/*
 * RoQ Video Encoder.
 *
 * Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
 * Copyright (C) 2004-2007 Eric Lasota
 *    Based on RoQ specs (C) 2001 Tim Ferguson
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * id RoQ encoder by Vitor. Based on the Switchblade3 library and the
 * Switchblade3 FFmpeg glue by Eric Lasota.
 */

/*
 * COSTS:
 * Level 1:
 *  SKIP - 2 bits
 *  MOTION - 2 + 8 bits
 *  CODEBOOK - 2 + 8 bits
 *  SUBDIVIDE - 2 + combined subcel cost
 *
 * Level 2:
 *  SKIP - 2 bits
 *  MOTION - 2 + 8 bits
 *  CODEBOOK - 2 + 8 bits
 *  SUBDIVIDE - 2 + 4*8 bits
 *
 * Maximum cost: 138 bits per cel
 *
 * Proper evaluation requires LCD fraction comparison, which requires
 * Squared Error (SE) loss * savings increase
 *
 * Maximum savings increase: 136 bits
 * Maximum SE loss without overflow: 31580641
 * Components in 8x8 supercel: 192
 * Maximum SE precision per component: 164482
 *    >65025, so no truncation is needed (phew)
 */

#include <string.h>

#include "roqvideo.h"
#include "bytestream.h"
#include "elbg.h"
#include "mathops.h"

#define CHROMA_BIAS 1

/**
 * Maximum number of generated 4x4 codebooks. Can't be 256 to workaround a
 * Quake 3 bug.
 */
#define MAX_CBS_4x4 255

#define MAX_CBS_2x2 256 ///< Maximum number of 2x2 codebooks.

/* The cast is useful when multiplying it by INT_MAX */
#define ROQ_LAMBDA_SCALE ((uint64_t) FF_LAMBDA_SCALE)

/* Macroblock support functions */
static void unpack_roq_cell(roq_cell *cell, uint8_t u[4*3])
{
    memcpy(u  , cell->y, 4);
    memset(u+4, cell->u, 4);
    memset(u+8, cell->v, 4);
}

static void unpack_roq_qcell(uint8_t cb2[], roq_qcell *qcell, uint8_t u[4*4*3])
{
    int i,cp;
    static const int offsets[4] = {0, 2, 8, 10};

    for (cp=0; cp<3; cp++)
        for (i=0; i<4; i++) {
            u[4*4*cp + offsets[i]  ] = cb2[qcell->idx[i]*2*2*3 + 4*cp  ];
            u[4*4*cp + offsets[i]+1] = cb2[qcell->idx[i]*2*2*3 + 4*cp+1];
            u[4*4*cp + offsets[i]+4] = cb2[qcell->idx[i]*2*2*3 + 4*cp+2];
            u[4*4*cp + offsets[i]+5] = cb2[qcell->idx[i]*2*2*3 + 4*cp+3];
        }
}


static void enlarge_roq_mb4(uint8_t base[3*16], uint8_t u[3*64])
{
    int x,y,cp;

    for(cp=0; cp<3; cp++)
        for(y=0; y<8; y++)
            for(x=0; x<8; x++)
                *u++ = base[(y/2)*4 + (x/2) + 16*cp];
}

static inline int square(int x)
{
    return x*x;
}

static inline int eval_sse(uint8_t *a, uint8_t *b, int count)
{
    int diff=0;

    while(count--)
        diff += square(*b++ - *a++);

    return diff;
}

// FIXME Could use DSPContext.sse, but it is not so speed critical (used
// just for motion estimation).
static int block_sse(uint8_t **buf1, uint8_t **buf2, int x1, int y1, int x2,
                     int y2, int *stride1, int *stride2, int size)
{
    int i, k;
    int sse=0;

    for (k=0; k<3; k++) {
        int bias = (k ? CHROMA_BIAS : 4);
        for (i=0; i<size; i++)
            sse += bias*eval_sse(buf1[k] + (y1+i)*stride1[k] + x1,
                                 buf2[k] + (y2+i)*stride2[k] + x2, size);
    }

    return sse;
}

static int eval_motion_dist(RoqContext *enc, int x, int y, motion_vect vect,
                             int size)
{
    int mx=vect.d[0];
    int my=vect.d[1];

    if (mx < -7 || mx > 7)
        return INT_MAX;

    if (my < -7 || my > 7)
        return INT_MAX;

    mx += x;
    my += y;

    if ((unsigned) mx > enc->width-size || (unsigned) my > enc->height-size)
        return INT_MAX;

    return block_sse(enc->frame_to_enc->data, enc->last_frame->data, x, y,
                     mx, my,
                     enc->frame_to_enc->linesize, enc->last_frame->linesize,
                     size);
}

