/* * Rate control for video encoders * * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Rate control for video encoders. */ #include "libavutil/intmath.h" #include "avcodec.h" #include "dsputil.h" #include "ratecontrol.h" #include "mpegvideo.h" #include "libavutil/eval.h" #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them. #include <assert.h> #ifndef M_E #define M_E 2.718281828 #endif static int init_pass2(MpegEncContext *s); static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num); void ff_write_pass1_stats(MpegEncContext *s){ snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n", s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type, s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits, s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits); } static inline double qp2bits(RateControlEntry *rce, double qp){ if(qp<=0.0){ av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); } return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp; } static inline double bits2qp(RateControlEntry *rce, double bits){ if(bits<0.9){ av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); } return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits; } int ff_rate_control_init(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; int i, res; static const char * const const_names[]={ "PI", "E", "iTex", "pTex", "tex", "mv", "fCode", "iCount", "mcVar", "var", "isI", "isP", "isB", "avgQP", "qComp", /* "lastIQP", "lastPQP", "lastBQP", "nextNonBQP",*/ "avgIITex", "avgPITex", "avgPPTex", "avgBPTex", "avgTex", NULL }; static double (* const func1[])(void *, double)={ (void *)bits2qp, (void *)qp2bits, NULL }; static const char * const func1_names[]={ "bits2qp", "qp2bits", NULL }; emms_c(); res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx); if (res < 0) { av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq); return res; } for(i=0; i<5; i++){ rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0; rcc->pred[i].count= 1.0; rcc->pred[i].decay= 0.4; rcc->i_cplx_sum [i]= rcc->p_cplx_sum [i]= rcc->mv_bits_sum[i]= rcc->qscale_sum [i]= rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5; } rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy; if(s->flags&CODEC_FLAG_PASS2){ int i; char *p; /* find number of pics */ p= s->avctx->stats_in; for(i=-1; p; i++){ p= strchr(p+1, ';'); } i+= s->max_b_frames; if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry)) return -1; rcc->entry = av_mallocz(i*sizeof(RateControlEntry)); rcc->num_entries= i; /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; rce->pict_type= rce->new_pict_type=AV_PICTURE_TYPE_P; rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2; rce->misc_bits= s->mb_num + 10; rce->mb_var_sum= s->mb_num*100; } /* read stats */ p= s->avctx->stats_in; for(i=0; i<rcc->num_entries - s->max_b_frames; i++){ RateControlEntry *rce; int picture_number; int e; char *next; next= strchr(p, ';'); if(next){ (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write next++; } e= sscanf(p, " in:%d ", &picture_number); assert(picture_number >= 0); assert(picture_number < rcc->num_entries); rce= &rcc->entry[picture_number]; e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d", &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits, &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits); if(e!=14){ av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); return -1; } p= next; } if(init_pass2(s) < 0) return -1; //FIXME maybe move to end if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) { #if CONFIG_LIBXVID return ff_xvid_rate_control_init(s); #else av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n"); return -1; #endif } } if(!(s->flags&CODEC_FLAG_PASS2)){ rcc->short_term_qsum=0.001; rcc->short_term_qcount=0.001; rcc->pass1_rc_eq_output_sum= 0.001; rcc->pass1_wanted_bits=0.001; if(s->avctx->qblur > 1.0){ av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n"); return -1; } /* init stuff with the user specified complexity */ if(s->avctx->rc_initial_cplx){ for(i=0; i<60*30; i++){ double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num; RateControlEntry rce; if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I; else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B; else rce.pict_type= AV_PICTURE_TYPE_P; rce.new_pict_type= rce.pict_type; rce.mc_mb_var_sum= bits*s->mb_num/100000; rce.mb_var_sum = s->mb_num; rce.qscale = FF_QP2LAMBDA * 2; rce.f_code = 2; rce.b_code = 1; rce.misc_bits= 1; if(s->pict_type== AV_PICTURE_TYPE_I){ rce.i_count = s->mb_num; rce.i_tex_bits= bits; rce.p_tex_bits= 0; rce.mv_bits= 