, 4, 4, 0, 0, 0, 0, 4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, 44, 48, 48, 48, 48, 44, 44, 40, 36, 28, 24, 20, 16, 12, 8, 4, 4, 0, 0, 0, 0, 4, 8, 12, 20, 24, 32, 36, 44, 48, 56, 60, 64, 68, 68, 68, 68, 64, 60, 56, 48, 44, 36, 32, 24, 20, 12, 8, 4, 0, 0, 0, 4, 4, 8, 16, 24, 32, 40, 48, 60, 68, 76, 80, 84, 88, 92, 92, 88, 84, 80, 76, 68, 60, 48, 40, 32, 24, 16, 8, 4, 4, 0, 0, 4, 8, 12, 20, 32, 40, 52, 64, 76, 84, 96,104,108,112,116,116,112,108,104, 96, 84, 76, 64, 52, 40, 32, 20, 12, 8, 4, 0, 0, 4, 8, 16, 24, 36, 48, 64, 76, 92,104,116,124,132,136,140,140,136,132,124,116,104, 92, 76, 64, 48, 36, 24, 16, 8, 4, 0, 0, 4, 12, 20, 28, 44, 60, 76, 92,104,120,136,148,156,160,164,164,160,156,148,136,120,104, 92, 76, 60, 44, 28, 20, 12, 4, 0, 0, 4, 12, 20, 36, 48, 68, 84,104,120,140,152,168,176,184,188,188,184,176,168,152,140,120,104, 84, 68, 48, 36, 20, 12, 4, 0, 0, 4, 12, 24, 36, 56, 76, 96,116,136,152,172,184,196,204,208,208,204,196,184,172,152,136,116, 96, 76, 56, 36, 24, 12, 4, 0, 0, 4, 12, 24, 44, 60, 80,104,124,148,168,184,200,212,224,228,228,224,212,200,184,168,148,124,104, 80, 60, 44, 24, 12, 4, 0, 0, 4, 12, 28, 44, 64, 84,108,132,156,176,196,212,228,236,240,240,236,228,212,196,176,156,132,108, 84, 64, 44, 28, 12, 4, 0, 0, 4, 16, 28, 48, 68, 88,112,136,160,184,204,224,236,244,252,252,244,236,224,204,184,160,136,112, 88, 68, 48, 28, 16, 4, 0, 1, 4, 16, 28, 48, 68, 92,116,140,164,188,208,228,240,252,255,255,252,240,228,208,188,164,140,116, 92, 68, 48, 28, 16, 4, 1, 1, 4, 16, 28, 48, 68, 92,116,140,164,188,208,228,240,252,255,255,252,240,228,208,188,164,140,116, 92, 68, 48, 28, 16, 4, 1, 0, 4, 16, 28, 48, 68, 88,112,136,160,184,204,224,236,244,252,252,244,236,224,204,184,160,136,112, 88, 68, 48, 28, 16, 4, 0, 0, 4, 12, 28, 44, 64, 84,108,132,156,176,196,212,228,236,240,240,236,228,212,196,176,156,132,108, 84, 64, 44, 28, 12, 4, 0, 0, 4, 12, 24, 44, 60, 80,104,124,148,168,184,200,212,224,228,228,224,212,200,184,168,148,124,104, 80, 60, 44, 24, 12, 4, 0, 0, 4, 12, 24, 36, 56, 76, 96,116,136,152,172,184,196,204,208,208,204,196,184,172,152,136,116, 96, 76, 56, 36, 24, 12, 4, 0, 0, 4, 12, 20, 36, 48, 68, 84,104,120,140,152,168,176,184,188,188,184,176,168,152,140,120,104, 84, 68, 48, 36, 20, 12, 4, 0, 0, 4, 12, 20, 28, 44, 60, 76, 92,104,120,136,148,156,160,164,164,160,156,148,136,120,104, 92, 76, 60, 44, 28, 20, 12, 4, 0, 0, 4, 8, 16, 24, 36, 48, 64, 76, 92,104,116,124,132,136,140,140,136,132,124,116,104, 92, 76, 64, 48, 36, 24, 16, 8, 4, 0, 0, 4, 8, 12, 20, 32, 40, 52, 64, 76, 84, 96,104,108,112,116,116,112,108,104, 96, 84, 76, 64, 52, 40, 32, 20, 12, 8, 4, 0, 0, 4, 4, 8, 16, 24, 32, 40, 48, 60, 68, 76, 80, 84, 88, 92, 92, 88, 84, 80, 76, 68, 60, 48, 40, 32, 24, 16, 8, 4, 4, 0, 0, 0, 4, 8, 12, 20, 24, 32, 36, 44, 48, 56, 60, 64, 68, 68, 68, 68, 64, 60, 56, 48, 44, 36, 32, 24, 20, 12, 8, 4, 0, 0, 0, 0, 4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 44, 44, 48, 48, 48, 48, 44, 44, 40, 36, 28, 24, 20, 16, 12, 8, 4, 4, 0, 0, 0, 0, 4, 4, 4, 8, 8, 12, 16, 20, 20, 24, 28, 28, 28, 28, 28, 28, 28, 28, 24, 20, 20, 16, 12, 8, 8, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 12, 12, 12, 12, 8, 8, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //error:0.000022 }; static const uint8_t obmc16[256]={ 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 8, 12, 16, 20, 20, 20, 20, 16, 12, 8, 4, 0, 0, 0, 4, 12, 24, 32, 44, 52, 56, 56, 52, 44, 32, 24, 12, 4, 0, 0, 8, 24, 40, 60, 80, 96,104,104, 96, 80, 60, 40, 24, 8, 0, 0, 12, 32, 64, 92,120,140,152,152,140,120, 92, 64, 32, 12, 0, 4, 16, 44, 80,120,156,184,196,196,184,156,120, 80, 44, 16, 4, 4, 20, 52, 96,140,184,216,232,232,216,184,140, 96, 52, 20, 4, 0, 20, 56,104,152,196,232,252,252,232,196,152,104, 56, 20, 0, 0, 20, 56,104,152,196,232,252,252,232,196,152,104, 56, 20, 0, 4, 20, 52, 96,140,184,216,232,232,216,184,140, 96, 52, 20, 4, 4, 16, 44, 80,120,156,184,196,196,184,156,120, 80, 44, 16, 4, 0, 12, 32, 64, 92,120,140,152,152,140,120, 92, 64, 32, 12, 0, 0, 8, 24, 40, 60, 80, 96,104,104, 96, 80, 60, 40, 24, 8, 0, 0, 4, 12, 24, 32, 44, 52, 56, 56, 52, 44, 32, 24, 12, 4, 0, 0, 0, 4, 8, 12, 16, 20, 20, 20, 20, 16, 12, 8, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, //error:0.000022 }; #endif /* 0 */ //linear *64 static const uint8_t obmc8[64]={ 4, 12, 20, 28, 28, 20, 12, 4, 12, 36, 60, 84, 84, 60, 36, 12, 20, 60,100,140,140,100, 60, 20, 28, 84,140,196,196,140, 84, 28, 28, 84,140,196,196,140, 84, 28, 20, 60,100,140,140,100, 60, 20, 12, 36, 60, 84, 84, 60, 36, 12, 4, 12, 20, 28, 28, 20, 12, 4, //error:0.000000 }; //linear *64 static const uint8_t obmc4[16]={ 16, 48, 48, 16, 48,144,144, 48, 48,144,144, 48, 16, 48, 48, 16, //error:0.000000 }; static const uint8_t * const obmc_tab[4]={ obmc32, obmc16, obmc8, obmc4 }; static int scale_mv_ref[MAX_REF_FRAMES][MAX_REF_FRAMES]; typedef struct BlockNode{ int16_t mx; int16_t my; uint8_t ref; uint8_t color[3]; uint8_t type; //#define TYPE_SPLIT 1 #define BLOCK_INTRA 1 #define BLOCK_OPT 2 //#define TYPE_NOCOLOR 4 uint8_t level; //FIXME merge into type? }BlockNode; static const BlockNode null_block= { //FIXME add border maybe .color= {128,128,128}, .mx= 0, .my= 0, .ref= 0, .type= 0, .level= 0, }; #define LOG2_MB_SIZE 4 #define MB_SIZE (1<<LOG2_MB_SIZE) #define ENCODER_EXTRA_BITS 4 #define HTAPS_MAX 8 typedef struct x_and_coeff{ int16_t x; uint16_t coeff; } x_and_coeff; typedef struct SubBand{ int level; int stride; int width; int height; int qlog; ///< log(qscale)/log[2^(1/6)] DWTELEM *buf; IDWTELEM *ibuf; int buf_x_offset; int buf_y_offset; int stride_line; ///< Stride measured in lines, not pixels. x_and_coeff * x_coeff; struct SubBand *parent; uint8_t state[/*7*2*/ 7 + 512][32]; }SubBand; typedef struct Plane{ int width; int height; SubBand band[MAX_DECOMPOSITIONS][4]; int htaps; int8_t hcoeff[HTAPS_MAX/2]; int diag_mc; int fast_mc; int last_htaps; int8_t last_hcoeff[HTAPS_MAX/2]; int last_diag_mc; }Plane; typedef struct SnowContext{ // MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to eventually make the motion estimation independent of MpegEncContext, so this will be removed then (FIXME/XXX) AVCodecContext *avctx; RangeCoder c; DSPContext dsp; AVFrame new_picture; AVFrame input_picture; ///< new_picture with the internal linesizes AVFrame current_picture; AVFrame last_picture[MAX_REF_FRAMES]; uint8_t *halfpel_plane[MAX_REF_FRAMES][4][4]; AVFrame mconly_picture; // uint8_t q_context[16]; uint8_t header_state[32]; uint8_t block_state[128 + 32*128]; int keyframe; int always_reset; int version; int spatial_decomposition_type; int last_spatial_decomposition_type; int temporal_decomposition_type; int spatial_decomposition_count; int last_spatial_decomposition_count; int temporal_decomposition_count; int max_ref_frames; int ref_frames; int16_t (*ref_mvs[MAX_REF_FRAMES])[2]; uint32_t *ref_scores[MAX_REF_FRAMES]; DWTELEM *spatial_dwt_buffer; IDWTELEM *spatial_idwt_buffer; int colorspace_type; int chroma_h_shift; int chroma_v_shift; int spatial_scalability; int qlog; int last_qlog; int lambda; int lambda2; int pass1_rc; int mv_scale; int last_mv_scale; int qbias; int last_qbias; #define QBIAS_SHIFT 3 int b_width; int b_height; int block_max_depth; int last_block_max_depth; Plane plane[MAX_PLANES]; BlockNode *block; #define ME_CACHE_SIZE 1024 int me_cache[ME_CACHE_SIZE]; int me_cache_generation; slice_buffer sb; MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to eventually make the motion estimation independent of MpegEncContext, so this will be removed then (FIXME/XXX) uint8_t *scratchbuf; }SnowContext; typedef struct { IDWTELEM *b0; IDWTELEM *b1; IDWTELEM *b2; IDWTELEM *b3; int y; } DWTCompose; #define slice_buffer_get_line(slice_buf, line_num) ((slice_buf)->line[line_num] ? (slice_buf)->line[line_num] : slice_buffer_load_line((slice_buf), (line_num))) //#define slice_buffer_get_line(slice_buf, line_num) (slice_buffer_load_line((slice_buf), (line_num))) static void iterative_me(SnowContext *s); static void slice_buffer_init(slice_buffer * buf, int line_count, int max_allocated_lines, int line_width, IDWTELEM * base_buffer) { int i; buf->base_buffer = base_buffer; buf->line_count = line_count; buf->line_width = line_width; buf->data_count = max_allocated_lines; buf->line = av_mallocz (sizeof(IDWTELEM *) * line_count); buf->data_stack = av_malloc (sizeof(IDWTELEM *) * max_allocated_lines); for(i = 0; i < max_allocated_lines; i++){ buf->data_stack[i] = av_malloc (sizeof(IDWTELEM) * line_width); } buf->data_stack_top = max_allocated_lines - 1; } static IDWTELEM * slice_buffer_load_line(slice_buffer * buf, int line) { IDWTELEM * buffer; assert(buf->data_stack_top >= 0); // assert(!buf->line[line]); if (buf->line[line]) return buf->line[line]; buffer = buf->data_stack[buf->data_stack_top]; buf->data_stack_top--; buf->line[line] = buffer; return buffer; } static void slice_buffer_release(slice_buffer * buf, int line) { IDWTELEM * buffer; assert(line >= 0 && line < buf->line_count); assert(buf->line[line]); buffer = buf->line[line]; buf->data_stack_top++; buf->data_stack[buf->data_stack_top] = buffer; buf->line[line] = NULL; } static void slice_buffer_flush(slice_buffer * buf) { int i; for(i = 0; i < buf->line_count; i++){ if (buf->line[i]) slice_buffer_release(buf, i); } } static void slice_buffer_destroy(slice_buffer * buf) { int i; slice_buffer_flush(buf); for(i = buf->data_count - 1; i >= 0; i--){ av_freep(&buf->data_stack[i]); } av_freep(&buf->data_stack); av_freep(&buf->line); } #ifdef __sgi // Avoid a name clash on SGI IRIX #undef qexp #endif #define QEXPSHIFT (7-FRAC_BITS+8) //FIXME try to change this to 0 static uint8_t qexp[QROOT]; static inline int mirror(int v, int m){ while((unsigned)v > (unsigned)m){ v=-v; if(v<0) v+= 2*m; } return v; } static inline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){ int i; if(v){ const int a= FFABS(v); const int e= av_log2(a); #if 1 const int el= FFMIN(e, 10); put_rac(c, state+0, 0); for(i=0; i<el; i++){ put_rac(c, state+1+i, 1); //1..10 } for(; i<e; i++){ put_rac(c, state+1+9, 1); //1..10 } put_rac(c, state+1+FFMIN(i,9), 0); for(i=e-1; i>=el; i--){ put_rac(c, state+22+9, (a>>i)&1); //22..31 } for(; i>=0; i--){ put_rac(c, state+22+i, (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + el, v < 0); //11..21 #else put_rac(c, state+0, 0); if(e<=9){ for(i=0; i<e; i++){ put_rac(c, state+1+i, 1); //1..10 } put_rac(c, state+1+i, 0); for(i=e-1; i>=0; i--){ put_rac(c, state+22+i, (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + e, v < 0); //11..21 }else{ for(i=0; i<e; i++){ put_rac(c, state+1+FFMIN(i,9), 1); //1..10 } put_rac(c, state+1+9, 0); for(i=e-1; i>=0; i--){ put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + 10, v < 0); //11..21 } #endif /* 1 */ }else{ put_rac(c, state+0, 1); } } static inline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){ if(get_rac(c, state+0)) return 0; else{ int i, e, a; e= 0; while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10 e++; } a= 1; for(i=e-1; i>=0; i--){ a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31 } e= -(is_signed && get_rac(c, state+11 + FFMIN(e,10))); //11..21 return (a^e)-e; } } static inline void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2){ int i; int r= log2>=0 ? 1<<log2 : 1; assert(v>=0); assert(log2>=-4); while(v >= r){ put_rac(c, state+4+log2, 1); v -= r; log2++; if(log2>0) r+=r; } put_rac(c, state+4+log2, 0); for(i=log2-1; i>=0; i--){ put_rac(c, state+31-i, (v>>i)&1); } } static inline int get_symbol2(RangeCoder *c, uint8_t *state, int log2){ int i; int r= log2>=0 ? 1<<log2 : 1; int v=0; assert(log2>=-4); while(get_rac(c, state+4+log2)){ v+= r; log2++; if(log2>0) r+=r; } for(i=log2-1; i>=0; i--){ v+= get_rac(c, state+31-i)<<i; } return v; } static av_always_inline void lift(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){ const int mirror_left= !highpass; const int mirror_right= (width&1) ^ highpass; const int w= (width>>1) - 1 + (highpass & width); int i; #define LIFT(src, ref, inv) ((src) + ((inv) ? - (ref) : + (ref))) if(mirror_left){ dst[0] = LIFT(src[0], ((mul*2*ref[0]+add)>>shift), inverse); dst += dst_step; src += src_step; } for(i=0; i<w; i++){ dst[i*dst_step] = LIFT(src[i*src_step], ((mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add)>>shift), inverse); } if(mirror_right){ dst[w*dst_step] = LIFT(src[w*src_step], ((mul*2*ref[w*ref_step]+add)>>shift), inverse); } } static av_always_inline void inv_lift(IDWTELEM *dst, IDWTELEM *src, IDWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){ const int mirror_left= !highpass; const int mirror_right= (width&1) ^ highpass; const int w= (width>>1) - 1 + (highpass & width); int i; #define LIFT(src, ref, inv) ((src) + ((inv) ? - (ref) : + (ref))) if(mirror_left){ dst[0] = LIFT(src[0], ((mul*2*ref[0]+add)>>shift), inverse); dst += dst_step; src += src_step; } for(i=0; i<w; i++){ dst[i*dst_step] = LIFT(src[i*src_step], ((mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add)>>shift), inverse); } if(mirror_right){ dst[w*dst_step] = LIFT(src[w*src_step], ((mul*2*ref[w*ref_step]+add)>>shift), inverse); } } #ifndef liftS static av_always_inline void liftS(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){ const int mirror_left= !highpass; const int mirror_right= (width&1) ^ highpass; const int w= (width>>1) - 1 + (highpass & width); int i; assert(shift == 4); #define LIFTS(src, ref, inv) \ ((inv) ? \ (src) + (((ref) + 4*(src))>>shift): \ -((-16*(src) + (ref) + add/4 + 1 + (5<<25))/(5*4) - (1<<23))) if(mirror_left){ dst[0] = LIFTS(src[0], mul*2*ref[0]+add, inverse); dst += dst_step; src += src_step; } for(i=0; i<w; i++){ dst[i*dst_step] = LIFTS(src[i*src_step], mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add, inverse); } if(mirror_right){ dst[w*dst_step] = LIFTS(src[w*src_step], mul*2*ref[w*ref_step]+add, inverse); } } static av_always_inline void inv_liftS(IDWTELEM *dst, IDWTELEM *src, IDWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){ const int mirror_left= !highpass; const int mirror_right= (width&1) ^ highpass; const int w= (width>>1) - 1 + (highpass & width); int i; assert(shift == 4); #define LIFTS(src, ref, inv) \ ((inv) ? \ (src) + (((ref) + 4*(src))>>shift): \ -((-16*(src) + (ref) + add/4 + 1 + (5<<25))/(5*4) - (1<<23))) if(mirror_left){ dst[0] = LIFTS(src[0], mul*2*ref[0]+add, inverse); dst += dst_step; src += src_step; } for(i=0; i<w; i++){ dst[i*dst_step] = LIFTS(src[i*src_step], mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add, inverse); } if(mirror_right){ dst[w*dst_step] = LIFTS(src[w*src_step], mul*2*ref[w*ref_step]+add, inverse); } } #endif /* ! liftS */ static void horizontal_decompose53i(DWTELEM *b, int width){ DWTELEM temp[width]; const