/**
 * Returns distortion between two macroblocks
 */
static inline int squared_diff_macroblock(uint8_t a[], uint8_t b[], int size)
{
    int cp, sdiff=0;

    for(cp=0;cp<3;cp++) {
        int bias = (cp ? CHROMA_BIAS : 4);
        sdiff += bias*eval_sse(a, b, size*size);
        a += size*size;
        b += size*size;
    }

    return sdiff;
}

typedef struct
{
    int eval_dist[4];
    int best_bit_use;
    int best_coding;

    int subCels[4];
    motion_vect motion;
    int cbEntry;
} SubcelEvaluation;

typedef struct
{
    int eval_dist[4];
    int best_coding;

    SubcelEvaluation subCels[4];

    motion_vect motion;
    int cbEntry;

    int sourceX, sourceY;
} CelEvaluation;

typedef struct
{
    int numCB4;
    int numCB2;
    int usedCB2[MAX_CBS_2x2];
    int usedCB4[MAX_CBS_4x4];
    uint8_t unpacked_cb2[MAX_CBS_2x2*2*2*3];
    uint8_t unpacked_cb4[MAX_CBS_4x4*4*4*3];
    uint8_t unpacked_cb4_enlarged[MAX_CBS_4x4*8*8*3];
} RoqCodebooks;

/**
 * Temporary vars
 */
typedef struct RoqTempData
{
    CelEvaluation *cel_evals;

    int f2i4[MAX_CBS_4x4];
    int i2f4[MAX_CBS_4x4];
    int f2i2[MAX_CBS_2x2];
    int i2f2[MAX_CBS_2x2];

    int mainChunkSize;

    int numCB4;
    int numCB2;

    RoqCodebooks codebooks;

    int *closest_cb2;
    int used_option[4];
} RoqTempdata;

/**
 * Initializes cel evaluators and sets their source coordinates
 */
static void create_cel_evals(RoqContext *enc, RoqTempdata *tempData)
{
    int n=0, x, y, i;

    tempData->cel_evals = av_malloc(enc->width*enc->height/64 * sizeof(CelEvaluation));

    /* Map to the ROQ quadtree order */
    for (y=0; y<enc->height; y+=16)
        for (x=0; x<enc->width; x+=16)
            for(i=0; i<4; i++) {
                tempData->cel_evals[n  ].sourceX = x + (i&1)*8;
                tempData->cel_evals[n++].sourceY = y + (i&2)*4;
            }
}

/**
 * Get macroblocks from parts of the image
 */
static void get_frame_mb(AVFrame *frame, int x, int y, uint8_t mb[], int dim)
{
    int i, j, cp;

    for (cp=0; cp<3; cp++) {
        int stride = frame->linesize[cp];
        for (i=0; i<dim; i++)
            for (j=0; j<dim; j++)
                *mb++ = frame->data[cp][(y+i)*stride + x + j];
    }
}

/**
 * Find the codebook with the lowest distortion from an image
 */
static int index_mb(uint8_t cluster[], uint8_t cb[], int numCB,
                    int *outIndex, int dim)
{
    int i, lDiff = INT_MAX, pick=0;

    /* Diff against the others */
    for (i=0; i<numCB; i++) {
        int diff = squared_diff_macroblock(cluster, cb + i*dim*dim*3, dim);
        if (diff < lDiff) {
            lDiff = diff;
            pick = i;
        }
    }

    *outIndex = pick;
    return lDiff;
}

#define EVAL_MOTION(MOTION) \
    do { \
        diff = eval_motion_dist(enc, j, i, MOTION, blocksize); \
            \
        if (diff < lowestdiff) { \
            lowestdiff = diff; \
            bestpick = MOTION; \
        } \
    } while(0)

static void motion_search(RoqContext *enc, int blocksize)
{
    static const motion_vect offsets[8] = {
        {{ 0,-1}},
        {{ 0, 1}},
        {{-1, 0}},
        {{ 1, 0}},
        {{-1, 1}},
        {{ 1,-1}},
        {{-1,-1}},
        {{ 1, 1}},
    };

    int diff, lowestdiff, oldbest;
    int off[3];
    motion_vect bestpick = {{0,0}};
    int i, j, k, offset;

    motion_vect *last_motion;
    motion_vect *this_motion;
    motion_vect vect, vect2;

    int max=(enc->width/blocksize)*enc->height/blocksize;