0; }else{ rce.i_count = 0; //FIXME we do know this approx rce.i_tex_bits= 0; rce.p_tex_bits= bits*0.9; rce.mv_bits= bits*0.1; } rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale; rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale; rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits; rcc->frame_count[rce.pict_type] ++; get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i); rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps } } } return 0; } void ff_rate_control_uninit(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; emms_c(); av_expr_free(rcc->rc_eq_eval); av_freep(&rcc->entry); #if CONFIG_LIBXVID if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) ff_xvid_rate_control_uninit(s); #endif } int ff_vbv_update(MpegEncContext *s, int frame_size){ RateControlContext *rcc= &s->rc_context; const double fps= 1/av_q2d(s->avctx->time_base); const int buffer_size= s->avctx->rc_buffer_size; const double min_rate= s->avctx->rc_min_rate/fps; const double max_rate= s->avctx->rc_max_rate/fps; //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); if(buffer_size){ int left; rcc->buffer_index-= frame_size; if(rcc->buffer_index < 0){ av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); rcc->buffer_index= 0; } left= buffer_size - rcc->buffer_index - 1; rcc->buffer_index += av_clip(left, min_rate, max_rate); if(rcc->buffer_index > buffer_size){ int stuffing= ceil((rcc->buffer_index - buffer_size)/8); if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4) stuffing=4; rcc->buffer_index -= 8*stuffing; if(s->avctx->debug & FF_DEBUG_RC) av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); return stuffing; } } return 0; } /** * modifies the bitrate curve from pass1 for one frame */ static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){ RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; double q, bits; const int pict_type= rce->new_pict_type; const double mb_num= s->mb_num; int i; double const_values[]={ M_PI, M_E, rce->i_tex_bits*rce->qscale, rce->p_tex_bits*rce->qscale, (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale, rce->mv_bits/mb_num, rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code, rce->i_count/mb_num, rce->mc_mb_var_sum/mb_num, rce->mb_var_sum/mb_num, rce->pict_type == AV_PICTURE_TYPE_I, rce->pict_type == AV_PICTURE_TYPE_P, rce->pict_type == AV_PICTURE_TYPE_B, rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], a->qcompress, /* rcc->last_qscale_for[AV_PICTURE_TYPE_I], rcc->last_qscale_for[AV_PICTURE_TYPE_P], rcc->last_qscale_for[AV_PICTURE_TYPE_B], rcc->next_non_b_qscale,*/ rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B], (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], 0 }; bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce); if (isnan(bits)) { av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq); return -1; } rcc->pass1_rc_eq_output_sum+= bits; bits*=rate_factor; if(bits<0.0) bits=0.0; bits+= 1.0; //avoid 1/0 issues /* user override */ for(i=0; i<s->avctx->rc_override_count; i++){ RcOverride *rco= s->avctx->rc_override; if(rco[i].start_frame > frame_num) continue; if(rco[i].end_frame < frame_num) continue; if(rco[i].qscale) bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it? else bits*= rco[i].quality_factor; } q= bits2qp(rce, bits); /* I/B difference */ if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0) q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset; else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0) q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset; if(q<1) q=1; return q; } static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){ RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; const int pict_type= rce->new_pict_type; const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type]; if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P)) q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset; else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0) q= last_non_b_q* a->b_quant_factor + a->b_quant_offset; if(q<1) q=1; /* last qscale / qdiff stuff */ if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){ double last_q= rcc->last_qscale_for[pict_type]; const int maxdiff= FF_QP2LAMBDA * a->max_qdiff; if (q > last_q + maxdiff) q= last_q + maxdiff; else if(q < last_q - maxdiff) q= last_q - maxdiff; } rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring if(pict_type!