int width2= width>>1; int x; const int w2= (width+1)>>1; for(x=0; x<width2; x++){ temp[x ]= b[2*x ]; temp[x+w2]= b[2*x + 1]; } if(width&1) temp[x ]= b[2*x ]; #if 0 { int A1,A2,A3,A4; A2= temp[1 ]; A4= temp[0 ]; A1= temp[0+width2]; A1 -= (A2 + A4)>>1; A4 += (A1 + 1)>>1; b[0+width2] = A1; b[0 ] = A4; for(x=1; x+1<width2; x+=2){ A3= temp[x+width2]; A4= temp[x+1 ]; A3 -= (A2 + A4)>>1; A2 += (A1 + A3 + 2)>>2; b[x+width2] = A3; b[x ] = A2; A1= temp[x+1+width2]; A2= temp[x+2 ]; A1 -= (A2 + A4)>>1; A4 += (A1 + A3 + 2)>>2; b[x+1+width2] = A1; b[x+1 ] = A4; } A3= temp[width-1]; A3 -= A2; A2 += (A1 + A3 + 2)>>2; b[width -1] = A3; b[width2-1] = A2; } #else lift(b+w2, temp+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 0); lift(b , temp , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 0); #endif /* 0 */ } static void vertical_decompose53iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] -= (b0[i] + b2[i])>>1; } } static void vertical_decompose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] += (b0[i] + b2[i] + 2)>>2; } } static void spatial_decompose53i(DWTELEM *buffer, int width, int height, int stride){ int y; DWTELEM *b0= buffer + mirror(-2-1, height-1)*stride; DWTELEM *b1= buffer + mirror(-2 , height-1)*stride; for(y=-2; y<height; y+=2){ DWTELEM *b2= buffer + mirror(y+1, height-1)*stride; DWTELEM *b3= buffer + mirror(y+2, height-1)*stride; if(y+1<(unsigned)height) horizontal_decompose53i(b2, width); if(y+2<(unsigned)height) horizontal_decompose53i(b3, width); if(y+1<(unsigned)height) vertical_decompose53iH0(b1, b2, b3, width); if(y+0<(unsigned)height) vertical_decompose53iL0(b0, b1, b2, width); b0=b2; b1=b3; } } static void horizontal_decompose97i(DWTELEM *b, int width){ DWTELEM temp[width]; const int w2= (width+1)>>1; lift (temp+w2, b +1, b , 1, 2, 2, width, W_AM, W_AO, W_AS, 1, 1); liftS(temp , b , temp+w2, 1, 2, 1, width, W_BM, W_BO, W_BS, 0, 0); lift (b +w2, temp+w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 0); lift (b , temp , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 0); } static void vertical_decompose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] -= (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS; } } static void vertical_decompose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] += (W_CM*(b0[i] + b2[i])+W_CO)>>W_CS; } } static void vertical_decompose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ #ifdef liftS b1[i] -= (W_BM*(b0[i] + b2[i])+W_BO)>>W_BS; #else b1[i] = (16*4*b1[i] - 4*(b0[i] + b2[i]) + W_BO*5 + (5<<27)) / (5*16) - (1<<23); #endif } } static void vertical_decompose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] += (W_DM*(b0[i] + b2[i])+W_DO)>>W_DS; } } static void spatial_decompose97i(DWTELEM *buffer, int width, int height, int stride){ int y; DWTELEM *b0= buffer + mirror(-4-1, height-1)*stride; DWTELEM *b1= buffer + mirror(-4 , height-1)*stride; DWTELEM *b2= buffer + mirror(-4+1, height-1)*stride; DWTELEM *b3= buffer + mirror(-4+2, height-1)*stride; for(y=-4; y<height; y+=2){ DWTELEM *b4= buffer + mirror(y+3, height-1)*stride; DWTELEM *b5= buffer + mirror(y+4, height-1)*stride; if(y+3<(unsigned)height) horizontal_decompose97i(b4, width); if(y+4<(unsigned)height) horizontal_decompose97i(b5, width); if(y+3<(unsigned)height) vertical_decompose97iH0(b3, b4, b5, width); if(y+2<(unsigned)height) vertical_decompose97iL0(b2, b3, b4, width); if(y+1<(unsigned)height) vertical_decompose97iH1(b1, b2, b3, width); if(y+0<(unsigned)height) vertical_decompose97iL1(b0, b1, b2, width); b0=b2; b1=b3; b2=b4; b3=b5; } } void ff_spatial_dwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){ int level; for(level=0; level<decomposition_count; level++){ switch(type){ case DWT_97: spatial_decompose97i(buffer, width>>level, height>>level, stride<<level); break; case DWT_53: spatial_decompose53i(buffer, width>>level, height>>level, stride<<level); break; } } } static void horizontal_compose53i(IDWTELEM *b, int width){ IDWTELEM temp[width]; const int width2= width>>1; const int w2= (width+1)>>1; int x; #if 0 int A1,A2,A3,A4; A2= temp[1 ]; A4= temp[0 ]; A1= temp[0+width2]; A1 -= (A2 + A4)>>1; A4 += (A1 + 1)>>1; b[0+width2] = A1; b[0 ] = A4; for(x=1; x+1<width2; x+=2){ A3= temp[x+width2]; A4= temp[x+1 ]; A3 -= (A2 + A4)>>1; A2 += (A1 + A3 + 2)>>2; b[x+width2] = A3; b[x ] = A2; A1= temp[x+1+width2]; A2= temp[x+2 ]; A1 -= (A2 + A4)>>1; A4 += (A1 + A3 + 2)>>2; b[x+1+width2] = A1; b[x+1 ] = A4; } A3= temp[width-1]; A3 -= A2; A2 += (A1 + A3 + 2)>>2; b[width -1] = A3; b[width2-1] = A2; #else inv_lift(temp , b , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 1); inv_lift(temp+w2, b+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 1); #endif /* 0 */ for(x=0; x<width2; x++){ b[2*x ]= temp[x ]; b[2*x + 1]= temp[x+w2]; } if(width&1) b[2*x ]= temp[x ]; } static void vertical_compose53iH0(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] += (b0[i] + b2[i])>>1; } } static void vertical_compose53iL0(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] -= (b0[i] + b2[i] + 2)>>2; } } static void spatial_compose53i_buffered_init(DWTCompose *cs, slice_buffer * sb, int height, int stride_line){ cs->b0 = slice_buffer_get_line(sb, mirror(-1-1, height-1) * stride_line); cs->b1 = slice_buffer_get_line(sb, mirror(-1 , height-1) * stride_line); cs->y = -1; } static void spatial_compose53i_init(DWTCompose *cs, IDWTELEM *buffer, int height, int stride){ cs->b0 = buffer + mirror(-1-1, height-1)*stride; cs->b1 = buffer + mirror(-1 , height-1)*stride; cs->y = -1; } static void spatial_compose53i_dy_buffered(DWTCompose *cs, slice_buffer * sb, int width, int height, int stride_line){ int y= cs->y; IDWTELEM *b0= cs->b0; IDWTELEM *b1= cs->b1; IDWTELEM *b2= slice_buffer_get_line(sb, mirror(y+1, height-1) * stride_line); IDWTELEM *b3= slice_buffer_get_line(sb, mirror(y+2, height-1) * stride_line); if(y+1<(unsigned)height) vertical_compose53iL0(b1, b2, b3, width); if(y+0<(unsigned)height) vertical_compose53iH0(b0, b1, b2, width); if(y-1<(unsigned)height) horizontal_compose53i(b0, width); if(y+0<(unsigned)height) horizontal_compose53i(b1, width); cs->b0 = b2; cs->b1 = b3; cs->y += 2; } static void spatial_compose53i_dy(DWTCompose *cs, IDWTELEM *buffer, int width, int height, int stride){ int y= cs->y; IDWTELEM *b0= cs->b0; IDWTELEM *b1= cs->b1; IDWTELEM *b2= buffer + mirror(y+1, height-1)*stride; IDWTELEM *b3= buffer + mirror(y+2, height-1)*stride; if(y+1<(unsigned)height) vertical_compose53iL0(b1, b2, b3, width); if(y+0<(unsigned)height) vertical_compose53iH0(b0, b1, b2, width); if(y-1<(unsigned)height) horizontal_compose53i(b0, width); if(y+0<(unsigned)height) horizontal_compose53i(b1, width); cs->b0 = b2; cs->b1 = b3; cs->y += 2; } static void av_unused spatial_compose53i(IDWTELEM *buffer, int width, int height, int stride){ DWTCompose cs; spatial_compose53i_init(&cs, buffer, height, stride); while(cs.y <= height) spatial_compose53i_dy(&cs, buffer, width, height, stride); } void ff_snow_horizontal_compose97i(IDWTELEM *b, int width){ IDWTELEM temp[width]; const int w2= (width+1)>>1; inv_lift (temp , b , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 1); inv_lift (temp+w2, b +w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 1); inv_liftS(b , temp , temp+w2, 2, 1, 1, width, W_BM, W_BO, W_BS, 0, 1); inv_lift (b+1 , temp+w2, b , 2, 1, 2, width, W_AM, W_AO, W_AS, 1, 0); } static void vertical_compose97iH0(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS; } } static void vertical_compose97iH1(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] -= (W_CM*(b0[i] + b2[i])+W_CO)>>W_CS; } } static void vertical_compose97iL0(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ #ifdef liftS b1[i] += (W_BM*(b0[i] + b2[i])+W_BO)>>W_BS; #else b1[i] += (W_BM*(b0[i] + b2[i])+4*b1[i]+W_BO)>>W_BS; #endif } } static void vertical_compose97iL1(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, int width){ int i; for(i=0; i<width; i++){ b1[i] -= (W_DM*(b0[i] + b2[i])+W_DO)>>W_DS; } } void ff_snow_vertical_compose97i(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width){ int i; for(i=0; i<width; i++){ b4[i] -= (W_DM*(b3[i] + b5[i])+W_DO)>>W_DS; b3[i] -= (W_CM*(b2[i] + b4[i])+W_CO)>>W_CS; #ifdef liftS b2[i] += (W_BM*(b1[i] + b3[i])+W_BO)>>W_BS; #else b2[i] += (W_BM*(b1[i] + b3[i])+4*b2[i]+W_BO)>>W_BS; #endif b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS; } } static void spatial_compose97i_buffered_init(DWTCompose *cs, slice_buffer * sb, int height, int stride_line){ cs->b0 = slice_buffer_get_line(sb, mirror(-3-1, height-1) * stride_line); cs->b1 = slice_buffer_get_line(sb, mirror(-3 , height-1) * stride_line); cs->b2 = slice_buffer_get_line(sb, mirror(-3+1, height-1) * stride_line); cs->b3 = slice_buffer_get_line(sb, mirror(-3+2, height-1) * stride_line); cs->y = -3; } static void spatial_compose97i_init(DWTCompose *cs, IDWTELEM *buffer, int height, int stride){ cs->b0 = buffer + mirror(-3-1, height-1)*stride; cs->b1 = buffer + mirror(-3 , height-1)*stride; cs->b2 = buffer + mirror(-3+1, height-1)*stride; cs->b3 = buffer + mirror(-3+2, height-1)*stride; cs->y = -3; } static void spatial_compose97i_dy_buffered(DSPContext *dsp, DWTCompose *cs, slice_buffer * sb, int width, int height, int stride_line){ int y = cs->y; IDWTELEM *b0= cs->b0; IDWTELEM *b1= cs->b1; IDWTELEM *b2= cs->b2; IDWTELEM *b3= cs->b3; IDWTELEM *b4= slice_buffer_get_line(sb, mirror(y + 3, height - 1) * stride_line); IDWTELEM *b5= slice_buffer_get_line(sb, mirror(y + 4, height - 1) * stride_line); if(y>0 && y+4<height){ dsp->vertical_compose97i(b0, b1, b2, b3, b4, b5, width); }else{ if(y+3<(unsigned)height) vertical_compose97iL1(b3, b4, b5, width); if(y+2<(unsigned)height) vertical_compose97iH1(b2, b3, b4, width); if(y+1<(unsigned)height) vertical_compose97iL0(b1, b2, b3, width); if(y+0<(unsigned)height) vertical_compose97iH0(b0, b1, b2, width); } if(y-1<(unsigned)height) dsp->horizontal_compose97i(b0, width); if(y+0<(unsigned)height) dsp->horizontal_compose97i(b1, width); cs->b0=b2; cs->b1=b3; cs->b2=b4; cs->b3=b5; cs->y += 2; } static void spatial_compose97i_dy(DWTCompose *cs, IDWTELEM *buffer, int width, int height, int stride){ int y = cs->y; IDWTELEM *b0= cs->b0; IDWTELEM *b1= cs->b1; IDWTELEM *b2= cs->b2; IDWTELEM *b3= cs->b3; IDWTELEM *b4= buffer + mirror(y+3, height-1)*stride; IDWTELEM *b5= buffer + mirror(y+4, height-1)*stride; if(y+3<(unsigned)height) vertical_compose97iL1(b3, b4, b5, width); if(y+2<(unsigned)height) vertical_compose97iH1(b2, b3, b4, width); if(y+1<(unsigned)height) vertical_compose97iL0(b1, b2, b3, width); if(y+0<(unsigned)height) vertical_compose97iH0(b0, b1, b2, width); if(y-1<(unsigned)height) ff_snow_horizontal_compose97i(b0, width); if(y+0<(unsigned)height) ff_snow_horizontal_compose97i(b1, width); cs->b0=b2; cs->b1=b3; cs->b2=b4; cs->b3=b5; cs->y += 2; } static void av_unused spatial_compose97i(IDWTELEM *buffer, int width, int height, int stride){ DWTCompose cs; spatial_compose97i_init(&cs, buffer, height, stride); while(cs.y <= height) spatial_compose97i_dy(&cs, buffer, width, height, stride); } static void ff_spatial_idwt_buffered_init(DWTCompose *cs, slice_buffer * sb, int width, int height, int stride_line, int type, int decomposition_count){ int level; for(level=decomposition_count-1; level>=0; level--){ switch(type){ case DWT_97: spatial_compose97i_buffered_init(cs+level, sb, height>>level, stride_line<<level); break; case DWT_53: spatial_compose53i_buffered_init(cs+level, sb, height>>level, stride_line<<level); break; } } } static void ff_spatial_idwt_init(DWTCompose *cs, IDWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){ int level; for(level=decomposition_count-1; level>=0; level--){ switch(type){ case DWT_97: spatial_compose97i_init(cs+level, buffer, height>>level, stride<<level); break; case DWT_53: spatial_compose53i_init(cs+level, buffer, height>>level, stride<<level); break; } } } static void ff_spatial_idwt_slice(DWTCompose *cs, IDWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count, int y){ const int support = type==1 ? 3 : 5; int level; if(type==2) return; for(level=decomposition_count-1; level>=0; level--){ while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){ switch(type){ case DWT_97: spatial_compose97i_dy(cs+level, buffer, width>>level, height>>level, stride<<level); break; case DWT_53: spatial_compose53i_dy(cs+level, buffer, width>>level, height>>level, stride<<level); break; } } } } static void ff_spatial_idwt_buffered_slice(DSPContext *dsp, DWTCompose *cs, slice_buffer * slice_buf, int width, int height, int stride_line, int type, int decomposition_count, int y){ const int support = type==1 ? 3 : 5; int level; if(type==2) return; for(level=decomposition_count-1; level>=0; level--){ while(cs[level].y <= FFMIN((y>>level)+support, height>>level)){ switch(type){ case DWT_97: spatial_compose97i_dy_buffered(dsp, cs+level, slice_buf, width>>level, height>>level, stride_line<<level); break; case DWT_53: spatial_compose53i_dy_buffered(cs+level, slice_buf, width>>level, height>>level, stride_line<<level); break; } } } } static void ff_spatial_idwt(IDWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){ DWTCompose cs[MAX_DECOMPOSITIONS]; int y; ff_spatial_idwt_init(cs, buffer, width, height, stride, type, decomposition_count); for(y=0; y<height; y+=4) ff_spatial_idwt_slice(cs, buffer, width, height, stride, type, decomposition_count, y); } static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){ const int w= b->width; const int h= b->height; int x, y; if(1){ int run=0; int runs[w*h]; int run_index=0; int max_index; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v, p=0; int /*ll=0, */l=0, lt=0, t=0, rt=0; v= src[x + y*stride]; if(y){ t= src[x + (y-1)*stride]; if(x){ lt= src[x - 1 + (y-1)*stride]; } if(x + 1 < w){ rt= src[x + 1 + (y-1)*stride]; } } if(x){ l= src[x - 1 + y*stride]; /*if(x > 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(px<b->parent->width && py<b->parent->height) p= parent[px + py*2*stride]; } if(!