    if (blocksize == 4) {
        last_motion = enc->last_motion4;
        this_motion = enc->this_motion4;
    } else {
        last_motion = enc->last_motion8;
        this_motion = enc->this_motion8;
    }

    for (i=0; i<enc->height; i+=blocksize)
        for (j=0; j<enc->width; j+=blocksize) {
            lowestdiff = eval_motion_dist(enc, j, i, (motion_vect) {{0,0}},
                                          blocksize);
            bestpick.d[0] = 0;
            bestpick.d[1] = 0;

            if (blocksize == 4)
                EVAL_MOTION(enc->this_motion8[(i/8)*(enc->width/8) + j/8]);

            offset = (i/blocksize)*enc->width/blocksize + j/blocksize;
            if (offset < max && offset >= 0)
                EVAL_MOTION(last_motion[offset]);

            offset++;
            if (offset < max && offset >= 0)
                EVAL_MOTION(last_motion[offset]);

            offset = (i/blocksize + 1)*enc->width/blocksize + j/blocksize;
            if (offset < max && offset >= 0)
                EVAL_MOTION(last_motion[offset]);

            off[0]= (i/blocksize)*enc->width/blocksize + j/blocksize - 1;
            off[1]= off[0] - enc->width/blocksize + 1;
            off[2]= off[1] + 1;

            if (i) {

                for(k=0; k<2; k++)
                    vect.d[k]= mid_pred(this_motion[off[0]].d[k],
                                        this_motion[off[1]].d[k],
                                        this_motion[off[2]].d[k]);

                EVAL_MOTION(vect);
                for(k=0; k<3; k++)
                    EVAL_MOTION(this_motion[off[k]]);
            } else if(j)
                EVAL_MOTION(this_motion[off[0]]);

            vect = bestpick;

            oldbest = -1;
            while (oldbest != lowestdiff) {
                oldbest = lowestdiff;
                for (k=0; k<8; k++) {
                    vect2 = vect;
                    vect2.d[0] += offsets[k].d[0];
                    vect2.d[1] += offsets[k].d[1];
                    EVAL_MOTION(vect2);
                }
                vect = bestpick;
            }
            offset = (i/blocksize)*enc->width/blocksize + j/blocksize;
            this_motion[offset] = bestpick;
        }
}

/**
 * Gets distortion for all options available to a subcel
 */
static void gather_data_for_subcel(SubcelEvaluation *subcel, int x,
                                   int y, RoqContext *enc, RoqTempdata *tempData)
{
    uint8_t mb4[4*4*3];
    uint8_t mb2[2*2*3];
    int cluster_index;
    int i, best_dist;

    static const int bitsUsed[4] = {2, 10, 10, 34};

    if (enc->framesSinceKeyframe >= 1) {
        subcel->motion = enc->this_motion4[y*enc->width/16 + x/4];

        subcel->eval_dist[RoQ_ID_FCC] =
            eval_motion_dist(enc, x, y,
                             enc->this_motion4[y*enc->width/16 + x/4], 4);
    } else
        subcel->eval_dist[RoQ_ID_FCC] = INT_MAX;

    if (enc->framesSinceKeyframe >= 2)
        subcel->eval_dist[RoQ_ID_MOT] = block_sse(enc->frame_to_enc->data,
                                                  enc->current_frame->data, x,
                                                  y, x, y,
                                                  enc->frame_to_enc->linesize,
                                                  enc->current_frame->linesize,
                                                  4);
    else
        subcel->eval_dist[RoQ_ID_MOT] = INT_MAX;

    cluster_index = y*enc->width/16 + x/4;

    get_frame_mb(enc->frame_to_enc, x, y, mb4, 4);

    subcel->eval_dist[RoQ_ID_SLD] = index_mb(mb4,
                                             tempData->codebooks.unpacked_cb4,
                                             tempData->codebooks.numCB4,
                                             &subcel->cbEntry, 4);

    subcel->eval_dist[RoQ_ID_CCC] = 0;

    for(i=0;i<4;i++) {
        subcel->subCels[i] = tempData->closest_cb2[cluster_index*4+i];

        get_frame_mb(enc->frame_to_enc, x+2*(i&1),
                     y+(i&2), mb2, 2);

        subcel->eval_dist[RoQ_ID_CCC] +=
            squared_diff_macroblock(tempData->codebooks.unpacked_cb2 + subcel->subCels[i]*2*2*3, mb2, 2);
    }

    best_dist = INT_MAX;
    for (i=0; i<4; i++)
        if (ROQ_LAMBDA_SCALE*subcel->eval_dist[i] + enc->lambda*bitsUsed[i] <
            best_dist) {
            subcel->best_coding = i;
            subcel->best_bit_use = bitsUsed[i];
            best_dist = ROQ_LAMBDA_SCALE*subcel->eval_dist[i] +
                enc->lambda*bitsUsed[i];
        }
}