=AV_PICTURE_TYPE_B) rcc->last_non_b_pict_type= pict_type; return q; } /** * gets the qmin & qmax for pict_type */ static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){ int qmin= s->avctx->lmin; int qmax= s->avctx->lmax; assert(qmin <= qmax); if(pict_type==AV_PICTURE_TYPE_B){ qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5); qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5); }else if(pict_type==AV_PICTURE_TYPE_I){ qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5); qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5); } qmin= av_clip(qmin, 1, FF_LAMBDA_MAX); qmax= av_clip(qmax, 1, FF_LAMBDA_MAX); if(qmax<qmin) qmax= qmin; *qmin_ret= qmin; *qmax_ret= qmax; } static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){ RateControlContext *rcc= &s->rc_context; int qmin, qmax; const int pict_type= rce->new_pict_type; const double buffer_size= s->avctx->rc_buffer_size; const double fps= 1/av_q2d(s->avctx->time_base); const double min_rate= s->avctx->rc_min_rate / fps; const double max_rate= s->avctx->rc_max_rate / fps; get_qminmax(&qmin, &qmax, s, pict_type); /* modulation */ if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P) q*= s->avctx->rc_qmod_amp; //printf("q:%f\n", q); /* buffer overflow/underflow protection */ if(buffer_size){ double expected_size= rcc->buffer_index; double q_limit; if(min_rate){ double d= 2*(buffer_size - expected_size)/buffer_size; if(d>1.0) d=1.0; else if(d<0.0001) d=0.0001; q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1)); if(q > q_limit){ if(s->avctx->debug&FF_DEBUG_RC){ av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); } q= q_limit; } } if(max_rate){ double d= 2*expected_size/buffer_size; if(d>1.0) d=1.0; else if(d<0.0001) d=0.0001; q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1)); if(q < q_limit){ if(s->avctx->debug&FF_DEBUG_RC){ av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); } q= q_limit; } } } //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity); if(s->avctx->rc_qsquish==0.0 || qmin==qmax){ if (q<qmin) q=qmin; else if(q>qmax) q=qmax; }else{ double min2= log(qmin); double max2= log(qmax); q= log(q); q= (q - min2)/(max2-min2) - 0.5; q*= -4.0; q= 1.0/(1.0 + exp(q)); q= q*(max2-min2) + min2; q= exp(q); } return q; } //---------------------------------- // 1 Pass Code static double predict_size(Predictor *p, double q, double var) { return p->coeff*var / (q*p->count); } /* static double predict_qp(Predictor *p, double size, double var) { //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size); return p->coeff*var / (size*p->count); } */ static void update_predictor(Predictor *p, double q, double var, double size) { double new_coeff= size*q / (var + 1); if(var<10) return; p->count*= p->decay; p->coeff*= p->decay; p->count++; p->coeff+= new_coeff; } static void adaptive_quantization(MpegEncContext *s, double q){ int i; const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0); const float dark_masking= s->avctx->dark_masking / (128.0*128.0); const float temp_cplx_masking= s->avctx->temporal_cplx_masking; const float spatial_cplx_masking = s->avctx->spatial_cplx_masking; const float p_masking = s->avctx->p_masking; const float border_masking = s->avctx->border_masking; float bits_sum= 0.0; float cplx_sum= 0.0; float cplx_tab[s->mb_num]; float bits_tab[s->mb_num]; const int qmin= s->avctx->mb_lmin; const int qmax= s->avctx->mb_lmax; Picture * const pic= &s->current_picture; const int mb_width = s->mb_width; const int mb_height = s->mb_height; for(i=0; i<s->mb_num; i++){ const int mb_xy= s->mb_index2xy[i]; float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow() float spat_cplx= sqrt(pic->mb_var[mb_xy]); const int lumi= pic->mb_mean[mb_xy]; float bits, cplx, factor; int mb_x = mb_xy % s->mb_stride; int mb_y = mb_xy / s->mb_stride; int mb_distance; float mb_factor = 0.0; #if 0 if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune #endif if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode cplx= spat_cplx; factor= 1.0 + p_masking; }else{ cplx= temp_cplx; factor= pow(temp_cplx, - temp_cplx_masking); } factor*=pow(spat_cplx, - spatial_cplx_masking); if(lumi>127) factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking); else factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking); if(mb_x < mb_width/5){ mb_distance = mb_width/5 - mb_x; mb_factor = (float)mb_distance / (float)(mb_width/5); }else if(mb_x > 4*mb_width/5){ mb_distance = mb_x - 4*mb_width/5; mb_factor = (float)mb_distance / (float)(mb_width/5); } if(mb_y < mb_height/5){ mb_distance = mb_height/5 - mb_y; mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5)); }else if(mb_y > 4*mb_height/5){ mb_distance = mb_y - 4*mb_height/5; mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5)); } factor*= 