(/*ll|*/l|lt|t|rt|p)){ if(v){ runs[run_index++]= run; run=0; }else{ run++; } } } } max_index= run_index; runs[run_index++]= run; run_index=0; run= runs[run_index++]; put_symbol2(&s->c, b->state[30], max_index, 0); if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); for(y=0; y<h; y++){ if(s->c.bytestream_end - s->c.bytestream < w*40){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } for(x=0; x<w; x++){ int v, p=0; int /*ll=0, */l=0, lt=0, t=0, rt=0; v= src[x + y*stride]; if(y){ t= src[x + (y-1)*stride]; if(x){ lt= src[x - 1 + (y-1)*stride]; } if(x + 1 < w){ rt= src[x + 1 + (y-1)*stride]; } } if(x){ l= src[x - 1 + y*stride]; /*if(x > 1){ if(orientation==1) ll= src[y + (x-2)*stride]; else ll= src[x - 2 + y*stride]; }*/ } if(parent){ int px= x>>1; int py= y>>1; if(px<b->parent->width && py<b->parent->height) p= parent[px + py*2*stride]; } if(/*ll|*/l|lt|t|rt|p){ int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); put_rac(&s->c, &b->state[0][context], !!v); }else{ if(!run){ run= runs[run_index++]; if(run_index <= max_index) put_symbol2(&s->c, b->state[1], run, 3); assert(v); }else{ run--; assert(!v); } } if(v){ int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); int l2= 2*FFABS(l) + (l<0); int t2= 2*FFABS(t) + (t<0); put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4); put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l2&0xFF] + 3*quant3bA[t2&0xFF]], v<0); } } } } return 0; } static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){ // encode_subband_qtree(s, b, src, parent, stride, orientation); // encode_subband_z0run(s, b, src, parent, stride, orientation); return encode_subband_c0run(s, b, src, parent, stride, orientation); // encode_subband_dzr(s, b, src, parent, stride, orientation); } static inline void unpack_coeffs(SnowContext *s, SubBand *b, SubBand * parent, int orientation){ const int w= b->width; const int h= b->height; int x,y; if(1){ int run, runs; x_and_coeff *xc= b->x_coeff; x_and_coeff *prev_xc= NULL; x_and_coeff *prev2_xc= xc; x_and_coeff *parent_xc= parent ? parent->x_coeff : NULL; x_and_coeff *prev_parent_xc= parent_xc; runs= get_symbol2(&s->c, b->state[30], 0); if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3); else run= INT_MAX; for(y=0; y<h; y++){ int v=0; int lt=0, t=0, rt=0; if(y && prev_xc->x == 0){ rt= prev_xc->coeff; } for(x=0; x<w; x++){ int p=0; const int l= v; lt= t; t= rt; if(y){ if(prev_xc->x <= x) prev_xc++; if(prev_xc->x == x + 1) rt= prev_xc->coeff; else rt=0; } if(parent_xc){ if(x>>1 > parent_xc->x){ parent_xc++; } if(x>>1 == parent_xc->x){ p= parent_xc->coeff; } } if(/*ll|*/l|lt|t|rt|p){ int context= av_log2(/*FFABS(ll) + */3*(l>>1) + (lt>>1) + (t&~1) + (rt>>1) + (p>>1)); v=get_rac(&s->c, &b->state[0][context]); if(v){ v= 2*(get_symbol2(&s->c, b->state[context + 2], context-4) + 1); v+=get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l&0xFF] + 3*quant3bA[t&0xFF]]); xc->x=x; (xc++)->coeff= v; } }else{ if(!run){ if(runs-- > 0) run= get_symbol2(&s->c, b->state[1], 3); else run= INT_MAX; v= 2*(get_symbol2(&s->c, b->state[0 + 2], 0-4) + 1); v+=get_rac(&s->c, &b->state[0][16 + 1 + 3]); xc->x=x; (xc++)->coeff= v; }else{ int max_run; run--; v=0; if(y) max_run= FFMIN(run, prev_xc->x - x - 2); else max_run= FFMIN(run, w-x-1); if(parent_xc) max_run= FFMIN(max_run, 2*parent_xc->x - x - 1); x+= max_run; run-= max_run; } } } (xc++)->x= w+1; //end marker prev_xc= prev2_xc; prev2_xc= xc; if(parent_xc){ if(y&1){ while(parent_xc->x != parent->width+1) parent_xc++; parent_xc++; prev_parent_xc= parent_xc; }else{ parent_xc= prev_parent_xc; } } } (xc++)->x= w+1; //end marker } } static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){ const int w= b->width; int y; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int new_index = 0; if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){ qadd= 0; qmul= 1<<QEXPSHIFT; } /* If we are on the second or later slice, restore our index. */ if (start_y != 0) new_index = save_state[0]; for(y=start_y; y<h; y++){ int x = 0; int v; IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset; memset(line, 0, b->width*sizeof(IDWTELEM)); v = b->x_coeff[new_index].coeff; x = b->x_coeff[new_index++].x; while(x < w){ register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT; register int u= -(v&1); line[x] = (t^u) - u; v = b->x_coeff[new_index].coeff; x = b->x_coeff[new_index++].x; } } /* Save our variables for the next slice. */ save_state[0] = new_index; return; } static void reset_contexts(SnowContext *s){ //FIXME better initial contexts int plane_index, level, orientation; for(plane_index=0; plane_index<3; plane_index++){ for(level=0; level<MAX_DECOMPOSITIONS; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ memset(s->plane[plane_index].band[level][orientation].state, MID_STATE, sizeof(s->plane[plane_index].band[level][orientation].state)); } } } memset(s->header_state, MID_STATE, sizeof(s->header_state)); memset(s->block_state, MID_STATE, sizeof(s->block_state)); } static int alloc_blocks(SnowContext *s){ int w= -((-s->avctx->width )>>LOG2_MB_SIZE); int h= -((-s->avctx->height)>>LOG2_MB_SIZE); s->b_width = w; s->b_height= h; av_free(s->block); s->block= av_mallocz(w * h * sizeof(BlockNode) << (s->block_max_depth*2)); return 0; } static inline void copy_rac_state(RangeCoder *d, RangeCoder *s){ uint8_t *bytestream= d->bytestream; uint8_t *bytestream_start= d->bytestream_start; *d= *s; d->bytestream= bytestream; d->bytestream_start= bytestream_start; } //near copy & paste from dsputil, FIXME static int pix_sum(uint8_t * pix, int line_size, int w) { int s, i, j; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j++) { s += pix[0]; pix ++; } pix += line_size - w; } return s; } //near copy & paste from dsputil, FIXME static int pix_norm1(uint8_t * pix, int line_size, int w) { int s, i, j; uint32_t *sq = ff_squareTbl + 256; s = 0; for (i = 0; i < w; i++) { for (j = 0; j < w; j ++) { s += sq[pix[0]]; pix ++; } pix += line_size - w; } return s; } static inline void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; const int block_w= 1<<rem_depth; BlockNode block; int i,j; block.color[0]= l; block.color[1]= cb; block.color[2]= cr; block.mx= mx; block.my= my; block.ref= ref; block.type= type; block.level= level; for(j=0; j<block_w; j++){ for(i=0; i<block_w; i++){ s->block[index + i + j*w]= block; } } } static inline void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index){ const int offset[3]= { y*c-> stride + x, ((y*c->uvstride + x)>>1), ((y*c->uvstride + x)>>1), }; int i; for(i=0; i<3; i++){ c->src[0][i]= src [i]; c->ref[0][i]= ref [i] + offset[i]; } assert(!ref_index); } static inline void pred_mv(SnowContext *s, int *mx, int *my, int ref, const BlockNode *left, const BlockNode *top, const BlockNode *tr){ if(s->ref_frames == 1){ *mx = mid_pred(left->mx, top->mx, tr->mx); *my = mid_pred(left->my, top->my, tr->my); }else{ const int *scale = scale_mv_ref[ref]; *mx = mid_pred((left->mx * scale[left->ref] + 128) >>8, (top ->mx * scale[top ->ref] + 128) >>8, (tr ->mx * scale[tr ->ref] + 128) >>8); *my = mid_pred((left->my * scale[left->ref] + 128) >>8, (top ->my * scale[top ->ref] + 128) >>8, (tr ->my * scale[tr ->ref] + 128) >>8); } } //FIXME copy&paste #define P_LEFT P[1] #define P_TOP P[2] #define P_TOPRIGHT P[3] #define P_MEDIAN P[4] #define P_MV1 P[9] #define FLAG_QPEL 1 //must be 1 static int encode_q_branch(SnowContext *s, int level, int x, int y){ uint8_t p_buffer[1024]; uint8_t i_buffer[1024]; uint8_t p_state[sizeof(s->block_state)]; uint8_t i_state[sizeof(s->block_state)]; RangeCoder pc, ic; uint8_t *pbbak= s->c.bytestream; uint8_t *pbbak_start= s->c.bytestream_start; int score, score2, iscore, i_len, p_len, block_s, sum, base_bits; const int w= s->b_width << s->block_max_depth; const int h= s->b_height << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; const int block_w= 1<<(LOG2_MB_SIZE - level); int trx= (x+1)<<rem_depth; int try= (y+1)<<rem_depth; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *right = trx<w ? &s->block[index+1] : &null_block; const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt int pl = left->color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx, pmy; int mx=0, my=0; int l,cr,cb; const int stride= s->current_picture.linesize[0]; const int uvstride= s->current_picture.linesize[1]; uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w, s->input_picture.data[1] + (x + y*uvstride)*block_w/2, s->input_picture.data[2] + (x + y*uvstride)*block_w/2}; int P[10][2]; int16_t last_mv[3][2]; int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused const int shift= 1+qpel; MotionEstContext *c= &s->m.me; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)); int my_context= av_log2(2*FFABS(left->my - top->my)); int s_context= 2*left->level + 2*top->level + tl->level + tr->level; int ref, best_ref, ref_score, ref_mx, ref_my; assert(sizeof(s->block_state) >= 256); if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); return 0; } // clip predictors / edge ? P_LEFT[0]= left->mx; P_LEFT[1]= left->my; P_TOP [0]= top->mx; P_TOP [1]= top->my; P_TOPRIGHT[0]= tr->mx; P_TOPRIGHT[1]= tr->my; last_mv[0][0]= s->block[index].mx; last_mv[0][1]= s->block[index].my; last_mv[1][0]= right->mx; last_mv[1][1]= right->my; last_mv[2][0]= bottom->mx; last_mv[2][1]= bottom->my; s->m.mb_stride=2; s->m.mb_x= s->m.mb_y= 0; c->skip= 0; assert(c-> stride == stride); assert(c->uvstride == uvstride); c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp); c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp); c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp); c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV; c->xmin = - x*block_w - 16+3; c->ymin = - y*block_w - 16+3; c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift); if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift); if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift); if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift); if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift); if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift); P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]); P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]); if (!y) { c->pred_x= P_LEFT[0]; c->pred_y= P_LEFT[1]; } else { c->pred_x = P_MEDIAN[0]; c->pred_y = P_MEDIAN[1]; } score= INT_MAX; best_ref= 0; for(ref=0; ref<s->ref_frames; ref++){ init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0); ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv, (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w); assert(ref_mx >= c->xmin); assert(ref_mx <= c->xmax); assert(ref_my >= c->ymin); assert(ref_my <= c->ymax); ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w); ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0); ref_score+= 2*av_log2(2*ref)*c->penalty_factor; if(s->ref_mvs[ref]){ s->ref_mvs[ref][index][0]= ref_mx; s->ref_mvs[ref][index][1]= ref_my; s->ref_scores[ref][index]= ref_score; } if(score > ref_score){ score= ref_score; best_ref= ref; mx= ref_mx; my= ref_my; } } //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2 // subpel search base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start); pc= s->c; pc.bytestream_start= pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo memcpy(p_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&pc, &p_state[4 + s_context], 1); put_rac(&pc, &p_state[1 + left->type + top->type], 0); if(s->ref_frames > 1) put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0); pred_mv(s, &pmx, &pmy, best_ref, left, top, tr); put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1); put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1); p_len= pc.bytestream - pc.bytestream_start; score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT; block_s= block_w*block_w; sum = pix_sum(current_data[0], stride, block_w); l= (sum + block_s/2)/block_s; iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s; block_s= block_w*block_w>>2; sum = pix_sum(current_data[1], uvstride, block_w>>1); cb= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s; sum = pix_sum(current_data[2], uvstride, block_w>>1); cr= (sum + block_s/2)/block_s; // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s; ic= s->c; ic.bytestream_start= ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo memcpy(i_state, s->block_state, sizeof(s->block_state)); if(level!=s->block_max_depth) put_rac(&ic, &i_state[4 + s_context], 1); put_rac(&ic, &i_state[1 + left->type + top->type], 1); put_symbol(&ic, &i_state[32], l-pl , 1); put_symbol(&ic, &i_state[64], cb-pcb, 1); put_symbol(&ic, &i_state[96], cr-pcr, 1); i_len= ic.bytestream - ic.bytestream_start; iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT; // assert(score==256*256*256*64-1); assert(iscore < 255*255*256 + s->lambda2*10); assert(iscore >= 0); assert(l>=0 && l<=255); assert(pl>=0 && pl<=255); if(level==0){ int varc= iscore >> 8; int vard= score >> 8; if (vard <= 64 || vard < varc) c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc); else c->scene_change_score+= s->m.qscale; } if(level!=s->block_max_depth){ put_rac(&s->c, &s->block_state[4 + s_context], 0); score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0); score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1); score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1); score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead if(score2 < score && score2 < iscore) return score2; } if(iscore < score){ pred_mv(s, &pmx, &pmy, 0, left, top, tr); memcpy(pbbak, i_buffer, i_len); s->c= ic; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + i_len; set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA); memcpy(s->block_state, i_state, sizeof(s->block_state)); return iscore; }else{ memcpy(pbbak, p_buffer, p_len); s->c= pc; s->c.bytestream_start= pbbak_start; s->c.bytestream= pbbak + p_len; set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0); memcpy(s->block_state, p_state, sizeof(s->block_state)); return score; } } static av_always_inline int same_block(BlockNode *a, BlockNode *b){ if((a->type&BLOCK_INTRA) && (b->type&BLOCK_INTRA)){ return !((a->color[0] - b->color[0]) | (a->color[1] - b->color[1]) | (a->color[2] - b->color[2])); }else{ return !((a->mx - b->mx) | (a->my - b->my) | (a->ref - b->ref) | ((a->type ^ b->type)&BLOCK_INTRA)); } } static void encode_q_branch2(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<<rem_depth; BlockNode *b= &s->block[index]; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt int pl = left->color[0]; int pcb= left->color[1]; int pcr= left->color[2]; int pmx, pmy; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref; int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref; int s_context= 2*left->level + 2*top->level + tl->level + tr->level; if(s->keyframe){ set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); return; } if(level!