/* * Copyright (c) 2012 Andrew D'Addesio * Copyright (c) 2013-2014 Mozilla Corporation * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "opus_rc.h" #define OPUS_RC_BITS 32 #define OPUS_RC_SYM 8 #define OPUS_RC_CEIL ((1 << OPUS_RC_SYM) - 1) #define OPUS_RC_TOP (1u << 31) #define OPUS_RC_BOT (OPUS_RC_TOP >> OPUS_RC_SYM) #define OPUS_RC_SHIFT (OPUS_RC_BITS - OPUS_RC_SYM - 1) static av_always_inline void opus_rc_enc_carryout(OpusRangeCoder *rc, int cbuf) { const int cb = cbuf >> OPUS_RC_SYM, mb = (OPUS_RC_CEIL + cb) & OPUS_RC_CEIL; if (cbuf == OPUS_RC_CEIL) { rc->ext++; return; } rc->rng_cur[0] = rc->rem + cb; rc->rng_cur += (rc->rem >= 0); for (; rc->ext > 0; rc->ext--) *rc->rng_cur++ = mb; av_assert0(rc->rng_cur < rc->rb.position); rc->rem = cbuf & OPUS_RC_CEIL; /* Propagate */ } static av_always_inline void opus_rc_dec_normalize(OpusRangeCoder *rc) { while (rc->range <= OPUS_RC_BOT) { rc->value = ((rc->value << OPUS_RC_SYM) | (get_bits(&rc->gb, OPUS_RC_SYM) ^ OPUS_RC_CEIL)) & (OPUS_RC_TOP - 1); rc->range <<= OPUS_RC_SYM; rc->total_bits += OPUS_RC_SYM; } } static av_always_inline void opus_rc_enc_normalize(OpusRangeCoder *rc) { while (rc->range <= OPUS_RC_BOT) { opus_rc_enc_carryout(rc, rc->value >> OPUS_RC_SHIFT); rc->value = (rc->value << OPUS_RC_SYM) & (OPUS_RC_TOP - 1); rc->range <<= OPUS_RC_SYM; rc->total_bits += OPUS_RC_SYM; } } static av_always_inline void opus_rc_dec_update(OpusRangeCoder *rc, uint32_t scale, uint32_t low, uint32_t high, uint32_t total) { rc->value -= scale * (total - high); rc->range = low ? scale * (high - low) : rc->range - scale * (total - high); opus_rc_dec_normalize(rc); } /* Main encoding function, this needs to go fast */ static av_always_inline void opus_rc_enc_update(OpusRangeCoder *rc, uint32_t b, uint32_t p, uint32_t p_tot, const int ptwo) { uint32_t rscaled, cnd = !!b; if (ptwo) /* Whole function is inlined so hopefully branch is optimized out */ rscaled = rc->range >> ff_log2(p_tot); else rscaled = rc->range/p_tot; rc->value += cnd*(rc->range - rscaled*(p_tot - b)); rc->range = (!cnd)*(rc->range - rscaled*(p_tot - p)) + cnd*rscaled*(p - b); opus_rc_enc_normalize(rc); } uint32_t ff_opus_rc_dec_cdf(OpusRangeCoder *rc, const uint16_t *cdf) { unsigned int k, scale, total, symbol, low, high; total = *cdf++; scale = rc->range / total; symbol = rc->value / scale + 1; symbol = total - FFMIN(symbol, total); for (k = 0; cdf[k] <= symbol; k++); high = cdf[k]; low = k ? cdf[k-1] : 0; opus_rc_dec_update(rc, scale, low, high, total); return k; } void ff_opus_rc_enc_cdf(OpusRangeCoder *rc, int val, const uint16_t *cdf) { opus_rc_enc_update(rc, (!!val)*cdf[val], cdf[val + 1], cdf[0], 1); } uint32_t ff_opus_rc_dec_log(OpusRangeCoder *rc, uint32_t bits) { uint32_t k, scale; scale = rc->range >> bits; // in this case, scale = symbol if (rc->value >= scale) { rc->value -= scale; rc->range -= scale; k = 0; } else { rc->range = scale; k = 1; } opus_rc_dec_normalize(rc); return k; } void ff_opus_rc_enc_log(OpusRangeCoder *rc, int val, uint32_t bits) { bits = (1 << bits) - 1; opus_rc_enc_update(rc, (!!val)*bits, bits + !!val, bits + 1, 1); } /** * CELT: read 1-25 raw bits at the end of the frame, backwards byte-wise */ uint32_t ff_opus_rc_get_raw(OpusRangeCoder *rc, uint32_t count) { uint32_t