/**
 * Gets distortion for all options available to a cel
 */
static void gather_data_for_cel(CelEvaluation *cel, RoqContext *enc,
                                RoqTempdata *tempData)
{
    uint8_t mb8[8*8*3];
    int index = cel->sourceY*enc->width/64 + cel->sourceX/8;
    int i, j, best_dist, divide_bit_use;

    int bitsUsed[4] = {2, 10, 10, 0};

    if (enc->framesSinceKeyframe >= 1) {
        cel->motion = enc->this_motion8[index];

        cel->eval_dist[RoQ_ID_FCC] =
            eval_motion_dist(enc, cel->sourceX, cel->sourceY,
                             enc->this_motion8[index], 8);
    } else
        cel->eval_dist[RoQ_ID_FCC] = INT_MAX;

    if (enc->framesSinceKeyframe >= 2)
        cel->eval_dist[RoQ_ID_MOT] = block_sse(enc->frame_to_enc->data,
                                               enc->current_frame->data,
                                               cel->sourceX, cel->sourceY,
                                               cel->sourceX, cel->sourceY,
                                               enc->frame_to_enc->linesize,
                                               enc->current_frame->linesize,8);
    else
        cel->eval_dist[RoQ_ID_MOT] = INT_MAX;

    get_frame_mb(enc->frame_to_enc, cel->sourceX, cel->sourceY, mb8, 8);

    cel->eval_dist[RoQ_ID_SLD] =
        index_mb(mb8, tempData->codebooks.unpacked_cb4_enlarged,
                 tempData->codebooks.numCB4, &cel->cbEntry, 8);

    gather_data_for_subcel(cel->subCels + 0, cel->sourceX+0, cel->sourceY+0, enc, tempData);
    gather_data_for_subcel(cel->subCels + 1, cel->sourceX+4, cel->sourceY+0, enc, tempData);
    gather_data_for_subcel(cel->subCels + 2, cel->sourceX+0, cel->sourceY+4, enc, tempData);
    gather_data_for_subcel(cel->subCels + 3, cel->sourceX+4, cel->sourceY+4, enc, tempData);

    cel->eval_dist[RoQ_ID_CCC] = 0;
    divide_bit_use = 0;
    for (i=0; i<4; i++) {
        cel->eval_dist[RoQ_ID_CCC] +=
            cel->subCels[i].eval_dist[cel->subCels[i].best_coding];
        divide_bit_use += cel->subCels[i].best_bit_use;
    }

    best_dist = INT_MAX;
    bitsUsed[3] = 2 + divide_bit_use;

    for (i=0; i<4; i++)
        if (ROQ_LAMBDA_SCALE*cel->eval_dist[i] + enc->lambda*bitsUsed[i] <
            best_dist) {
            cel->best_coding = i;
            best_dist = ROQ_LAMBDA_SCALE*cel->eval_dist[i] +
                enc->lambda*bitsUsed[i];
        }

    tempData->used_option[cel->best_coding]++;
    tempData->mainChunkSize += bitsUsed[cel->best_coding];

    if (cel->best_coding == RoQ_ID_SLD)
        tempData->codebooks.usedCB4[cel->cbEntry]++;

    if (cel->best_coding == RoQ_ID_CCC)
        for (i=0; i<4; i++) {
            if (cel->subCels[i].best_coding == RoQ_ID_SLD)
                tempData->codebooks.usedCB4[cel->subCels[i].cbEntry]++;
            else if (cel->subCels[i].best_coding == RoQ_ID_CCC)
                for (j=0; j<4; j++)
                    tempData->codebooks.usedCB2[cel->subCels[i].subCels[j]]++;
        }
}

static void remap_codebooks(RoqContext *enc, RoqTempdata *tempData)
{
    int i, j, idx=0;

    /* Make remaps for the final codebook usage */
    for (i=0; i<MAX_CBS_4x4; i++) {
        if (tempData->codebooks.usedCB4[i]) {
            tempData->i2f4[i] = idx;
            tempData->f2i4[idx] = i;
            for (j=0; j<4; j++)
                tempData->codebooks.usedCB2[enc->cb4x4[i].idx[j]]++;
            idx++;
        }
    }

    tempData->numCB4 = idx;

    idx = 0;
    for (i=0; i<MAX_CBS_2x2; i++) {
        if (tempData->codebooks.usedCB2[i]) {
            tempData->i2f2[i] = idx;
            tempData->f2i2[idx] = i;
            idx++;
        }
    }
    tempData->numCB2 = idx;