=s->block_max_depth){ if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){ put_rac(&s->c, &s->block_state[4 + s_context], 1); }else{ put_rac(&s->c, &s->block_state[4 + s_context], 0); encode_q_branch2(s, level+1, 2*x+0, 2*y+0); encode_q_branch2(s, level+1, 2*x+1, 2*y+0); encode_q_branch2(s, level+1, 2*x+0, 2*y+1); encode_q_branch2(s, level+1, 2*x+1, 2*y+1); return; } } if(b->type & BLOCK_INTRA){ pred_mv(s, &pmx, &pmy, 0, left, top, tr); put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1); put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1); put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1); put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1); set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA); }else{ pred_mv(s, &pmx, &pmy, b->ref, left, top, tr); put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0); if(s->ref_frames > 1) put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0); put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1); put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1); set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0); } } static void decode_q_branch(SnowContext *s, int level, int x, int y){ const int w= s->b_width << s->block_max_depth; const int rem_depth= s->block_max_depth - level; const int index= (x + y*w) << rem_depth; int trx= (x+1)<<rem_depth; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-w] : &null_block; const BlockNode *tl = y && x ? &s->block[index-w-1] : left; const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt int s_context= 2*left->level + 2*top->level + tl->level + tr->level; if(s->keyframe){ set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA); return; } if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){ int type, mx, my; int l = left->color[0]; int cb= left->color[1]; int cr= left->color[2]; int ref = 0; int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx)); int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my)); type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0; if(type){ pred_mv(s, &mx, &my, 0, left, top, tr); l += get_symbol(&s->c, &s->block_state[32], 1); cb+= get_symbol(&s->c, &s->block_state[64], 1); cr+= get_symbol(&s->c, &s->block_state[96], 1); }else{ if(s->ref_frames > 1) ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0); pred_mv(s, &mx, &my, ref, left, top, tr); mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1); my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1); } set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type); }else{ decode_q_branch(s, level+1, 2*x+0, 2*y+0); decode_q_branch(s, level+1, 2*x+1, 2*y+0); decode_q_branch(s, level+1, 2*x+0, 2*y+1); decode_q_branch(s, level+1, 2*x+1, 2*y+1); } } static void encode_blocks(SnowContext *s, int search){ int x, y; int w= s->b_width; int h= s->b_height; if(s->avctx->me_method == ME_ITER && !s->keyframe && search) iterative_me(s); for(y=0; y<h; y++){ if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return; } for(x=0; x<w; x++){ if(s->avctx->me_method == ME_ITER || !search) encode_q_branch2(s, 0, x, y); else encode_q_branch (s, 0, x, y); } } } static void decode_blocks(SnowContext *s){ int x, y; int w= s->b_width; int h= s->b_height; for(y=0; y<h; y++){ for(x=0; x<w; x++){ decode_q_branch(s, 0, x, y); } } } static void mc_block(Plane *p, uint8_t *dst, const uint8_t *src, uint8_t *tmp, int stride, int b_w, int b_h, int dx, int dy){ static const uint8_t weight[64]={ 8,7,6,5,4,3,2,1, 7,7,0,0,0,0,0,1, 6,0,6,0,0,0,2,0, 5,0,0,5,0,3,0,0, 4,0,0,0,4,0,0,0, 3,0,0,5,0,3,0,0, 2,0,6,0,0,0,2,0, 1,7,0,0,0,0,0,1, }; static const uint8_t brane[256]={ 0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x11,0x12,0x12,0x12,0x12,0x12,0x12,0x12, 0x04,0x05,0xcc,0xcc,0xcc,0xcc,0xcc,0x41,0x15,0x16,0xcc,0xcc,0xcc,0xcc,0xcc,0x52, 0x04,0xcc,0x05,0xcc,0xcc,0xcc,0x41,0xcc,0x15,0xcc,0x16,0xcc,0xcc,0xcc,0x52,0xcc, 0x04,0xcc,0xcc,0x05,0xcc,0x41,0xcc,0xcc,0x15,0xcc,0xcc,0x16,0xcc,0x52,0xcc,0xcc, 0x04,0xcc,0xcc,0xcc,0x41,0xcc,0xcc,0xcc,0x15,0xcc,0xcc,0xcc,0x16,0xcc,0xcc,0xcc, 0x04,0xcc,0xcc,0x41,0xcc,0x05,0xcc,0xcc,0x15,0xcc,0xcc,0x52,0xcc,0x16,0xcc,0xcc, 0x04,0xcc,0x41,0xcc,0xcc,0xcc,0x05,0xcc,0x15,0xcc,0x52,0xcc,0xcc,0xcc,0x16,0xcc, 0x04,0x41,0xcc,0xcc,0xcc,0xcc,0xcc,0x05,0x15,0x52,0xcc,0xcc,0xcc,0xcc,0xcc,0x16, 0x44,0x45,0x45,0x45,0x45,0x45,0x45,0x45,0x55,0x56,0x56,0x56,0x56,0x56,0x56,0x56, 0x48,0x49,0xcc,0xcc,0xcc,0xcc,0xcc,0x85,0x59,0x5A,0xcc,0xcc,0xcc,0xcc,0xcc,0x96, 0x48,0xcc,0x49,0xcc,0xcc,0xcc,0x85,0xcc,0x59,0xcc,0x5A,0xcc,0xcc,0xcc,0x96,0xcc, 0x48,0xcc,0xcc,0x49,0xcc,0x85,0xcc,0xcc,0x59,0xcc,0xcc,0x5A,0xcc,0x96,0xcc,0xcc, 0x48,0xcc,0xcc,0xcc,0x49,0xcc,0xcc,0xcc,0x59,0xcc,0xcc,0xcc,0x96,0xcc,0xcc,0xcc, 0x48,0xcc,0xcc,0x85,0xcc,0x49,0xcc,0xcc,0x59,0xcc,0xcc,0x96,0xcc,0x5A,0xcc,0xcc, 0x48,0xcc,0x85,0xcc,0xcc,0xcc,0x49,0xcc,0x59,0xcc,0x96,0xcc,0xcc,0xcc,0x5A,0xcc, 0x48,0x85,0xcc,0xcc,0xcc,0xcc,0xcc,0x49,0x59,0x96,0xcc,0xcc,0xcc,0xcc,0xcc,0x5A, }; static const uint8_t needs[16]={ 0,1,0,0, 2,4,2,0, 0,1,0,0, 15 }; int x, y, b, r, l; int16_t tmpIt [64*(32+HTAPS_MAX)]; uint8_t tmp2t[3][stride*(32+HTAPS_MAX)]; int16_t *tmpI= tmpIt; uint8_t *tmp2= tmp2t[0]; const uint8_t *hpel[11]; assert(dx<16 && dy<16); r= brane[dx + 16*dy]&15; l= brane[dx + 16*dy]>>4; b= needs[l] | needs[r]; if(p && !p->diag_mc) b= 15; if(b&5){ for(y=0; y < b_h+HTAPS_MAX-1; y++){ for(x=0; x < b_w; x++){ int a_1=src[x + HTAPS_MAX/2-4]; int a0= src[x + HTAPS_MAX/2-3]; int a1= src[x + HTAPS_MAX/2-2]; int a2= src[x + HTAPS_MAX/2-1]; int a3= src[x + HTAPS_MAX/2+0]; int a4= src[x + HTAPS_MAX/2+1]; int a5= src[x + HTAPS_MAX/2+2]; int a6= src[x + HTAPS_MAX/2+3]; int am=0; if(!p || p->fast_mc){ am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5); tmpI[x]= am; am= (am+16)>>5; }else{ am= p->hcoeff[0]*(a2+a3) + p->hcoeff[1]*(a1+a4) + p->hcoeff[2]*(a0+a5) + p->hcoeff[3]*(a_1+a6); tmpI[x]= am; am= (am+32)>>6; } if(am&(~255)) am= ~(am>>31); tmp2[x]= am; } tmpI+= 64; tmp2+= stride; src += stride; } src -= stride*y; } src += HTAPS_MAX/2 - 1; tmp2= tmp2t[1]; if(b&2){ for(y=0; y < b_h; y++){ for(x=0; x < b_w+1; x++){ int a_1=src[x + (HTAPS_MAX/2-4)*stride]; int a0= src[x + (HTAPS_MAX/2-3)*stride]; int a1= src[x + (HTAPS_MAX/2-2)*stride]; int a2= src[x + (HTAPS_MAX/2-1)*stride]; int a3= src[x + (HTAPS_MAX/2+0)*stride]; int a4= src[x + (HTAPS_MAX/2+1)*stride]; int a5= src[x + (HTAPS_MAX/2+2)*stride]; int a6= src[x + (HTAPS_MAX/2+3)*stride]; int am=0; if(!p || p->fast_mc) am= (20*(a2+a3) - 5*(a1+a4) + (a0+a5) + 16)>>5; else am= (p->hcoeff[0]*(a2+a3) + p->hcoeff[1]*(a1+a4) + p->hcoeff[2]*(a0+a5) + p->hcoeff[3]*(a_1+a6) + 32)>>6; if(am&(~255)) am= ~(am>>31); tmp2[x]= am; } src += stride; tmp2+= stride; } src -= stride*y; } src += stride*(HTAPS_MAX/2 - 1); tmp2= tmp2t[2]; tmpI= tmpIt; if(b&4){ for(y=0; y < b_h; y++){ for(x=0; x < b_w; x++){ int a_1=tmpI[x + (HTAPS_MAX/2-4)*64]; int a0= tmpI[x + (HTAPS_MAX/2-3)*64]; int a1= tmpI[x + (HTAPS_MAX/2-2)*64]; int a2= tmpI[x + (HTAPS_MAX/2-1)*64]; int a3= tmpI[x + (HTAPS_MAX/2+0)*64]; int a4= tmpI[x + (HTAPS_MAX/2+1)*64]; int a5= tmpI[x + (HTAPS_MAX/2+2)*64]; int a6= tmpI[x + (HTAPS_MAX/2+3)*64]; int am=0; if(!p || p->fast_mc) am= (20*(a2+a3) - 5*(a1+a4) + (a0+a5) + 512)>>10; else am= (p->hcoeff[0]*(a2+a3) + p->hcoeff[1]*(a1+a4) + p->hcoeff[2]*(a0+a5) + p->hcoeff[3]*(a_1+a6) + 2048)>>12; if(am&(~255)) am= ~(am>>31); tmp2[x]= am; } tmpI+= 64; tmp2+= stride; } } hpel[ 0]= src; hpel[ 1]= tmp2t[0] + stride*(HTAPS_MAX/2-1); hpel[ 2]= src + 1; hpel[ 4]= tmp2t[1]; hpel[ 5]= tmp2t[2]; hpel[ 6]= tmp2t[1] + 1; hpel[ 8]= src + stride; hpel[ 9]= hpel[1] + stride; hpel[10]= hpel[8] + 1; if(b==15){ const uint8_t *src1= hpel[dx/8 + dy/8*4 ]; const uint8_t *src2= hpel[dx/8 + dy/8*4+1]; const uint8_t *src3= hpel[dx/8 + dy/8*4+4]; const uint8_t *src4= hpel[dx/8 + dy/8*4+5]; dx&=7; dy&=7; for(y=0; y < b_h; y++){ for(x=0; x < b_w; x++){ dst[x]= ((8-dx)*(8-dy)*src1[x] + dx*(8-dy)*src2[x]+ (8-dx)* dy *src3[x] + dx* dy *src4[x]+32)>>6; } src1+=stride; src2+=stride; src3+=stride; src4+=stride; dst +=stride; } }else{ const uint8_t *src1= hpel[l]; const uint8_t *src2= hpel[r]; int a= weight[((dx&7) + (8*(dy&7)))]; int b= 8-a; for(y=0; y < b_h; y++){ for(x=0; x < b_w; x++){ dst[x]= (a*src1[x] + b*src2[x] + 4)>>3; } src1+=stride; src2+=stride; dst +=stride; } } } #define mca(dx,dy,b_w)\ static void mc_block_hpel ## dx ## dy ## b_w(uint8_t *dst, const uint8_t *src, int stride, int h){\ uint8_t tmp[stride*(b_w+HTAPS_MAX-1)];\ assert(h==b_w);\ mc_block(NULL, dst, src-(HTAPS_MAX/2-1)-(HTAPS_MAX/2-1)*stride, tmp, stride, b_w, b_w, dx, dy);\ } mca( 0, 0,16) mca( 8, 0,16) mca( 0, 8,16) mca( 8, 8,16) mca( 0, 0,8) mca( 8, 0,8) mca( 0, 8,8) mca( 8, 8,8) static void pred_block(SnowContext *s, uint8_t *dst, uint8_t *tmp, int stride, int sx, int sy, int b_w, int b_h, BlockNode *block, int plane_index, int w, int h){ if(block->type & BLOCK_INTRA){ int x, y; const int color = block->color[plane_index]; const int color4= color*0x01010101; if(b_w==32){ for(y=0; y < b_h; y++){ *(uint32_t*)&dst[0 + y*stride]= color4; *(uint32_t*)&dst[4 + y*stride]= color4; *(uint32_t*)&dst[8 + y*stride]= color4; *(uint32_t*)&dst[12+ y*stride]= color4; *(uint32_t*)&dst[16+ y*stride]= color4; *(uint32_t*)&dst[20+ y*stride]= color4; *(uint32_t*)&dst[24+ y*stride]= color4; *(uint32_t*)&dst[28+ y*stride]= color4; } }else if(b_w==16){ for(y=0; y < b_h; y++){ *(uint32_t*)&dst[0 + y*stride]= color4; *(uint32_t*)&dst[4 + y*stride]= color4; *(uint32_t*)&dst[8 + y*stride]= color4; *(uint32_t*)&dst[12+ y*stride]= color4; } }else if(b_w==8){ for(y=0; y < b_h; y++){ *(uint32_t*)&dst[0 + y*stride]= color4; *(uint32_t*)&dst[4 + y*stride]= color4; } }else if(b_w==4){ for(y=0; y < b_h; y++){ *(uint32_t*)&dst[0 + y*stride]= color4; } }else{ for(y=0; y < b_h; y++){ for(x=0; x < b_w; x++){ dst[x + y*stride]= color; } } } }else{ uint8_t *src= s->last_picture[block->ref].data[plane_index]; const int scale= plane_index ? s->mv_scale : 2*s->mv_scale; int mx= block->mx*scale; int my= block->my*scale; const int dx= mx&15; const int dy= my&15; const int tab_index= 3 - (b_w>>2) + (b_w>>4); sx += (mx>>4) - (HTAPS_MAX/2-1); sy += (my>>4) - (HTAPS_MAX/2-1); src += sx + sy*stride; if( (unsigned)sx >= w - b_w - (HTAPS_MAX-2) || (unsigned)sy >= h - b_h - (HTAPS_MAX-2)){ ff_emulated_edge_mc(tmp + MB_SIZE, src, stride, b_w+HTAPS_MAX-1, b_h+HTAPS_MAX-1, sx, sy, w, h); src= tmp + MB_SIZE; } // assert(b_w == b_h || 2*b_w == b_h || b_w == 2*b_h); // assert(!(b_w&(b_w-1))); assert(b_w>1 && b_h>1); assert((tab_index>=0 && tab_index<4) || b_w==32); if((dx&3) || (dy&3) || !(b_w == b_h || 2*b_w == b_h || b_w == 2*b_h) || (b_w&(b_w-1)) || !s->plane[plane_index].fast_mc ) mc_block(&s->plane[plane_index], dst, src, tmp, stride, b_w, b_h, dx, dy); else if(b_w==32){ int y; for(y=0; y<b_h; y+=16){ s->dsp.put_h264_qpel_pixels_tab[0][dy+(dx>>2)](dst + y*stride, src + 3 + (y+3)*stride,stride); s->dsp.put_h264_qpel_pixels_tab[0][dy+(dx>>2)](dst + 16 + y*stride, src + 19 + (y+3)*stride,stride); } }else if(b_w==b_h) s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst,src + 3 + 3*stride,stride); else if(b_w==2*b_h){ s->dsp.put_h264_qpel_pixels_tab[tab_index+1][dy+(dx>>2)](dst ,src + 3 + 3*stride,stride); s->dsp.put_h264_qpel_pixels_tab[tab_index+1][dy+(dx>>2)](dst+b_h,src + 3 + b_h + 3*stride,stride); }else{ assert(2*b_w==b_h); s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst ,src + 3 + 3*stride ,stride); s->dsp.put_h264_qpel_pixels_tab[tab_index ][dy+(dx>>2)](dst+b_w*stride,src + 3 + 3*stride+b_w*stride,stride); } } } void ff_snow_inner_add_yblock(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8){ int y, x; IDWTELEM * dst; for(y=0; y<b_h; y++){ //FIXME ugly misuse of obmc_stride const uint8_t *obmc1= obmc + y*obmc_stride; const uint8_t *obmc2= obmc1+ (obmc_stride>>1); const uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1); const uint8_t *obmc4= obmc3+ (obmc_stride>>1); dst = slice_buffer_get_line(sb, src_y + y); for(x=0; x<b_w; x++){ int v= obmc1[x] * block[3][x + y*src_stride] +obmc2[x] * block[2][x + y*src_stride] +obmc3[x] * block[1][x + y*src_stride] +obmc4[x] * block[0][x + y*src_stride]; v <<= 8 - LOG2_OBMC_MAX; if(FRAC_BITS != 8){ v >>= 8 - FRAC_BITS; } if(add){ v += dst[x + src_x]; v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*src_stride] = v; }else{ dst[x + src_x] -= v; } } } } //FIXME name cleanup (b_w, block_w, b_width stuff) static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index){ const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; BlockNode *lt= &s->block[b_x + b_y*b_stride]; BlockNode *rt= lt+1; BlockNode *lb= lt+b_stride; BlockNode *rb= lb+1; uint8_t *block[4]; int tmp_step= src_stride >= 7*MB_SIZE ? MB_SIZE : MB_SIZE*src_stride; uint8_t *tmp = s->scratchbuf; uint8_t *ptmp; int x,y; if(b_x<0){ lt= rt; lb= rb; }else if(b_x + 1 >= b_width){ rt= lt; rb= lb; } if(b_y<0){ lt= lb; rt= rb; }else if(b_y + 1 >= b_height){ lb= lt; rb= rt; } if(src_x<0){ //FIXME merge with prev & always round internal width up to *16 obmc -= src_x; b_w += src_x; if(!sliced && !offset_dst) dst -= src_x; src_x=0; }else if(src_x + b_w > w){ b_w = w - src_x; } if(src_y<0){ obmc -= src_y*obmc_stride; b_h += src_y; if(!sliced && !offset_dst) dst -= src_y*dst_stride; src_y=0; }else if(src_y + b_h> h){ b_h = h - src_y; } if(b_w<=0 || b_h<=0) return; assert(src_stride > 2*MB_SIZE + 5); if(!sliced && offset_dst) dst += src_x + src_y*dst_stride; dst8+= src_x + src_y*src_stride; // src += src_x + src_y*src_stride; ptmp= tmp + 3*tmp_step; block[0]= ptmp; ptmp+=tmp_step; pred_block(s, block[0], tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h); if(same_block(lt, rt)){ block[1]= block[0]; }else{ block[1]= ptmp; ptmp+=tmp_step; pred_block(s, block[1], tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h); } if(same_block(lt, lb)){ block[2]= block[0]; }else if(same_block(rt, lb)){ block[2]= block[1]; }else{ block[2]= ptmp; ptmp+=tmp_step; pred_block(s, block[2], tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h); } if(same_block(lt, rb) ){ block[3]= block[0]; }else if(same_block(rt, rb)){ block[3]= block[1]; }else if(same_block(lb, rb)){ block[3]= block[2]; }else{ block[3]= ptmp; pred_block(s, block[3], tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h); } #if 0 for(y=0; y<b_h; y++){ for(x=0; x<b_w; x++){ int v= obmc [x + y*obmc_stride] * block[3][x + y*src_stride] * (256/OBMC_MAX); if(add) dst[x + y*dst_stride] += v; else dst[x + y*dst_stride] -= v; } } for(y=0; y<b_h; y++){ uint8_t *obmc2= obmc + (obmc_stride>>1); for(x=0; x<b_w; x++){ int v= obmc2[x + y*obmc_stride] * block[2][x + y*src_stride] * (256/OBMC_MAX); if(add) dst[x + y*dst_stride] += v; else dst[x + y*dst_stride] -= v; } } for(y=0; y<b_h; y++){ uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1); for(x=0; x<b_w; x++){ int v= obmc3[x + y*obmc_stride] * block[1][x + y*src_stride] * (256/OBMC_MAX); if(add) dst[x + y*dst_stride] += v; else dst[x + y*dst_stride] -= v; } } for(y=0; y<b_h; y++){ uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1); uint8_t *obmc4= obmc3+ (obmc_stride>>1); for(x=0; x<b_w; x++){ int v= obmc4[x + y*obmc_stride] * block[0][x + y*src_stride] * (256/OBMC_MAX); if(add) dst[x + y*dst_stride] += v; else dst[x + y*dst_stride] -= v; } } #else if(sliced){ s->dsp.inner_add_yblock(obmc, obmc_stride, block, b_w, b_h, src_x,src_y, src_stride, sb, add, dst8); }else{ for(y=0; y<b_h; y++){ //FIXME ugly misuse of obmc_stride const uint8_t *obmc1= obmc + y*obmc_stride; const uint8_t *obmc2= obmc1+ (obmc_stride>>1); const uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1); const uint8_t *obmc4= obmc3+ (obmc_stride>>1); for(x=0; x<b_w; x++){ int v= obmc1[x] * block[3][x + y*src_stride] +obmc2[x] * block[2][x + y*src_stride] +obmc3[x] * block[1][x + y*src_stride] +obmc4[x] * block[0][x + y*src_stride]; v <<= 8 - LOG2_OBMC_MAX; if(FRAC_BITS != 8){ v >>= 8 - FRAC_BITS; } if(add){ v += dst[x + y*dst_stride]; v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*src_stride] = v; }else{ dst[x + y*dst_stride] -= v; } } } } #endif /* 0 */ } static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){ Plane *p= &s->plane[plane_index]; const int mb_w= s->b_width << s->block_max_depth; const int mb_h= s->b_height << s->block_max_depth; int x, y, mb_x; int block_size = MB_SIZE >> s->block_max_depth; int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; int obmc_stride= plane_index ? block_size : 2*block_size; int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *dst8= s->current_picture.data[plane_index]; int w= p->width; int h= p->height; if(s->keyframe || (s->avctx->debug&512)){ if(mb_y==mb_h) return; if(add){ for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){ // DWTELEM * line = slice_buffer_get_line(sb, y); IDWTELEM * line = sb->line[y]; for(x=0; x<w; x++){ // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1)); int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1)); v >>= FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*ref_stride]= v; } } }else{ for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){ // DWTELEM * line = slice_buffer_get_line(sb, y); IDWTELEM * line = sb->line[y]; for(x=0; x<w; x++){ line[x] -= 128 << FRAC_BITS; // buf[x + y*w]-= 128<<FRAC_BITS; } } } return; } for(mb_x=0; mb_x<=mb_w; mb_x++){ add_yblock(s, 1, sb, old_buffer, dst8, obmc, block_w*mb_x - block_w/2, block_w*mb_y - block_w/2, block_w, block_w, w, h, w, ref_stride, obmc_stride, mb_x - 1, mb_y - 1, add, 0, plane_index); } } static av_always_inline void predict_slice(SnowContext *s, IDWTELEM *buf, int plane_index, int add, int mb_y){ Plane *p= &s->plane[plane_index]; const int mb_w= s->b_width << s->block_max_depth; const int mb_h= s->b_height << s->block_max_depth; int x, y, mb_x; int block_size = MB_SIZE >> s->block_max_depth; int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *dst8= s->current_picture.data[plane_index]; int w= p->width; int h= p->height; if(s->keyframe || (s->avctx->debug&512)){ if(mb_y==mb_h) return; if(add){ for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){ for(x=0; x<w; x++){ int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1)); v >>= FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst8[x + y*ref_stride]= v; } } }else{ for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){ for(x=0; x<w; x++){ buf[x + y*w]-= 128<<FRAC_BITS; } } } return; } for(mb_x=0; mb_x<=mb_w; mb_x++){ add_yblock(s, 0, NULL, buf, dst8, obmc, block_w*mb_x - block_w/2, block_w*mb_y - block_w/2, block_w, block_w, w, h, w, ref_stride, obmc_stride, mb_x - 1, mb_y - 1, add, 1, plane_index); } } static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add){ const int mb_h= s->b_height << s->block_max_depth; int mb_y; for(mb_y=0; mb_y<=mb_h; mb_y++) predict_slice(s, buf, plane_index, add, mb_y); } static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, x2, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int index= mb_x + mb_y*b_stride; BlockNode *b= &s->block[index]; BlockNode backup= *b; int ab=0; int aa=0; b->type|= BLOCK_INTRA; b->color[plane_index]= 0; memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM)); for(i=0; i<4; i++){ int mb_x2= mb_x + (i &1) - 1; int mb_y2= mb_y + (i>>1) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_w*mb_y2 + block_w/2; add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc, x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index); for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){ for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){ int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride; int obmc_v= obmc[index]; int d; if(y<0) obmc_v += obmc[index + block_w*obmc_stride]; if(x<0) obmc_v += obmc[index + block_w]; if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride]; if(x+block_w>w) obmc_v += obmc[index - block_w]; //FIXME precalculate this or simplify it somehow else d = -dst[index] + (1<<(FRAC_BITS-1)); dst[index] = d; ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v; aa += obmc_v * obmc_v; //FIXME precalculate this } } } *b= backup; return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255); //FIXME we should not need clipping } static inline int get_block_bits(SnowContext *s, int x, int y, int w){ const int b_stride = s->b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; int index= x + y*b_stride; const BlockNode *b = &s->block[index]; const BlockNode *left = x ? &s->block[index-1] : &null_block; const BlockNode *top = y ? &s->block[index-b_stride] : &null_block; const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left; const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl; int dmx, dmy; // int mx_context= av_log2(2*FFABS(left->mx - top->mx)); // int my_context= av_log2(2*FFABS(left->my - top->my)); if(x<0 || x>=b_stride || y>=b_height) return 0; /* 1 0 0 01X 1-2 1 001XX 3-6 2-3 0001XXX 7-14 4-7 00001XXXX 15-30 8-15 */ //FIXME try accurate rate //FIXME intra and inter predictors if surrounding blocks are not the same type if(b->type & BLOCK_INTRA){ return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0])) + av_log2(2*FFABS(left->color[1] - b->color[1])) + av_log2(2*FFABS(left->color[2] - b->color[2]))); }else{ pred_mv(s, &dmx, &dmy, b->ref, left, top, tr); dmx-= b->mx; dmy-= b->my; return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda + av_log2(2*FFABS(dmy)) + av_log2(2*b->ref)); } } static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, const uint8_t *obmc_edged){ Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *dst= s->current_picture.data[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4; uint8_t *cur = s->scratchbuf; uint8_t tmp[ref_stride*(2*MB_SIZE+HTAPS_MAX-1)]; const int b_stride = s->b_width << s->block_max_depth; const int b_height = s->b_height<< s->block_max_depth; const int w= p->width; const int h= p->height; int distortion; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); int sx= block_w*mb_x - block_w/2; int sy= block_w*mb_y - block_w/2; int x0= FFMAX(0,-sx); int y0= FFMAX(0,-sy); int x1= FFMIN(block_w*2, w-sx); int y1= FFMIN(block_w*2, h-sy); int i,x,y; pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h); for(y=y0; y<y1; y++){ const uint8_t *obmc1= obmc_edged + y*obmc_stride; const IDWTELEM *pred1 = pred + y*obmc_stride; uint8_t *cur1 = cur + y*ref_stride; uint8_t *dst1 = dst + sx + (sy+y)*ref_stride; for(x=x0; x<x1; x++){ #if FRAC_BITS >= LOG2_OBMC_MAX int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX); #else int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS); #endif v = (v + pred1[x]) >> FRAC_BITS; if(v&(~255)) v= ~(v>>31); dst1[x] = v; } } /* copy the regions where obmc[] = (uint8_t)256 */ if(LOG2_OBMC_MAX == 8 && (mb_x == 0 || mb_x == b_stride-1) && (mb_y == 0 || mb_y == b_height-1)){ if(mb_x == 0) x1 = block_w; else x0 = block_w; if(mb_y == 0) y1 = block_w; else y0 = block_w; for(y=y0; y<y1; y++) memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0); } if(block_w==16){ /* FIXME rearrange dsputil to fit 32x32 cmp functions */ /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */ /* FIXME cmps overlap but do not cover the wavelet's whole support. * So improving the score of one block is not strictly guaranteed * to improve the score of the whole frame, thus iterative motion * estimation does not always converge. */ if(s->avctx->me_cmp == FF_CMP_W97) distortion = w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); else if(s->avctx->me_cmp == FF_CMP_W53) distortion = w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); else{ distortion = 0; for(i=0; i<4; i++){ int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride; distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16); } } }else{ assert(block_w==8); distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2); } if(plane_index==0){ for(i=0; i<4; i++){ /* ..RRr * .RXx. * rxx.. */ rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1); } if(mb_x == b_stride-2) rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1); } return distortion + rate*penalty_factor; } static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){ int i, y2; Plane *p= &s->plane[plane_index]; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth]; const int obmc_stride= plane_index ? block_size : 2*block_size; const int ref_stride= s->current_picture.linesize[plane_index]; uint8_t *dst= s->current_picture.data[plane_index]; uint8_t *src= s-> input_picture.data[plane_index]; //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst // const has only been removed from zero_dst to suppress a warning static IDWTELEM zero_dst[4096]; //FIXME const int b_stride = s->b_width << s->block_max_depth; const int w= p->width; const int h= p->height; int distortion= 0; int rate= 0; const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); for(i=0; i<9; i++){ int mb_x2= mb_x + (i%3) - 1; int mb_y2= mb_y + (i/3) - 1; int x= block_w*mb_x2 + block_w/2; int y= block_w*mb_y2 + block_w/2; add_yblock(s, 0, NULL, zero_dst, dst, obmc, x, y, block_w, block_w, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index); //FIXME find a cleaner/simpler way to skip the outside stuff for(y2= y; y2<0; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); for(y2= h; y2<y+block_w; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); if(x<0){ for(y2= y; y2<y+block_w; y2++) memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x); } if(x+block_w > w){ for(y2= y; y2<y+block_w; y2++) memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w); } assert(block_w== 8 || block_w==16); distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w); } if(plane_index==0){ BlockNode *b= &s->block[mb_x+mb_y*b_stride]; int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1); /* ..RRRr * .RXXx. * .RXXx. * rxxx. */ if(merged) rate = get_block_bits(s, mb_x, mb_y, 2); for(i=merged?4:0; i<9; i++){ static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}}; rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1); } } return distortion + rate*penalty_factor; } static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, const uint8_t *obmc_edged, int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup= *block; int rd, index, value; assert(mb_x>=0 && mb_y>=0); assert(mb_x<b_stride); if(intra){ block->color[0] = p[0]; block->color[1] = p[1]; block->color[2] = p[2]; block->type |= BLOCK_INTRA; }else{ index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1); value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p[0]; block->my= p[1]; block->type &= ~BLOCK_INTRA; } rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged); //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ *block= backup; return 0; } } /* special case for int[2] args we discard afterwards, * fixes compilation problem with gcc 2.95 */ static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, const uint8_t *obmc_edged, int *best_rd){ int p[2] = {p0, p1}; return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd); } static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){ const int b_stride= s->b_width << s->block_max_depth; BlockNode *block= &s->block[mb_x + mb_y * b_stride]; BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]}; int rd, index, value; assert(mb_x>=0 && mb_y>=0); assert(mb_x<b_stride); assert(((mb_x|mb_y)&1) == 0); index= (p0 + 31*p1) & (ME_CACHE_SIZE-1); value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12); if(s->me_cache[index] == value) return 0; s->me_cache[index]= value; block->mx= p0; block->my= p1; block->ref= ref; block->type &= ~BLOCK_INTRA; block[1]= block[b_stride]= block[b_stride+1]= *block; rd= get_4block_rd(s, mb_x, mb_y, 0); //FIXME chroma if(rd < *best_rd){ *best_rd= rd; return 1; }else{ block[0]= backup[0]; block[1]= backup[1]; block[b_stride]= backup[2]; block[b_stride+1]= backup[3]; return 0; } } static void iterative_me(SnowContext *s){ int pass, mb_x, mb_y; const int b_width = s->b_width << s->block_max_depth; const int b_height= s->b_height << s->block_max_depth; const int b_stride= b_width; int color[3]; { RangeCoder r = s->c; uint8_t state[sizeof(s->block_state)]; memcpy(state, s->block_state, sizeof(s->block_state)); for(mb_y= 0; mb_y<s->b_height; mb_y++) for(mb_x= 0; mb_x<s->b_width; mb_x++) encode_q_branch(s, 0, mb_x, mb_y); s->c = r; memcpy(s->block_state, state, sizeof(s->block_state)); } for(pass=0; pass<25; pass++){ int change= 0; for(mb_y= 0; mb_y<b_height; mb_y++){ for(mb_x= 0; mb_x<b_width; mb_x++){ int dia_change, i, j, ref; int best_rd= INT_MAX, ref_rd; BlockNode backup, ref_b; const int index= mb_x + mb_y * b_stride; BlockNode *block= &s->block[index]; BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL; BlockNode *lb = mb_x ? &s->block[index -1] : NULL; BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL; BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL; BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL; BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL; BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL; BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL; const int b_w= (MB_SIZE >> s->block_max_depth); uint8_t obmc_edged[b_w*2][b_w*2]; if(pass && (block->type & BLOCK_OPT)) continue; block->type |= BLOCK_OPT; backup= *block; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; //FIXME precalculate { int x, y; memcpy(obmc_edged, obmc_tab[s->block_max_depth], b_w*b_w*4); if(mb_x==0) for(y=0; y<b_w*2; y++) memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w); if(mb_x==b_stride-1) for(y=0; y<b_w*2; y++) memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w); if(mb_y==0){ for(x=0; x<b_w*2; x++) obmc_edged[0][x] += obmc_edged[b_w-1][x]; for(y=1; y<b_w; y++) memcpy(obmc_edged[y], obmc_edged[0], b_w*2); } if(mb_y==b_height-1){ for(x=0; x<b_w*2; x++) obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x]; for(y=b_w; y<b_w*2-1; y++) memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2); } } //skip