value = 0; while (rc->rb.bytes && rc->rb.cachelen < count) { rc->rb.cacheval |= *--rc->rb.position << rc->rb.cachelen; rc->rb.cachelen += 8; rc->rb.bytes--; } value = av_mod_uintp2(rc->rb.cacheval, count); rc->rb.cacheval >>= count; rc->rb.cachelen -= count; rc->total_bits += count; return value; } /** * CELT: write 0 - 31 bits to the rawbits buffer */ void ff_opus_rc_put_raw(OpusRangeCoder *rc, uint32_t val, uint32_t count) { const int to_write = FFMIN(32 - rc->rb.cachelen, count); rc->total_bits += count; rc->rb.cacheval |= av_mod_uintp2(val, to_write) << rc->rb.cachelen; rc->rb.cachelen = (rc->rb.cachelen + to_write) % 32; if (!rc->rb.cachelen && count) { AV_WB32((uint8_t *)rc->rb.position, rc->rb.cacheval); rc->rb.bytes += 4; rc->rb.position -= 4; rc->rb.cachelen = count - to_write; rc->rb.cacheval = av_mod_uintp2(val >> to_write, rc->rb.cachelen); av_assert0(rc->rng_cur < rc->rb.position); } } /** * CELT: read a uniform distribution */ uint32_t ff_opus_rc_dec_uint(OpusRangeCoder *rc, uint32_t size) { uint32_t bits, k, scale, total; bits = opus_ilog(size - 1); total = (bits > 8) ? ((size - 1) >> (bits - 8)) + 1 : size; scale = rc->range / total; k = rc->value / scale + 1; k = total - FFMIN(k, total); opus_rc_dec_update(rc, scale, k, k + 1, total); if (bits > 8) { k = k << (bits - 8) | ff_opus_rc_get_raw(rc, bits - 8); return FFMIN(k, size - 1); } else return k; } /** * CELT: write a uniformly distributed integer */ void ff_opus_rc_enc_uint(OpusRangeCoder *rc, uint32_t val, uint32_t size) { const int ps = FFMAX(opus_ilog(size - 1) - 8, 0); opus_rc_enc_update(rc, val >> ps, (val >> ps) + 1, ((size - 1) >> ps) + 1, 0); ff_opus_rc_put_raw(rc, val, ps); } uint32_t ff_opus_rc_dec_uint_step(OpusRangeCoder *rc, int k0) { /* Use a probability of 3 up to itheta=8192 and then use 1 after */ uint32_t k, scale, symbol, total = (k0+1)*3 + k0; scale = rc->range / total; symbol = rc->value / scale + 1; symbol = total - FFMIN(symbol, total); k = (symbol < (k0+1)*3) ? symbol/3 : symbol - (k0+1)*2; opus_rc_dec_update(rc, scale, (k <= k0) ? 3*(k+0) : (k-1-k0) + 3*(k0+1), (k <= k0) ? 3*(k+1) : (k-0-k0) + 3*(k0+1), total); return k; } void ff_opus_rc_enc_uint_step(OpusRangeCoder *rc, uint32_t val, int k0) { const uint32_t a = val <= k0, b = 2*a + 1; k0 = (k0 + 1) << 1; val = b*(val + k0) - 3*a*k0; opus_rc_enc_update(rc, val, val + b, (k0 << 1) - 1, 0); } uint32_t ff_opus_rc_dec_uint_tri(OpusRangeCoder *rc, int qn) { uint32_t k, scale, symbol, total, low, center; total = ((qn>>1) + 1) * ((qn>>1) + 1); scale = rc->range / total; center = rc->value / scale + 1; center = total - FFMIN(center, total); if (center < total >> 1) { k = (ff_sqrt(8 * center + 1) - 1) >> 1; low = k * (k + 1) >> 1; symbol = k + 1; } else { k = (2*(qn + 1) - ff_sqrt(8*(total - center - 1) + 1)) >> 1; low = total - ((qn + 1 - k) * (qn + 2 - k) >> 1); symbol = qn + 1 - k; } opus_rc_dec_update(rc, scale, low, low + symbol, total); return k; } void ff_opus_rc_enc_uint_tri(OpusRangeCoder *rc, uint32_t k, int qn) { uint32_t symbol, low, total; total = ((qn>>1) + 1) * ((qn>>1) + 1); if (k <= qn >> 1) { low = k * (k + 1) >> 1; symbol = k + 1; } else { low = total - ((qn + 1 - k) * (qn + 2 - k) >> 1); symbol = qn + 1 - k; } opus_rc_enc_update(rc, low, low + symbol, total, 