}

/**
 * Write codebook chunk
 */
static void write_codebooks(RoqContext *enc, RoqTempdata *tempData)
{
    int i, j;
    uint8_t **outp= &enc->out_buf;

    if (tempData->numCB2) {
        bytestream_put_le16(outp, RoQ_QUAD_CODEBOOK);
        bytestream_put_le32(outp, tempData->numCB2*6 + tempData->numCB4*4);
        bytestream_put_byte(outp, tempData->numCB4);
        bytestream_put_byte(outp, tempData->numCB2);

        for (i=0; i<tempData->numCB2; i++) {
            bytestream_put_buffer(outp, enc->cb2x2[tempData->f2i2[i]].y, 4);
            bytestream_put_byte(outp, enc->cb2x2[tempData->f2i2[i]].u);
            bytestream_put_byte(outp, enc->cb2x2[tempData->f2i2[i]].v);
        }

        for (i=0; i<tempData->numCB4; i++)
            for (j=0; j<4; j++)
                bytestream_put_byte(outp, tempData->i2f2[enc->cb4x4[tempData->f2i4[i]].idx[j]]);

    }
}

static inline uint8_t motion_arg(motion_vect mot)
{
    uint8_t ax = 8 - ((uint8_t) mot.d[0]);
    uint8_t ay = 8 - ((uint8_t) mot.d[1]);
    return ((ax&15)<<4) | (ay&15);
}

typedef struct
{
    int typeSpool;
    int typeSpoolLength;
    uint8_t argumentSpool[64];
    uint8_t *args;
    uint8_t **pout;
} CodingSpool;

/* NOTE: Typecodes must be spooled AFTER arguments!! */
static void write_typecode(CodingSpool *s, uint8_t type)
{
    s->typeSpool |= (type & 3) << (14 - s->typeSpoolLength);
    s->typeSpoolLength += 2;
    if (s->typeSpoolLength == 16) {
        bytestream_put_le16(s->pout, s->typeSpool);
        bytestream_put_buffer(s->pout, s->argumentSpool,
                              s->args - s->argumentSpool);
        s->typeSpoolLength = 0;
        s->typeSpool = 0;
        s->args = s->argumentSpool;
    }
}

static void reconstruct_and_encode_image(RoqContext *enc, RoqTempdata *tempData, int w, int h, int numBlocks)
{
    int i, j, k;
    int x, y;
    int subX, subY;
    int dist=0;

    roq_qcell *qcell;
    CelEvaluation *eval;

    CodingSpool spool;

    spool.typeSpool=0;
    spool.typeSpoolLength=0;
    spool.args = spool.argumentSpool;
    spool.pout = &enc->out_buf;

    if (tempData->used_option[RoQ_ID_CCC]%2)
        tempData->mainChunkSize+=8; //FIXME

    /* Write the video chunk header */
    bytestream_put_le16(&enc->out_buf, RoQ_QUAD_VQ);
    bytestream_put_le32(&enc->out_buf, tempData->mainChunkSize/8);
    bytestream_put_byte(&enc->out_buf, 0x0);
    bytestream_put_byte(&enc->out_buf, 0x0);

    for (i=0; i<numBlocks; i++) {
        eval = tempData->cel_evals + i;

        x = eval->sourceX;
        y = eval->sourceY;
        dist += eval->eval_dist[eval->best_coding];

        switch (eval->best_coding) {
        case RoQ_ID_MOT:
            write_typecode(&spool, RoQ_ID_MOT);
            break;

        case RoQ_ID_FCC:
            bytestream_put_byte(&spool.args, motion_arg(eval->motion));

            write_typecode(&spool, RoQ_ID_FCC);
            ff_apply_motion_8x8(enc, x, y,
                                eval->motion.d[0], eval->motion.d[1]);
            break;

        case RoQ_ID_SLD:
            bytestream_put_byte(&spool.args, tempData->i2f4[eval->cbEntry]);
            write_typecode(&spool, RoQ_ID_SLD);

            qcell = enc->cb4x4 + eval->cbEntry;
            ff_apply_vector_4x4(enc, x  , y  , enc->cb2x2 + qcell->idx[0]);
            ff_apply_vector_4x4(enc, x+4, y  , enc->cb2x2 + qcell->idx[1]);
            ff_apply_vector_4x4(enc, x  , y+4, enc->cb2x2 + qcell->idx[2]);
            ff_apply_vector_4x4(enc, x+4, y+4, enc->cb2x2 + qcell->idx[3]);
            break;