stuff outside the picture if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){ uint8_t *src= s-> input_picture.data[0]; uint8_t *dst= s->current_picture.data[0]; const int stride= s->current_picture.linesize[0]; const int block_w= MB_SIZE >> s->block_max_depth; const int sx= block_w*mb_x - block_w/2; const int sy= block_w*mb_y - block_w/2; const int w= s->plane[0].width; const int h= s->plane[0].height; int y; for(y=sy; y<0; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); for(y=h; y<sy+block_w*2; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); if(sx<0){ for(y=sy; y<sy+block_w*2; y++) memcpy(dst + sx + y*stride, src + sx + y*stride, -sx); } if(sx+block_w*2 > w){ for(y=sy; y<sy+block_w*2; y++) memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w); } } // intra(black) = neighbors' contribution to the current block for(i=0; i<3; i++) color[i]= get_dc(s, mb_x, mb_y, i); // get previous score (cannot be cached due to OBMC) if(pass > 0 && (block->type&BLOCK_INTRA)){ int color0[3]= {block->color[0], block->color[1], block->color[2]}; check_block(s, mb_x, mb_y, color0, 1, *obmc_edged, &best_rd); }else check_block_inter(s, mb_x, mb_y, block->mx, block->my, *obmc_edged, &best_rd); ref_b= *block; ref_rd= best_rd; for(ref=0; ref < s->ref_frames; ref++){ int16_t (*mvr)[2]= &s->ref_mvs[ref][index]; if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold continue; block->ref= ref; best_rd= INT_MAX; check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], *obmc_edged, &best_rd); check_block_inter(s, mb_x, mb_y, 0, 0, *obmc_edged, &best_rd); if(tb) check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], *obmc_edged, &best_rd); if(lb) check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], *obmc_edged, &best_rd); if(rb) check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], *obmc_edged, &best_rd); if(bb) check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], *obmc_edged, &best_rd); /* fullpel ME */ //FIXME avoid subpel interpolation / round to nearest integer do{ dia_change=0; for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){ for(j=0; j<i; j++){ dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), *obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), *obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), *obmc_edged, &best_rd); dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), *obmc_edged, &best_rd); } } }while(dia_change); /* subpel ME */ do{ static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},}; dia_change=0; for(i=0; i<8; i++) dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], *obmc_edged, &best_rd); }while(dia_change); //FIXME or try the standard 2 pass qpel or similar mvr[0][0]= block->mx; mvr[0][1]= block->my; if(ref_rd > best_rd){ ref_rd= best_rd; ref_b= *block; } } best_rd= ref_rd; *block= ref_b; #if 1 check_block(s, mb_x, mb_y, color, 1, *obmc_edged, &best_rd); //FIXME RD style color selection #endif if(!same_block(block, &backup)){ if(tb ) tb ->type &= ~BLOCK_OPT; if(lb ) lb ->type &= ~BLOCK_OPT; if(rb ) rb ->type &= ~BLOCK_OPT; if(bb ) bb ->type &= ~BLOCK_OPT; if(tlb) tlb->type &= ~BLOCK_OPT; if(trb) trb->type &= ~BLOCK_OPT; if(blb) blb->type &= ~BLOCK_OPT; if(brb) brb->type &= ~BLOCK_OPT; change ++; } } } av_log(NULL, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change); if(!change) break; } if(s->block_max_depth == 1){ int change= 0; for(mb_y= 0; mb_y<b_height; mb_y+=2){ for(mb_x= 0; mb_x<b_width; mb_x+=2){ int i; int best_rd, init_rd; const int index= mb_x + mb_y * b_stride; BlockNode *b[4]; b[0]= &s->block[index]; b[1]= b[0]+1; b[2]= b[0]+b_stride; b[3]= b[2]+1; if(same_block(b[0], b[1]) && same_block(b[0], b[2]) && same_block(b[0], b[3])) continue; if(!s->me_cache_generation) memset(s->me_cache, 0, sizeof(s->me_cache)); s->me_cache_generation += 1<<22; init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0); //FIXME more multiref search? check_4block_inter(s, mb_x, mb_y, (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2, (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd); for(i=0; i<4; i++) if(!(b[i]->type&BLOCK_INTRA)) check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd); if(init_rd != best_rd) change++; } } av_log(NULL, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4); } } static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){ const int w= b->width; const int h= b->height; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS); int x,y, thres1, thres2; if(s->qlog == LOSSLESS_QLOG){ for(y=0; y<h; y++) for(x=0; x<w; x++) dst[x + y*stride]= src[x + y*stride]; return; } bias= bias ? 0 : (3*qmul)>>3; thres1= ((qmul - bias)>>QEXPSHIFT) - 1; thres2= 2*thres1; if(!bias){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= src[x + y*stride]; if((unsigned)(i+thres1) > thres2){ if(i>=0){ i<<= QEXPSHIFT; i/= qmul; //FIXME optimize dst[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i/= qmul; //FIXME optimize dst[x + y*stride]= -i; } }else dst[x + y*stride]= 0; } } }else{ for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= src[x + y*stride]; if((unsigned)(i+thres1) > thres2){ if(i>=0){ i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize dst[x + y*stride]= i; }else{ i= -i; i<<= QEXPSHIFT; i= (i + bias) / qmul; //FIXME optimize dst[x + y*stride]= -i; } }else dst[x + y*stride]= 0; } } } } static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){ const int w= b->width; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; if(s->qlog == LOSSLESS_QLOG) return; for(y=start_y; y<end_y; y++){ // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride)); IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset; for(x=0; x<w; x++){ int i= line[x]; if(i<0){ line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ line[x]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } } static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){ const int w= b->width; const int h= b->height; const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; int x,y; if(s->qlog == LOSSLESS_QLOG) return; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= src[x + y*stride]; if(i<0){ src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias }else if(i>0){ src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT)); } } } } static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ const int w= b->width; const int h= b->height; int x,y; for(y=h-1; y>=0; y--){ for(x=w-1; x>=0; x--){ int i= x + y*stride; if(x){ if(use_median){ if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); else src[i] -= src[i - 1]; }else{ if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); else src[i] -= src[i - 1]; } }else{ if(y) src[i] -= src[i - stride]; } } } } static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){ const int w= b->width; int x,y; IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning IDWTELEM * prev; if (start_y != 0) line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset; for(y=start_y; y<end_y; y++){ prev = line; // line = slice_buffer_get_line_from_address(sb, src + (y * stride)); line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset; for(x=0; x<w; x++){ if(x){ if(use_median){ if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]); else line[x] += line[x - 1]; }else{ if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]); else line[x] += line[x - 1]; } }else{ if(y) line[x] += prev[x]; } } } } static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ const int w= b->width; const int h= b->height; int x,y; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= x + y*stride; if(x){ if(use_median){ if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); else src[i] += src[i - 1]; }else{ if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); else src[i] += src[i - 1]; } }else{ if(y) src[i] += src[i - stride]; } } } } static void encode_qlogs(SnowContext *s){ int plane_index, level, orientation; for(plane_index=0; plane_index<2; plane_index++){ for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ if(orientation==2) continue; put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1); } } } } static void encode_header(SnowContext *s){ int plane_index, i; uint8_t kstate[32]; memset(kstate, MID_STATE, sizeof(kstate)); put_rac(&s->c, kstate, s->keyframe); if(s->keyframe || s->always_reset){ reset_contexts(s); s->last_spatial_decomposition_type= s->last_qlog= s->last_qbias= s->last_mv_scale= s->last_block_max_depth= 0; for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; p->last_htaps=0; p->last_diag_mc=0; memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff)); } } if(s->keyframe){ put_symbol(&s->c, s->header_state, s->version, 0); put_rac(&s->c, s->header_state, s->always_reset); put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0); put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); put_symbol(&s->c, s->header_state, s->colorspace_type, 0); put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0); put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0); put_rac(&s->c, s->header_state, s->spatial_scalability); // put_rac(&s->c, s->header_state, s->rate_scalability); put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0); encode_qlogs(s); } if(!s->keyframe){ int update_mc=0; for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; update_mc |= p->last_htaps != p->htaps; update_mc |= p->last_diag_mc != p->diag_mc; update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); } put_rac(&s->c, s->header_state, update_mc); if(update_mc){ for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; put_rac(&s->c, s->header_state, p->diag_mc); put_symbol(&s->c, s->header_state, p->htaps/2-1, 0); for(i= p->htaps/2; i; i--) put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0); } } if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ put_rac(&s->c, s->header_state, 1); put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); encode_qlogs(s); }else put_rac(&s->c, s->header_state, 0); } put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1); put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1); put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1); put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1); put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1); } static void update_last_header_values(SnowContext *s){ int plane_index; if(!s->keyframe){ for(plane_index=0; plane_index<2; plane_index++){ Plane *p= &s->plane[plane_index]; p->last_diag_mc= p->diag_mc; p->last_htaps = p->htaps; memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); } } s->last_spatial_decomposition_type = s->spatial_decomposition_type; s->last_qlog = s->qlog; s->last_qbias = s->qbias; s->last_mv_scale = s->mv_scale; s->last_block_max_depth = s->block_max_depth; s->last_spatial_decomposition_count = s->spatial_decomposition_count; } static void decode_qlogs(SnowContext *s){ int plane_index, level, orientation; for(plane_index=0; plane_index<3; plane_index++){ for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1:0; orientation<4; orientation++){ int q; if (plane_index==2) q= s->plane[1].band[level][orientation].qlog; else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog; else q= get_symbol(&s->c, s->header_state, 1); s->plane[plane_index].band[level][orientation].qlog= q; } } } } #define GET_S(dst, check) \ tmp= get_symbol(&s->c, s->header_state, 0);\ if(!(check)){\ av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\ return -1;\ }\ dst= tmp; static int decode_header(SnowContext *s){ int plane_index, tmp; uint8_t kstate[32]; memset(kstate, MID_STATE, sizeof(kstate)); s->keyframe= get_rac(&s->c, kstate); if(s->keyframe || s->always_reset){ reset_contexts(s); s->spatial_decomposition_type= s->qlog= s->qbias= s->mv_scale= s->block_max_depth= 0; } if(s->keyframe){ GET_S(s->version, tmp <= 0U) s->always_reset= get_rac(&s->c, s->header_state); s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0); s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0); GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS) s->colorspace_type= get_symbol(&s->c, s->header_state, 0); s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0); s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0); s->spatial_scalability= get_rac(&s->c, s->header_state); // s->rate_scalability= get_rac(&s->c, s->header_state); GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES) s->max_ref_frames++; decode_qlogs(s); } if(!s->keyframe){ if(get_rac(&s->c, s->header_state)){ for(plane_index=0; plane_index<2; plane_index++){ int htaps, i, sum=0; Plane *p= &s->plane[plane_index]; p->diag_mc= get_rac(&s->c, s->header_state); htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2; if((unsigned)htaps > HTAPS_MAX || htaps==0) return -1; p->htaps= htaps; for(i= htaps/2; i; i--){ p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1)); sum += p->hcoeff[i]; } p->hcoeff[0]= 32-sum; } s->plane[2].diag_mc= s->plane[1].diag_mc; s->plane[2].htaps = s->plane[1].htaps; memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff)); } if(get_rac(&s->c, s->header_state)){ GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS) decode_qlogs(s); } } s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1); if(s->spatial_decomposition_type > 1U){ av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type); return -1; } if(FFMIN(s->avctx-> width>>s->chroma_h_shift, s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 0){ av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size", s->spatial_decomposition_count); return -1; } s->qlog += get_symbol(&s->c, s->header_state, 1); s->mv_scale += get_symbol(&s->c, s->header_state, 1); s->qbias += get_symbol(&s->c, s->header_state, 1); s->block_max_depth+= get_symbol(&s->c, s->header_state, 1); if(s->block_max_depth > 1 || s->block_max_depth < 0){ av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large", s->block_max_depth); s->block_max_depth= 0; return -1; } return 0; } static void init_qexp(void){ int i; double v=128; for(i=0; i<QROOT; i++){ qexp[i]= lrintf(v); v *= pow(2, 1.0 / QROOT); } } static av_cold int common_init(AVCodecContext *avctx){ SnowContext *s = avctx->priv_data; int width, height; int i, j; s->avctx= avctx; s->max_ref_frames=1; //just make sure its not an invalid value in case of no initial keyframe dsputil_init(&s->dsp, avctx); #define mcf(dx,dy)\ s->dsp.put_qpel_pixels_tab [0][dy+dx/4]=\ s->dsp.put_no_rnd_qpel_pixels_tab[0][dy+dx/4]=\ s->dsp.put_h264_qpel_pixels_tab[0][dy+dx/4];\ s->dsp.put_qpel_pixels_tab [1][dy+dx/4]=\ s->dsp.put_no_rnd_qpel_pixels_tab[1][dy+dx/4]=\ s->dsp.put_h264_qpel_pixels_tab[1][dy+dx/4]; mcf( 0, 0) mcf( 4, 0) mcf( 8, 0) mcf(12, 0) mcf( 0, 4) mcf( 4, 4) mcf( 8, 4) mcf(12, 4) mcf( 0, 8) mcf( 4, 8) mcf( 8, 8) mcf(12, 8) mcf( 0,12) mcf( 4,12) mcf( 8,12) mcf(12,12) #define mcfh(dx,dy)\ s->dsp.put_pixels_tab [0][dy/4+dx/8]=\ s->dsp.put_no_rnd_pixels_tab[0][dy/4+dx/8]=\ mc_block_hpel ## dx ## dy ## 16;\ s->dsp.put_pixels_tab [1][dy/4+dx/8]=\ s->dsp.put_no_rnd_pixels_tab[1][dy/4+dx/8]=\ mc_block_hpel ## dx ## dy ## 8; mcfh(0, 0) mcfh(8, 0) mcfh(0, 8) mcfh(8, 8) if(!qexp[0]) init_qexp(); // dec += FFMAX(s->chroma_h_shift, s->chroma_v_shift); width= s->avctx->width; height= s->avctx->height; s->spatial_idwt_buffer= av_mallocz(width*height*sizeof(IDWTELEM)); s->spatial_dwt_buffer= av_mallocz(width*height*sizeof(DWTELEM)); //FIXME this does not belong here for(i=0; i<MAX_REF_FRAMES; i++) for(j=0; j<MAX_REF_FRAMES; j++) scale_mv_ref[i][j] = 256*(i+1)/(j+1); s->avctx->get_buffer(s->avctx, &s->mconly_picture); s->scratchbuf = av_malloc(s->mconly_picture.linesize[0]*7*MB_SIZE); return 0; } static int common_init_after_header(AVCodecContext *avctx){ SnowContext *s = avctx->priv_data; int plane_index, level, orientation; for(plane_index=0; plane_index<3; plane_index++){ int w= s->avctx->width; int h= s->avctx->height; if(plane_index){ w>>= s->chroma_h_shift; h>>= s->chroma_v_shift; } s->plane[plane_index].width = w; s->plane[plane_index].height= h; for(level=s->spatial_decomposition_count-1; level>=0; level--){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[plane_index].band[level][orientation]; b->buf= s->spatial_dwt_buffer; b->level= level; b->stride= s->plane[plane_index].width << (s->spatial_decomposition_count - level); b->width = (w + !