0); } int ff_opus_rc_dec_laplace(OpusRangeCoder *rc, uint32_t symbol, int decay) { /* extends the range coder to model a Laplace distribution */ int value = 0; uint32_t scale, low = 0, center; scale = rc->range >> 15; center = rc->value / scale + 1; center = (1 << 15) - FFMIN(center, 1 << 15); if (center >= symbol) { value++; low = symbol; symbol = 1 + ((32768 - 32 - symbol) * (16384-decay) >> 15); while (symbol > 1 && center >= low + 2 * symbol) { value++; symbol *= 2; low += symbol; symbol = (((symbol - 2) * decay) >> 15) + 1; } if (symbol <= 1) { int distance = (center - low) >> 1; value += distance; low += 2 * distance; } if (center < low + symbol) value *= -1; else low += symbol; } opus_rc_dec_update(rc, scale, low, FFMIN(low + symbol, 32768), 32768); return value; } void ff_opus_rc_enc_laplace(OpusRangeCoder *rc, int *value, uint32_t symbol, int decay) { uint32_t low = symbol; int i = 1, val = FFABS(*value), pos = *value > 0; if (!val) { opus_rc_enc_update(rc, 0, symbol, 1 << 15, 1); return; } symbol = ((32768 - 32 - symbol)*(16384 - decay)) >> 15; for (; i < val && symbol; i++) { low += (symbol << 1) + 2; symbol = (symbol*decay) >> 14; } if (symbol) { low += (++symbol)*pos; } else { const int distance = FFMIN(val - i, (((32768 - low) - !pos) >> 1) - 1); low += pos + (distance << 1); symbol = FFMIN(1, 32768 - low); *value = FFSIGN(*value)*(distance + i); } opus_rc_enc_update(rc, low, low + symbol, 1 << 15, 1); } int ff_opus_rc_dec_init(OpusRangeCoder *rc, const uint8_t *data, int size) { int ret = init_get_bits8(&rc->gb, data, size); if (ret < 0) return ret; rc->range = 128; rc->value = 127 - get_bits(&rc->gb, 7); rc->total_bits = 9; opus_rc_dec_normalize(rc); return 0; } void ff_opus_rc_dec_raw_init(OpusRangeCoder *rc, const uint8_t *rightend, uint32_t bytes) { rc->rb.position = rightend; rc->rb.bytes = bytes; rc->rb.cachelen = 0; rc->rb.cacheval = 0; } void ff_opus_rc_enc_end(OpusRangeCoder *rc, uint8_t *dst, int size) { int rng_bytes, bits = OPUS_RC_BITS - opus_ilog(rc->range); uint32_t mask = (OPUS_RC_TOP - 1) >> bits; uint32_t end = (rc->value + mask) & ~mask; if ((end | mask) >= rc->value + rc->range) { bits++; mask >>= 1; end = (rc->value + mask) & ~mask; } /* Finish what's left */ while (bits > 0) { opus_rc_enc_carryout(rc, end >> OPUS_RC_SHIFT); end = (end << OPUS_RC_SYM) & (OPUS_RC_TOP - 1); bits -= OPUS_RC_SYM; } /* Flush out anything left or marked */ if (rc->rem >= 0 || rc->ext > 0) opus_rc_enc_carryout(rc, 0); rng_bytes = rc->rng_cur - rc->buf; memcpy(dst, rc->buf, rng_bytes); rc->waste = size*8 - (rc->rb.bytes*8 + rc->rb.cachelen) - rng_bytes*8; /* Put the rawbits part, if any */ if (rc->rb.bytes || rc->rb.cachelen) { int i, lap; uint8_t *rb_src, *rb_dst; ff_opus_rc_put_raw(rc, 0, 32 - rc->rb.cachelen); rb_src = rc->buf + OPUS_MAX_PACKET_SIZE + 12 - rc->rb.bytes; rb_dst = dst + FFMAX(size - rc->rb.bytes, 0); lap = &dst[rng_bytes] - rb_dst; for (i = 0; i < lap; i++) rb_dst[i] |= rb_src[i]; memcpy(&rb_dst[lap], &rb_src[lap], FFMAX(rc->rb.bytes - lap, 0)); } } void ff_opus_rc_enc_init(OpusRangeCoder *rc) { rc->value = 0; rc->range = OPUS_RC_TOP; rc->total_bits = OPUS_RC_BITS + 1; rc->rem = -1; rc->ext = 0; rc->rng_cur = rc->buf; ff_opus_rc_dec_raw_init(rc, rc->buf + OPUS_MAX_PACKET_SIZE + 8, 0); }