        case RoQ_ID_CCC:
            write_typecode(&spool, RoQ_ID_CCC);

            for (j=0; j<4; j++) {
                subX = x + 4*(j&1);
                subY = y + 2*(j&2);

                switch(eval->subCels[j].best_coding) {
                case RoQ_ID_MOT:
                    break;

                case RoQ_ID_FCC:
                    bytestream_put_byte(&spool.args,
                                        motion_arg(eval->subCels[j].motion));

                    ff_apply_motion_4x4(enc, subX, subY,
                                        eval->subCels[j].motion.d[0],
                                        eval->subCels[j].motion.d[1]);
                    break;

                case RoQ_ID_SLD:
                    bytestream_put_byte(&spool.args,
                                        tempData->i2f4[eval->subCels[j].cbEntry]);

                    qcell = enc->cb4x4 + eval->subCels[j].cbEntry;

                    ff_apply_vector_2x2(enc, subX  , subY  ,
                                        enc->cb2x2 + qcell->idx[0]);
                    ff_apply_vector_2x2(enc, subX+2, subY  ,
                                        enc->cb2x2 + qcell->idx[1]);
                    ff_apply_vector_2x2(enc, subX  , subY+2,
                                        enc->cb2x2 + qcell->idx[2]);
                    ff_apply_vector_2x2(enc, subX+2, subY+2,
                                        enc->cb2x2 + qcell->idx[3]);
                    break;

                case RoQ_ID_CCC:
                    for (k=0; k<4; k++) {
                        int cb_idx = eval->subCels[j].subCels[k];
                        bytestream_put_byte(&spool.args,
                                            tempData->i2f2[cb_idx]);

                        ff_apply_vector_2x2(enc, subX + 2*(k&1), subY + (k&2),
                                            enc->cb2x2 + cb_idx);
                    }
                    break;
                }
                write_typecode(&spool, eval->subCels[j].best_coding);
            }
            break;
        }
    }

    /* Flush the remainder of the argument/type spool */
    while (spool.typeSpoolLength)
        write_typecode(&spool, 0x0);

#if 0
    uint8_t *fdata[3] = {enc->frame_to_enc->data[0],
                           enc->frame_to_enc->data[1],
                           enc->frame_to_enc->data[2]};
    uint8_t *cdata[3] = {enc->current_frame->data[0],
                           enc->current_frame->data[1],
                           enc->current_frame->data[2]};
    av_log(enc->avctx, AV_LOG_ERROR, "Expected distortion: %i Actual: %i\n",
           dist,
           block_sse(fdata, cdata, 0, 0, 0, 0,
                     enc->frame_to_enc->linesize,
                     enc->current_frame->linesize,
                     enc->width));  //WARNING: Square dimensions implied...
#endif
}


/**
 * Create a single YUV cell from a 2x2 section of the image
 */
static inline void frame_block_to_cell(uint8_t *block, uint8_t **data,
                                       int top, int left, int *stride)
{
    int i, j, u=0, v=0;

    for (i=0; i<2; i++)
        for (j=0; j<2; j++) {
            int x = (top+i)*stride[0] + left + j;
            *block++ = data[0][x];
            x = (top+i)*stride[1] + left + j;
            u       += data[1][x];
            v       += data[2][x];
        }

    *block++ = (u+2)/4;
    *block++ = (v+2)/4;
}

/**
 * Creates YUV clusters for the entire image
 */
static void create_clusters(AVFrame *frame, int w, int h, uint8_t *yuvClusters)
{
    int i, j, k, l;

    for (i=0; i<h; i+=4)
        for (j=0; j<w; j+=4) {
            for (k=0; k < 2; k++)
                for (l=0; l < 2; l++)
                    frame_block_to_cell(yuvClusters + (l + 2*k)*6, frame->data,
                                        i+2*k, j+2*l, frame->linesize);
            yuvClusters += 24;
        }
}

static void generate_codebook(RoqContext *enc, RoqTempdata *tempdata,
                              int *points, int inputCount, roq_cell *results,
                              int size, int cbsize)
{
    int i, j, k;
    int c_size = size*size/4;
    int *buf;
    int *codebook = av_malloc(6*c_size*cbsize*sizeof(int));
    int *closest_cb;

    if (size == 4)
        closest_cb = av_malloc(6*c_size*inputCount*sizeof(int));
    else
        closest_cb = tempdata->closest_cb2;

    ff_init_elbg(points, 6*c_size, inputCount, codebook, cbsize, 1, closest_cb, &enc->randctx);
    ff_do_elbg(points, 6*c_size, inputCount, codebook, cbsize, 1, closest_cb, &enc->randctx);