(orientation&1))>>1; b->height= (h + !(orientation>1))>>1; b->stride_line = 1 << (s->spatial_decomposition_count - level); b->buf_x_offset = 0; b->buf_y_offset = 0; if(orientation&1){ b->buf += (w+1)>>1; b->buf_x_offset = (w+1)>>1; } if(orientation>1){ b->buf += b->stride>>1; b->buf_y_offset = b->stride_line >> 1; } b->ibuf= s->spatial_idwt_buffer + (b->buf - s->spatial_dwt_buffer); if(level) b->parent= &s->plane[plane_index].band[level-1][orientation]; //FIXME avoid this realloc av_freep(&b->x_coeff); b->x_coeff=av_mallocz(((b->width+1) * b->height+1)*sizeof(x_and_coeff)); } w= (w+1)>>1; h= (h+1)>>1; } } return 0; } static int qscale2qlog(int qscale){ return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2)) + 61*QROOT/8; //<64 >60 } static int ratecontrol_1pass(SnowContext *s, AVFrame *pict) { /* Estimate the frame's complexity as a sum of weighted dwt coefficients. * FIXME we know exact mv bits at this point, * but ratecontrol isn't set up to include them. */ uint32_t coef_sum= 0; int level, orientation, delta_qlog; for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[0].band[level][orientation]; IDWTELEM *buf= b->ibuf; const int w= b->width; const int h= b->height; const int stride= b->stride; const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16); const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); const int qdiv= (1<<16)/qmul; int x, y; //FIXME this is ugly for(y=0; y<h; y++) for(x=0; x<w; x++) buf[x+y*stride]= b->buf[x+y*stride]; if(orientation==0) decorrelate(s, b, buf, stride, 1, 0); for(y=0; y<h; y++) for(x=0; x<w; x++) coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16; } } /* ugly, ratecontrol just takes a sqrt again */ coef_sum = (uint64_t)coef_sum * coef_sum >> 16; assert(coef_sum < INT_MAX); if(pict->pict_type == FF_I_TYPE){ s->m.current_picture.mb_var_sum= coef_sum; s->m.current_picture.mc_mb_var_sum= 0; }else{ s->m.current_picture.mc_mb_var_sum= coef_sum; s->m.current_picture.mb_var_sum= 0; } pict->quality= ff_rate_estimate_qscale(&s->m, 1); if (pict->quality < 0) return INT_MIN; s->lambda= pict->quality * 3/2; delta_qlog= qscale2qlog(pict->quality) - s->qlog; s->qlog+= delta_qlog; return delta_qlog; } static void calculate_visual_weight(SnowContext *s, Plane *p){ int width = p->width; int height= p->height; int level, orientation, x, y; for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *ibuf= b->ibuf; int64_t error=0; memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height); ibuf[b->width/2 + b->height/2*b->stride]= 256*16; ff_spatial_idwt(s->spatial_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count); for(y=0; y<height; y++){ for(x=0; x<width; x++){ int64_t d= s->spatial_idwt_buffer[x + y*width]*16; error += d*d; } } b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5); } } } #define QUANTIZE2 0 #if QUANTIZE2==1 #define Q2_STEP 8 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){ SubBand *b= &p->band[level][orientation]; int x, y; int xo=0; int yo=0; int step= 1 << (s->spatial_decomposition_count - level); if(orientation&1) xo= step>>1; if(orientation&2) yo= step>>1; //FIXME bias for nonzero ? //FIXME optimize memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP)); for(y=0; y<p->height; y++){ for(x=0; x<p->width; x++){ int sx= (x-xo + step/2) / step / Q2_STEP; int sy= (y-yo + step/2) / step / Q2_STEP; int v= r0[x + y*p->width] - r1[x + y*p->width]; assert(sx>=0 && sy>=0 && sx < score_stride); v= ((v+8)>>4)<<4; score[sx + sy*score_stride] += v*v; assert(score[sx + sy*score_stride] >= 0); } } } static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){ int level, orientation; for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer); dequantize(s, b, dst, b->stride); } } } static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){ int level, orientation, ys, xs, x, y, pass; IDWTELEM best_dequant[height * stride]; IDWTELEM idwt2_buffer[height * stride]; const int score_stride= (width + 10)/Q2_STEP; int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP]; //FIXME size int threshold= (s->m.lambda * s->m.lambda) >> 6; //FIXME pass the copy cleanly ? // memcpy(dwt_buffer, buffer, height * stride * sizeof(DWTELEM)); ff_spatial_dwt(buffer, width, height, stride, type, s->spatial_decomposition_count); for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer); DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer); assert(src == b->buf); // code does not depend on this but it is true currently quantize(s, b, dst, src, b->stride, s->qbias); } } for(pass=0; pass<1; pass++){ if(s->qbias == 0) //keyframe continue; for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer); IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer); for(ys= 0; ys<Q2_STEP; ys++){ for(xs= 0; xs<Q2_STEP; xs++){ memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); dequantize_all(s, p, idwt2_buffer, width, height); ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count); find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation); memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); for(y=ys; y<b->height; y+= Q2_STEP){ for(x=xs; x<b->width; x+= Q2_STEP){ if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++; if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--; //FIXME try more than just -- } } dequantize_all(s, p, idwt2_buffer, width, height); ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count); find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation); for(y=ys; y<b->height; y+= Q2_STEP){ for(x=xs; x<b->width; x+= Q2_STEP){ int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride; if(score[score_idx] <= best_score[score_idx] + threshold){ best_score[score_idx]= score[score_idx]; if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++; if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--; //FIXME copy instead } } } } } } } } memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM)); //FIXME work with that directly instead of copy at the end } #endif /* QUANTIZE2==1 */ static av_cold int encode_init(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; int plane_index; if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){ av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n" "Use vstrict=-2 / -strict -2 to use it anyway.\n"); return -1; } if(avctx->prediction_method == DWT_97 && (avctx->flags & CODEC_FLAG_QSCALE) && avctx->global_quality == 0){ av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n"); return -1; } s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4; s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0; for(plane_index=0; plane_index<3; plane_index++){ s->plane[plane_index].diag_mc= 1; s->plane[plane_index].htaps= 6; s->plane[plane_index].hcoeff[0]= 40; s->plane[plane_index].hcoeff[1]= -10; s->plane[plane_index].hcoeff[2]= 2; s->plane[plane_index].fast_mc= 1; } common_init(avctx); alloc_blocks(s); s->version=0; s->m.avctx = avctx; s->m.flags = avctx->flags; s->m.bit_rate= avctx->bit_rate; s->m.me.temp = s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t)); s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t)); h263_encode_init(&s->m); //mv_penalty s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1); if(avctx->flags&CODEC_FLAG_PASS1){ if(!avctx->stats_out) avctx->stats_out = av_mallocz(256); } if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){ if(ff_rate_control_init(&s->m) < 0) return -1; } s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2)); avctx->coded_frame= &s->current_picture; switch(avctx->pix_fmt){ // case PIX_FMT_YUV444P: // case PIX_FMT_YUV422P: case PIX_FMT_YUV420P: case PIX_FMT_GRAY8: // case PIX_FMT_YUV411P: // case PIX_FMT_YUV410P: s->colorspace_type= 0; break; /* case PIX_FMT_RGB32: s->colorspace= 1; break;*/ default: av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n"); return -1; } // avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); s->chroma_h_shift= 1; s->chroma_v_shift= 1; ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp); ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp); s->avctx->get_buffer(s->avctx, &s->input_picture); if(s->avctx->me_method == ME_ITER){ int i; int size= s->b_width * s->b_height << 2*s->block_max_depth; for(i=0; i<s->max_ref_frames; i++){ s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2])); s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t)); } } return 0; } #define USE_HALFPEL_PLANE 0 static void halfpel_interpol(SnowContext *s, uint8_t *halfpel[4][4], AVFrame *frame){ int p,x,y; assert(!(s->avctx->flags & CODEC_FLAG_EMU_EDGE)); for(p=0; p<3; p++){ int is_chroma= !!p; int w= s->avctx->width >>is_chroma; int h= s->avctx->height >>is_chroma; int ls= frame->linesize[p]; uint8_t *src= frame->data[p]; halfpel[1][p]= (uint8_t*)av_malloc(ls * (h+2*EDGE_WIDTH)) + EDGE_WIDTH*(1+ls); halfpel[2][p]= (uint8_t*)av_malloc(ls * (h+2*EDGE_WIDTH)) + EDGE_WIDTH*(1+ls); halfpel[3][p]= (uint8_t*)av_malloc(ls * (h+2*EDGE_WIDTH)) + EDGE_WIDTH*(1+ls); halfpel[0][p]= src; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= y*ls + x; halfpel[1][p][i]= (20*(src[i] + src[i+1]) - 5*(src[i-1] + src[i+2]) + (src[i-2] + src[i+3]) + 16 )>>5; } } for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= y*ls + x; halfpel[2][p][i]= (20*(src[i] + src[i+ls]) - 5*(src[i-ls] + src[i+2*ls]) + (src[i-2*ls] + src[i+3*ls]) + 16 )>>5; } } src= halfpel[1][p]; for(y=0; y<h; y++){ for(x=0; x<w; x++){ int i= y*ls + x; halfpel[3][p][i]= (20*(src[i] + src[i+ls]) - 5*(src[i-ls] + src[i+2*ls]) + (src[i-2*ls] + src[i+3*ls]) + 16 )>>5; } } //FIXME border! } } static void release_buffer(AVCodecContext *avctx){ SnowContext *s = avctx->priv_data; int i; if(s->last_picture[s->max_ref_frames-1].data[0]){ avctx->release_buffer(avctx, &s->last_picture[s->max_ref_frames-1]); for(i=0; i<9; i++) if(s->halfpel_plane[s->max_ref_frames-1][1+i/3][i%3]) av_free(s->halfpel_plane[s->max_ref_frames-1][1+i/3][i%3] - EDGE_WIDTH*(1+s->current_picture.linesize[i%3])); } } static int frame_start(SnowContext *s){ AVFrame tmp; int w= s->avctx->width; //FIXME round up to x16 ? int h= s->avctx->height; if(s->current_picture.data[0]){ s->dsp.draw_edges(s->current_picture.data[0], s->current_picture.linesize[0], w , h , EDGE_WIDTH ); s->dsp.draw_edges(s->current_picture.data[1], s->current_picture.linesize[1], w>>1, h>>1, EDGE_WIDTH/2); s->dsp.draw_edges(s->current_picture.data[2], s->current_picture.linesize[2], w>>1, h>>1, EDGE_WIDTH/2); } release_buffer(s->avctx); tmp= s->last_picture[s->max_ref_frames-1]; memmove(s->last_picture+1, s->last_picture, (s->max_ref_frames-1)*sizeof(AVFrame)); memmove(s->halfpel_plane+1, s->halfpel_plane, (s->max_ref_frames-1)*sizeof(void*)*4*4); if(USE_HALFPEL_PLANE && s->current_picture.data[0]) halfpel_interpol(s, s->halfpel_plane[0], &s->current_picture); s->last_picture[0]= s->current_picture; s->current_picture= tmp; if(s->keyframe){ s->ref_frames= 0; }else{ int i; for(i=0; i<s->max_ref_frames && s->last_picture[i].data[0]; i++) if(i && s->last_picture[i-1].key_frame) break; s->ref_frames= i; if(s->ref_frames==0){ av_log(s->avctx,AV_LOG_ERROR, "No reference frames\n"); return -1; } } s->current_picture.reference= 1; if(s->avctx->get_buffer(s->avctx, &s->current_picture) < 0){ av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } s->current_picture.key_frame= s->keyframe; return 0; } static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){ SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; AVFrame *pict = data; const int width= s->avctx->width; const int height= s->avctx->height; int level, orientation, plane_index, i, y; uint8_t rc_header_bak[sizeof(s->header_state)]; uint8_t rc_block_bak[sizeof(s->block_state)]; ff_init_range_encoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); for(i=0; i<3; i++){ int shift= !!i; for(y=0; y<(height>>shift); y++) memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]], &pict->data[i][y * pict->linesize[i]], width>>shift); } s->new_picture = *pict; s->m.picture_number= avctx->frame_number; if(avctx->flags&CODEC_FLAG_PASS2){ s->m.pict_type = pict->pict_type= s->m.rc_context.entry[avctx->frame_number].new_pict_type; s->keyframe= pict->pict_type==FF_I_TYPE; if(!