1.0 - border_masking*mb_factor; if(factor<0.00001) factor= 0.00001; bits= cplx*factor; cplx_sum+= cplx; bits_sum+= bits; cplx_tab[i]= cplx; bits_tab[i]= bits; } /* handle qmin/qmax clipping */ if(s->flags&CODEC_FLAG_NORMALIZE_AQP){ float factor= bits_sum/cplx_sum; for(i=0; i<s->mb_num; i++){ float newq= q*cplx_tab[i]/bits_tab[i]; newq*= factor; if (newq > qmax){ bits_sum -= bits_tab[i]; cplx_sum -= cplx_tab[i]*q/qmax; } else if(newq < qmin){ bits_sum -= bits_tab[i]; cplx_sum -= cplx_tab[i]*q/qmin; } } if(bits_sum < 0.001) bits_sum= 0.001; if(cplx_sum < 0.001) cplx_sum= 0.001; } for(i=0; i<s->mb_num; i++){ const int mb_xy= s->mb_index2xy[i]; float newq= q*cplx_tab[i]/bits_tab[i]; int intq; if(s->flags&CODEC_FLAG_NORMALIZE_AQP){ newq*= bits_sum/cplx_sum; } intq= (int)(newq + 0.5); if (intq > qmax) intq= qmax; else if(intq < qmin) intq= qmin; //if(i%s->mb_width==0) printf("\n"); //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i])); s->lambda_table[mb_xy]= intq; } } void ff_get_2pass_fcode(MpegEncContext *s){ RateControlContext *rcc= &s->rc_context; int picture_number= s->picture_number; RateControlEntry *rce; rce= &rcc->entry[picture_number]; s->f_code= rce->f_code; s->b_code= rce->b_code; } //FIXME rd or at least approx for dquant float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) { float q; int qmin, qmax; float br_compensation; double diff; double short_term_q; double fps; int picture_number= s->picture_number; int64_t wanted_bits; RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; RateControlEntry local_rce, *rce; double bits; double rate_factor; int var; const int pict_type= s->pict_type; Picture * const pic= &s->current_picture; emms_c(); #if CONFIG_LIBXVID if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) return ff_xvid_rate_estimate_qscale(s, dry_run); #endif get_qminmax(&qmin, &qmax, s, pict_type); fps= 1/av_q2d(s->avctx->time_base); //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate); /* update predictors */ if(picture_number>2 && !dry_run){ const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum; update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits); } if(s->flags&CODEC_FLAG_PASS2){ assert(picture_number>=0); assert(picture_number<rcc->num_entries); rce= &rcc->entry[picture_number]; wanted_bits= rce->expected_bits; }else{ Picture *dts_pic; rce= &local_rce; //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering //but the reordering is simpler for now until h.264 b pyramid must be handeld if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) dts_pic= s->current_picture_ptr; else dts_pic= s->last_picture_ptr; //if(dts_pic) // av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number); if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE) wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps); else wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps); } diff= s->total_bits - wanted_bits; br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance; if(br_compensation<=0.0) br_compensation=0.001; var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum; short_term_q = 0; /* avoid warning */ if(s->flags&CODEC_FLAG_PASS2){ if(pict_type!=AV_PICTURE_TYPE_I) assert(pict_type == rce->new_pict_type); q= rce->new_qscale / br_compensation; //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type); }else{ rce->pict_type= rce->new_pict_type= pict_type; rce->mc_mb_var_sum= pic->mc_mb_var_sum; rce->mb_var_sum = pic-> mb_var_sum; rce->qscale = FF_QP2LAMBDA * 2; rce->f_code = s->f_code; rce->b_code = s->b_code; rce->misc_bits= 1; bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var)); if(pict_type== AV_PICTURE_TYPE_I){ rce->i_count = s->mb_num; rce->i_tex_bits= bits; rce->p_tex_bits= 0; rce->mv_bits= 0; }else{ rce->i_count = 0; //FIXME we do know this approx rce->i_tex_bits= 0; rce->p_tex_bits= bits*0.9; rce->mv_bits= bits*0.1; } rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale; rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale; rcc->mv_bits_sum[pict_type] += rce->mv_bits; rcc->frame_count[pict_type] ++; bits= rce->i_tex_bits + rce->p_tex_bits; rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation; q= get_qscale(s, rce, rate_factor, picture_number); if (q < 0) return -1; assert(q>0.0); //printf("%f ", q); q= get_diff_limited_q(s, rce, q); //printf("%f ", q); assert(q>0.0); if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass rcc->short_term_qsum*=a->qblur; rcc->short_term_qcount*=a->qblur; rcc->short_term_qsum+= q; rcc->short_term_qcount++; //printf("%f ", q); q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount; //printf("%f ", q); } assert(q>0.0); q= modify_qscale(s, rce, q, picture_number); rcc->pass1_wanted_bits+= s->bit_rate/fps; assert(q>0.0); } if(s->avctx->debug&FF_DEBUG_RC){ av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n", av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000, br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps ); } if (q<qmin) q=qmin; else if(q>qmax) q=qmax; if(s->adaptive_quant) adaptive_quantization(s, q); else q= (int)(q + 0.5); if(!dry_run){ rcc->last_qscale= q; rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum; rcc->last_mb_var_sum= pic->mb_var_sum; } return q; } //---------------------------------------------- // 2-Pass code static int init_pass2(MpegEncContext *s) { RateControlContext *rcc= &s->rc_context; AVCodecContext *a= s->avctx; int i, toobig; double fps= 1/av_q2d(s->avctx->time_base); double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1 uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits uint64_t all_const_bits; uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps); double rate_factor=0; double step; //int last_i_frame=-10000000; const int filter_size= (int)(a->qblur*4) | 1; double expected_bits; double *qscale, *blurred_qscale, qscale_sum; /* find complexity & const_bits & decide the pict_types */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; rce->new_pict_type= rce->pict_type; rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale; rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale; rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; rcc->frame_count[rce->pict_type] ++; complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale; const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits; } all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B]; if(all_available_bits < all_const_bits){ av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); return -1; } qscale= av_malloc(sizeof(double)*rcc->num_entries); blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries); toobig = 0; for(step=256*256; step>0.0000001; step*=0.5){ expected_bits=0; rate_factor+= step; rcc->buffer_index= s->avctx->rc_buffer_size/2; /* find qscale */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i); rcc->last_qscale_for[rce->pict_type] = qscale[i]; } assert(filter_size%2==1); /* fixed I/B QP relative to P mode */ for(i=rcc->num_entries-1; i>=0; i--){ RateControlEntry *rce= &rcc->entry[i]; qscale[i]= get_diff_limited_q(s, rce, qscale[i]); } /* smooth curve */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; const int pict_type= rce->new_pict_type; int j; double q=0.0, sum=0.0; for(j=0; j<filter_size; j++){ int index= i+j-filter_size/2; double d= index-i; double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur)); if(index < 0 || index >= rcc->num_entries) continue; if(pict_type != rcc->entry[index].new_pict_type) continue; q+= qscale[index] * coeff; sum+= coeff; } blurred_qscale[i]= q/sum; } /* find expected bits */ for(i=0; i<rcc->num_entries; i++){ RateControlEntry *rce= &rcc->entry[i]; double bits; rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i); bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; //printf("%d %f\n", rce->new_bits, blurred_qscale[i]); bits += 8*ff_vbv_update(s, bits); rce->expected_bits= expected_bits; expected_bits += bits; } /* av_log(s->avctx, AV_LOG_INFO, "expected_bits: %f all_available_bits: %d rate_factor: %f\n", expected_bits, (int)all_available_bits, rate_factor); */ if(expected_bits > all_available_bits) { rate_factor-= step; ++toobig; } } av_free(qscale); av_free(blurred_qscale); /* check bitrate calculations and print info */ qscale_sum = 0.0; for(i=0; i<rcc->num_entries; i++){ /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */ qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax); } assert(toobig <= 40); av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", s->bit_rate, (int)(expected_bits / ((double)all_available_bits/s->bit_rate))); av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] estimated target average qp: %.3f\n", (float)qscale_sum / rcc->num_entries); if (toobig == 0) { av_log(s->avctx, AV_LOG_INFO, "[lavc rc] Using all of requested bitrate is not " "necessary for this video with these parameters.\n"); } else if (toobig == 40) { av_log(s->avctx, AV_LOG_ERROR, "[lavc rc] Error: bitrate too low for this video " "with these parameters.\n"); return -1; } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) { av_log(s->avctx, AV_LOG_ERROR, "[lavc rc] Error: 2pass curve failed to converge\n"); return -1; } return 0; }