    if (size == 4)
        av_free(closest_cb);

    buf = codebook;
    for (i=0; i<cbsize; i++)
        for (k=0; k<c_size; k++) {
            for(j=0; j<4; j++)
                results->y[j] = *buf++;

            results->u =    (*buf++ + CHROMA_BIAS/2)/CHROMA_BIAS;
            results->v =    (*buf++ + CHROMA_BIAS/2)/CHROMA_BIAS;
            results++;
        }

    av_free(codebook);
}

static void generate_new_codebooks(RoqContext *enc, RoqTempdata *tempData)
{
    int i,j;
    RoqCodebooks *codebooks = &tempData->codebooks;
    int max = enc->width*enc->height/16;
    uint8_t mb2[3*4];
    roq_cell *results4 = av_malloc(sizeof(roq_cell)*MAX_CBS_4x4*4);
    uint8_t *yuvClusters=av_malloc(sizeof(int)*max*6*4);
    int *points = av_malloc(max*6*4*sizeof(int));
    int bias;

    /* Subsample YUV data */
    create_clusters(enc->frame_to_enc, enc->width, enc->height, yuvClusters);

    /* Cast to integer and apply chroma bias */
    for (i=0; i<max*24; i++) {
        bias = ((i%6)<4) ? 1 : CHROMA_BIAS;
        points[i] = bias*yuvClusters[i];
    }

    /* Create 4x4 codebooks */
    generate_codebook(enc, tempData, points, max, results4, 4, MAX_CBS_4x4);

    codebooks->numCB4 = MAX_CBS_4x4;

    tempData->closest_cb2 = av_malloc(max*4*sizeof(int));

    /* Create 2x2 codebooks */
    generate_codebook(enc, tempData, points, max*4, enc->cb2x2, 2, MAX_CBS_2x2);

    codebooks->numCB2 = MAX_CBS_2x2;

    /* Unpack 2x2 codebook clusters */
    for (i=0; i<codebooks->numCB2; i++)
        unpack_roq_cell(enc->cb2x2 + i, codebooks->unpacked_cb2 + i*2*2*3);

    /* Index all 4x4 entries to the 2x2 entries, unpack, and enlarge */
    for (i=0; i<codebooks->numCB4; i++) {
        for (j=0; j<4; j++) {
            unpack_roq_cell(&results4[4*i + j], mb2);
            index_mb(mb2, codebooks->unpacked_cb2, codebooks->numCB2,
                     &enc->cb4x4[i].idx[j], 2);
        }
        unpack_roq_qcell(codebooks->unpacked_cb2, enc->cb4x4 + i,
                         codebooks->unpacked_cb4 + i*4*4*3);
        enlarge_roq_mb4(codebooks->unpacked_cb4 + i*4*4*3,
                        codebooks->unpacked_cb4_enlarged + i*8*8*3);
    }

    av_free(yuvClusters);
    av_free(points);
    av_free(results4);
}

static void roq_encode_video(RoqContext *enc)
{
    RoqTempdata *tempData = enc->tmpData;
    int i;

    memset(tempData, 0, sizeof(*tempData));

    create_cel_evals(enc, tempData);

    generate_new_codebooks(enc, tempData);

    if (enc->framesSinceKeyframe >= 1) {
        motion_search(enc, 8);
        motion_search(enc, 4);
    }

 retry_encode:
    for (i=0; i<enc->width*enc->height/64; i++)
        gather_data_for_cel(tempData->cel_evals + i, enc, tempData);

    /* Quake 3 can't handle chunks bigger than 65536 bytes */
    if (tempData->mainChunkSize/8 > 65536) {
        enc->lambda *= .8;
        goto retry_encode;
    }

    remap_codebooks(enc, tempData);

    write_codebooks(enc, tempData);

    reconstruct_and_encode_image(enc, tempData, enc->width, enc->height,
                                 enc->width*enc->height/64);

    enc->avctx->coded_frame = enc->current_frame;