(avctx->flags&CODEC_FLAG_QSCALE)) { pict->quality= ff_rate_estimate_qscale(&s->m, 0); if (pict->quality < 0) return -1; } }else{ s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0; s->m.pict_type= pict->pict_type= s->keyframe ? FF_I_TYPE : FF_P_TYPE; } if(s->pass1_rc && avctx->frame_number == 0) pict->quality= 2*FF_QP2LAMBDA; if(pict->quality){ s->qlog= qscale2qlog(pict->quality); s->lambda = pict->quality * 3/2; } if(s->qlog < 0 || (!pict->quality && (avctx->flags & CODEC_FLAG_QSCALE))){ s->qlog= LOSSLESS_QLOG; s->lambda = 0; }//else keep previous frame's qlog until after motion estimation frame_start(s); s->m.current_picture_ptr= &s->m.current_picture; if(pict->pict_type == FF_P_TYPE){ int block_width = (width +15)>>4; int block_height= (height+15)>>4; int stride= s->current_picture.linesize[0]; assert(s->current_picture.data[0]); assert(s->last_picture[0].data[0]); s->m.avctx= s->avctx; s->m.current_picture.data[0]= s->current_picture.data[0]; s->m. last_picture.data[0]= s->last_picture[0].data[0]; s->m. new_picture.data[0]= s-> input_picture.data[0]; s->m. last_picture_ptr= &s->m. last_picture; s->m.linesize= s->m. last_picture.linesize[0]= s->m. new_picture.linesize[0]= s->m.current_picture.linesize[0]= stride; s->m.uvlinesize= s->current_picture.linesize[1]; s->m.width = width; s->m.height= height; s->m.mb_width = block_width; s->m.mb_height= block_height; s->m.mb_stride= s->m.mb_width+1; s->m.b8_stride= 2*s->m.mb_width+1; s->m.f_code=1; s->m.pict_type= pict->pict_type; s->m.me_method= s->avctx->me_method; s->m.me.scene_change_score=0; s->m.flags= s->avctx->flags; s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0; s->m.out_format= FMT_H263; s->m.unrestricted_mv= 1; s->m.lambda = s->lambda; s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; s->m.dsp= s->dsp; //move ff_init_me(&s->m); s->dsp= s->m.dsp; } if(s->pass1_rc){ memcpy(rc_header_bak, s->header_state, sizeof(s->header_state)); memcpy(rc_block_bak, s->block_state, sizeof(s->block_state)); } redo_frame: if(pict->pict_type == FF_I_TYPE) s->spatial_decomposition_count= 5; else s->spatial_decomposition_count= 5; s->m.pict_type = pict->pict_type; s->qbias= pict->pict_type == FF_P_TYPE ? 2 : 0; common_init_after_header(avctx); if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ for(plane_index=0; plane_index<3; plane_index++){ calculate_visual_weight(s, &s->plane[plane_index]); } } encode_header(s); s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start); encode_blocks(s, 1); s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits; for(plane_index=0; plane_index<3; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; // int bits= put_bits_count(&s->c.pb); if(!(avctx->flags2 & CODEC_FLAG2_MEMC_ONLY)){ //FIXME optimize if(pict->data[plane_index]) //FIXME gray hack for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS; } } predict_plane(s, s->spatial_idwt_buffer, plane_index, 0); if( plane_index==0 && pict->pict_type == FF_P_TYPE && !(avctx->flags&CODEC_FLAG_PASS2) && s->m.me.scene_change_score > s->avctx->scenechange_threshold){ ff_init_range_encoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); pict->pict_type= FF_I_TYPE; s->keyframe=1; s->current_picture.key_frame=1; goto redo_frame; } if(s->qlog == LOSSLESS_QLOG){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS; } } }else{ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS; } } } /* if(QUANTIZE2) dwt_quantize(s, p, s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type); else*/ ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->pass1_rc && plane_index==0){ int delta_qlog = ratecontrol_1pass(s, pict); if (delta_qlog <= INT_MIN) return -1; if(delta_qlog){ //reordering qlog in the bitstream would eliminate this reset ff_init_range_encoder(c, buf, buf_size); memcpy(s->header_state, rc_header_bak, sizeof(s->header_state)); memcpy(s->block_state, rc_block_bak, sizeof(s->block_state)); encode_header(s); encode_blocks(s, 0); } } for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; if(!QUANTIZE2) quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias); if(orientation==0) decorrelate(s, b, b->ibuf, b->stride, pict->pict_type == FF_P_TYPE, 0); encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation); assert(b->parent==NULL || b->parent->stride == b->stride*2); if(orientation==0) correlate(s, b, b->ibuf, b->stride, 1, 0); } } for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; dequantize(s, b, b->ibuf, b->stride); } } ff_spatial_idwt(s->spatial_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); if(s->qlog == LOSSLESS_QLOG){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS; } } } predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); }else{ //ME/MC only if(pict->pict_type == FF_I_TYPE){ for(y=0; y<h; y++){ for(x=0; x<w; x++){ s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]; } } }else{ memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h); predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); } } if(s->avctx->flags&CODEC_FLAG_PSNR){ int64_t error= 0; if(pict->data[plane_index]) //FIXME gray hack for(y=0; y<h; y++){ for(x=0; x<w; x++){ int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x]; error += d*d; } } s->avctx->error[plane_index] += error; s->current_picture.error[plane_index] = error; } } update_last_header_values(s); release_buffer(avctx); s->current_picture.coded_picture_number = avctx->frame_number; s->current_picture.pict_type = pict->pict_type; s->current_picture.quality = pict->quality; s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start); s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits; s->m.current_picture.display_picture_number = s->m.current_picture.coded_picture_number = avctx->frame_number; s->m.current_picture.quality = pict->quality; s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start); if(s->pass1_rc) if (ff_rate_estimate_qscale(&s->m, 0) < 0) return -1; if(avctx->flags&CODEC_FLAG_PASS1) ff_write_pass1_stats(&s->m); s->m.last_pict_type = s->m.pict_type; avctx->frame_bits = s->m.frame_bits; avctx->mv_bits = s->m.mv_bits; avctx->misc_bits = s->m.misc_bits; avctx->p_tex_bits = s->m.p_tex_bits; emms_c(); return ff_rac_terminate(c); } static av_cold void common_end(SnowContext *s){ int plane_index, level, orientation, i; av_freep(&s->spatial_dwt_buffer); av_freep(&s->spatial_idwt_buffer); s->m.me.temp= NULL; av_freep(&s->m.me.scratchpad); av_freep(&s->m.me.map); av_freep(&s->m.me.score_map); av_freep(&s->m.obmc_scratchpad); av_freep(&s->block); av_freep(&s->scratchbuf); for(i=0; i<MAX_REF_FRAMES; i++){ av_freep(&s->ref_mvs[i]); av_freep(&s->ref_scores[i]); if(s->last_picture[i].data[0]) s->avctx->release_buffer(s->avctx, &s->last_picture[i]); } for(plane_index=0; plane_index<3; plane_index++){ for(level=s->spatial_decomposition_count-1; level>=0; level--){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &s->plane[plane_index].band[level][orientation]; av_freep(&b->x_coeff); } } } } static av_cold int encode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; common_end(s); av_free(avctx->stats_out); return 0; } static av_cold int decode_init(AVCodecContext *avctx) { avctx->pix_fmt= PIX_FMT_YUV420P; common_init(avctx); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){ const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; SnowContext *s = avctx->priv_data; RangeCoder * const c= &s->c; int bytes_read; AVFrame *picture = data; int level, orientation, plane_index; ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); s->current_picture.pict_type= FF_I_TYPE; //FIXME I vs. P if(decode_header(s)<0) return -1; common_init_after_header(avctx); // realloc slice buffer for the case that spatial_decomposition_count changed slice_buffer_destroy(&s->sb); slice_buffer_init(&s->sb, s->plane[0].height, (MB_SIZE >> s->block_max_depth) + s->spatial_decomposition_count * 8 + 1, s->plane[0].width, s->spatial_idwt_buffer); for(plane_index=0; plane_index<3; plane_index++){ Plane *p= &s->plane[plane_index]; p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40 && p->hcoeff[1]==-10 && p->hcoeff[2]==2; } alloc_blocks(s); if(frame_start(s) < 0) return -1; //keyframe flag duplication mess FIXME if(avctx->debug&FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog); decode_blocks(s); for(plane_index=0; plane_index<3; plane_index++){ Plane *p= &s->plane[plane_index]; int w= p->width; int h= p->height; int x, y; int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */ if(s->avctx->debug&2048){ memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h); predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); for(y=0; y<h; y++){ for(x=0; x<w; x++){ int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]; s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v; } } } { for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; unpack_coeffs(s, b, b->parent, orientation); } } } { const int mb_h= s->b_height << s->block_max_depth; const int block_size = MB_SIZE >> s->block_max_depth; const int block_w = plane_index ? block_size/2 : block_size; int mb_y; DWTCompose cs[MAX_DECOMPOSITIONS]; int yd=0, yq=0; int y; int end_y; ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count); for(mb_y=0; mb_y<=mb_h; mb_y++){ int slice_starty = block_w*mb_y; int slice_h = block_w*(mb_y+1); if (!(s->keyframe || s->avctx->debug&512)){ slice_starty = FFMAX(0, slice_starty - (block_w >> 1)); slice_h -= (block_w >> 1); } for(level=0; level<s->spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ SubBand *b= &p->band[level][orientation]; int start_y; int end_y; int our_mb_start = mb_y; int our_mb_end = (mb_y + 1); const int extra= 3; start_y = (mb_y ? ((block_w * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0); end_y = (((block_w * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra); if (!(s->keyframe || s->avctx->debug&512)){ start_y = FFMAX(0, start_y - (block_w >> (1+s->spatial_decomposition_count - level))); end_y = FFMAX(0, end_y - (block_w >> (1+s->spatial_decomposition_count - level))); } start_y = FFMIN(b->height, start_y); end_y = FFMIN(b->height, end_y); if (start_y != end_y){ if (orientation == 0){ SubBand * correlate_band = &p->band[0][0]; int correlate_end_y = FFMIN(b->height, end_y + 1); int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0)); decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]); correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y); dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y); } else decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]); } } } for(; yd<slice_h; yd+=4){ ff_spatial_idwt_buffered_slice(&s->dsp, cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd); } if(s->qlog == LOSSLESS_QLOG){ for(; yq<slice_h && yq<h; yq++){ IDWTELEM * line = slice_buffer_get_line(&s->sb, yq); for(x=0; x<w; x++){ line[x] <<= FRAC_BITS; } } } predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y); y = FFMIN(p->height, slice_starty); end_y = FFMIN(p->height, slice_h); while(y < end_y) slice_buffer_release(&s->sb, y++); } slice_buffer_flush(&s->sb); } } emms_c(); release_buffer(avctx); if(!(s->avctx->debug&2048)) *picture= s->current_picture; else *picture= s->mconly_picture; *data_size = sizeof(AVFrame); bytes_read= c->bytestream - c->bytestream_start; if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME return bytes_read; } static av_cold int decode_end(AVCodecContext *avctx) { SnowContext *s = avctx->priv_data; slice_buffer_destroy(&s->sb); common_end(s); return 0; } AVCodec snow_decoder = { "snow", CODEC_TYPE_VIDEO, CODEC_ID_SNOW, sizeof(SnowContext), decode_init, NULL, decode_end, decode_frame, CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/, NULL, .long_name = NULL_IF_CONFIG_SMALL("Snow"), }; #if CONFIG_SNOW_ENCODER AVCodec snow_encoder = { "snow", CODEC_TYPE_VIDEO, CODEC_ID_SNOW, sizeof(SnowContext), encode_init, encode_frame, encode_end, .long_name = NULL_IF_CONFIG_SMALL("Snow"), }; #endif #ifdef TEST #undef malloc #undef free #undef printf #include "libavutil/lfg.h" int main(void){ int width=256; int height=256; int buffer[2][width*height]; SnowContext s; int i; AVLFG prng; s.spatial_decomposition_count=6; s.spatial_decomposition_type=1; av_lfg_init(&prng, 1); printf("testing 5/3 DWT\n"); for(i=0; i<width*height; i++) buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345; ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(i=0; i<width*height; i++) if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]); printf("testing 9/7 DWT\n"); s.spatial_decomposition_type=0; for(i=0; i<width*height; i++) buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345; ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(i=0; i<width*height; i++) if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]); #if 0 printf("testing AC coder\n"); memset(s.header_state, 0, sizeof(s.header_state)); ff_init_range_encoder(&s.c, buffer[0], 256*256); ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64); for(i=-256; i<256; i++){ put_symbol(&s.c, s.header_state, i*i*i/3*FFABS(i), 1); } ff_rac_terminate(&s.c); memset(s.header_state, 0, sizeof(s.header_state)); ff_init_range_decoder(&s.c, buffer[0], 256*256); ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64); for(i=-256; i<256; i++){ int j; j= get_symbol(&s.c, s.header_state, 1); if(j!=i*i*i/3*FFABS(i)) printf("fsck: %d != %d\n", i, j); } #endif { int level, orientation, x, y; int64_t errors[8][4]; int64_t g=0; memset(errors, 0, sizeof(errors)); s.spatial_decomposition_count=3; s.spatial_decomposition_type=0; for(level=0; level<s.spatial_decomposition_count; level++){ for(orientation=level ? 1 : 0; orientation<4; orientation++){ int w= width >> (s.spatial_decomposition_count-level); int h= height >> (s.spatial_decomposition_count-level); int stride= width << (s.spatial_decomposition_count-level); DWTELEM *buf= buffer[0]; int64_t error=0; if(orientation&1) buf+=w; if(orientation>1) buf+=stride>>1; memset(buffer[0], 0, sizeof(int)*width*height); buf[w/2 + h/2*stride]= 256*256; ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); for(y=0; y<height; y++){ for(x=0; x<width; x++){ int64_t d= buffer[0][x + y*width]; error += d*d; if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d); } if(FFABS(height/2-y)<9 && level==2) printf("\n"); } error= (int)(sqrt(error)+0.5); errors[level][orientation]= error; if(g) g=av_gcd(g, error); else g= error; } } printf("static int const visual_weight[][4]={\n"); for(level=0; level<s.spatial_decomposition_count; level++){ printf(" {"); for(orientation=0; orientation<4; orientation++){ printf("%8"PRId64",", errors[level][orientation]/g); } printf("},\n"); } printf("};\n"); { int level=2; int w= width >> (s.spatial_decomposition_count-level); //int h= height >> (s.spatial_decomposition_count-level); int stride= width << (s.spatial_decomposition_count-level); DWTELEM *buf= buffer[0]; int64_t error=0; buf+=w; buf+=stride>>1; memset(buffer[0], 0, sizeof(int)*width*height); #if 1 for(y=0; y<height; y++){ for(x=0; x<width; x++){ int tab[4]={0,2,3,1}; buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)]; } } ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); #else for(y=0; y<h; y++){ for(x=0; x<w; x++){ buf[x + y*stride ]=169; buf[x + y*stride-w]=64; } } ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); #endif for(y=0; y<height; y++){ for(x=0; x<width; x++){ int64_t d= buffer[0][x + y*width]; error += d*d; if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d); } if(FFABS(height/2-y)<9) printf("\n"); } } } return 0; } #endif /* TEST */