    /* Rotate frame history */
    FFSWAP(AVFrame *, enc->current_frame, enc->last_frame);
    FFSWAP(motion_vect *, enc->last_motion4, enc->this_motion4);
    FFSWAP(motion_vect *, enc->last_motion8, enc->this_motion8);

    av_free(tempData->cel_evals);
    av_free(tempData->closest_cb2);

    enc->framesSinceKeyframe++;
}

static int roq_encode_init(AVCodecContext *avctx)
{
    RoqContext *enc = avctx->priv_data;

    av_lfg_init(&enc->randctx, 1);

    enc->framesSinceKeyframe = 0;
    if ((avctx->width & 0xf) || (avctx->height & 0xf)) {
        av_log(avctx, AV_LOG_ERROR, "Dimensions must be divisible by 16\n");
        return -1;
    }

    if (((avctx->width)&(avctx->width-1))||((avctx->height)&(avctx->height-1)))
        av_log(avctx, AV_LOG_ERROR, "Warning: dimensions not power of two\n");

    enc->width = avctx->width;
    enc->height = avctx->height;

    enc->framesSinceKeyframe = 0;
    enc->first_frame = 1;

    enc->last_frame    = &enc->frames[0];
    enc->current_frame = &enc->frames[1];

    enc->tmpData      = av_malloc(sizeof(RoqTempdata));

    enc->this_motion4 =
        av_mallocz((enc->width*enc->height/16)*sizeof(motion_vect));

    enc->last_motion4 =
        av_malloc ((enc->width*enc->height/16)*sizeof(motion_vect));

    enc->this_motion8 =
        av_mallocz((enc->width*enc->height/64)*sizeof(motion_vect));

    enc->last_motion8 =
        av_malloc ((enc->width*enc->height/64)*sizeof(motion_vect));

    return 0;
}

static void roq_write_video_info_chunk(RoqContext *enc)
{
    /* ROQ info chunk */
    bytestream_put_le16(&enc->out_buf, RoQ_INFO);

    /* Size: 8 bytes */
    bytestream_put_le32(&enc->out_buf, 8);

    /* Unused argument */
    bytestream_put_byte(&enc->out_buf, 0x00);
    bytestream_put_byte(&enc->out_buf, 0x00);

    /* Width */
    bytestream_put_le16(&enc->out_buf, enc->width);

    /* Height */
    bytestream_put_le16(&enc->out_buf, enc->height);

    /* Unused in Quake 3, mimics the output of the real encoder */
    bytestream_put_byte(&enc->out_buf, 0x08);
    bytestream_put_byte(&enc->out_buf, 0x00);
    bytestream_put_byte(&enc->out_buf, 0x04);
    bytestream_put_byte(&enc->out_buf, 0x00);
}

static int roq_encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
{
    RoqContext *enc = avctx->priv_data;
    AVFrame *frame= data;
    uint8_t *buf_start = buf;

    enc->out_buf = buf;
    enc->avctx = avctx;

    enc->frame_to_enc = frame;

    if (frame->quality)
        enc->lambda = frame->quality - 1;
    else
        enc->lambda = 2*ROQ_LAMBDA_SCALE;

    /* 138 bits max per 8x8 block +
     *     256 codebooks*(6 bytes 2x2 + 4 bytes 4x4) + 8 bytes frame header */
    if (((enc->width*enc->height/64)*138+7)/8 + 256*(6+4) + 8 > buf_size) {
        av_log(avctx, AV_LOG_ERROR, "  RoQ: Output buffer too small!\n");
        return -1;
    }

    /* Check for I frame */
    if (enc->framesSinceKeyframe == avctx->gop_size)
        enc->framesSinceKeyframe = 0;

    if (enc->first_frame) {
        /* Alloc memory for the reconstruction data (we must know the stride
         for that) */
        if (avctx->get_buffer(avctx, enc->current_frame) ||
            avctx->get_buffer(avctx, enc->last_frame)) {
            av_log(avctx, AV_LOG_ERROR, "  RoQ: get_buffer() failed\n");
            return -1;
        }

        /* Before the first video frame, write a "video info" chunk */
        roq_write_video_info_chunk(enc);

        enc->first_frame = 0;
    }

    /* Encode the actual frame */
    roq_encode_video(enc);

    return enc->out_buf - buf_start;
}

static int roq_encode_end(AVCodecContext *avctx)
{
    RoqContext *enc = avctx->priv_data;

    avctx->release_buffer(avctx, enc->last_frame);
    avctx->release_buffer(avctx, enc->current_frame);

    av_free(enc->tmpData);
    av_free(enc->this_motion4);
    av_free(enc->last_motion4);
    av_free(enc->this_motion8);
    av_free(enc->last_motion8);

    return 0;
}

AVCodec roq_encoder =
{
    "roqvideo",
    AVMEDIA_TYPE_VIDEO,
    CODEC_ID_ROQ,
    sizeof(RoqContext),
    roq_encode_init,
    roq_encode_frame,
    roq_encode_end,
    .supported_framerates = (const AVRational[]){{30,1}, {0,0}},
    .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV444P, PIX_FMT_NONE},
    .long_name = NULL_IF_CONFIG_SMALL("id RoQ video"),
};