/* * Copyright (c) 2012 Andrew D'Addesio * Copyright (c) 2013-2014 Mozilla Corporation * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Opus decoder/parser shared code */ #include <stdint.h> #include "libavutil/error.h" #include "libavutil/ffmath.h" #include "opus_celt.h" #include "opustab.h" #include "internal.h" #include "vorbis.h" static const uint16_t opus_frame_duration[32] = { 480, 960, 1920, 2880, 480, 960, 1920, 2880, 480, 960, 1920, 2880, 480, 960, 480, 960, 120, 240, 480, 960, 120, 240, 480, 960, 120, 240, 480, 960, 120, 240, 480, 960, }; /** * Read a 1- or 2-byte frame length */ static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end) { int val; if (*ptr >= end) return AVERROR_INVALIDDATA; val = *(*ptr)++; if (val >= 252) { if (*ptr >= end) return AVERROR_INVALIDDATA; val += 4 * *(*ptr)++; } return val; } /** * Read a multi-byte length (used for code 3 packet padding size) */ static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end) { int val = 0; int next; while (1) { if (*ptr >= end || val > INT_MAX - 254) return AVERROR_INVALIDDATA; next = *(*ptr)++; val += next; if (next < 255) break; else val--; } return val; } /** * Parse Opus packet info from raw packet data */ int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size, int self_delimiting) { const uint8_t *ptr = buf; const uint8_t *end = buf + buf_size; int padding = 0; int frame_bytes, i; if (buf_size < 1) goto fail; /* TOC byte */ i = *ptr++; pkt->code = (i ) & 0x3; pkt->stereo = (i >> 2) & 0x1; pkt->config = (i >> 3) & 0x1F; /* code 2 and code 3 packets have at least 1 byte after the TOC */ if (pkt->code >= 2 && buf_size < 2) goto fail; switch (pkt->code) { case 0: /* 1 frame */ pkt->frame_count = 1; pkt->vbr = 0; if (self_delimiting) { int len = xiph_lacing_16bit(&ptr, end); if (len < 0 || len > end - ptr) goto fail; end = ptr + len; buf_size = end - buf; } frame_bytes = end - ptr; if (frame_bytes > MAX_FRAME_SIZE) goto fail; pkt->frame_offset[0] = ptr - buf; pkt->frame_size[0] = frame_bytes; break; case 1: /* 2 frames, equal size */ pkt->frame_count = 2; pkt->vbr = 0; if (self_delimiting) { int len = xiph_lacing_16bit(&ptr, end); if (len < 0 || 2 * len > end - ptr) goto fail; end = ptr + 2 * len; buf_size = end - buf; } frame_bytes = end - ptr; if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE) goto fail; pkt->frame_offset[0] = ptr - buf; pkt->frame_size[0] = frame_bytes >> 1; pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0]; pkt->frame_size[1] = frame_bytes >> 1; break; case 2: /* 2 frames, different sizes */ pkt->frame_count = 2; pkt->vbr = 1; /* read 1st frame size */ frame_bytes = xiph_lacing_16bit(&ptr, end); if (frame_bytes < 0) goto fail; if (self_delimiting) { int len = xiph_lacing_16bit(&ptr, end); if (len < 0 || len + frame_bytes > end - ptr) goto fail; end = ptr + frame_bytes + len; buf_size = end - buf; } pkt->frame_offset[0] = ptr - buf; pkt->frame_size[0] = frame_bytes; /* calculate 2nd frame size */ frame_bytes = end - ptr - pkt->frame_size[0]; if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE) goto fail; pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0]; pkt->frame_size[1] = frame_bytes; break; case 3: /* 1 to 48 frames, can be different sizes */ i = *ptr++; pkt->frame_count = (i ) & 0x3F; padding = (i >> 6) & 0x01; pkt->vbr = (i >> 7) & 0x01; if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES) goto fail; /* read padding size */ if (padding) { padding = xiph_lacing_full(&ptr, end); if (padding < 0) goto fail; } /* read frame sizes */ if (pkt->vbr) { /* for VBR, all frames except the final one have their size coded in the bitstream. the last frame size is implicit. */ int total_bytes = 0; for (i = 0; i < pkt->frame_count - 1; i++) { frame_bytes = xiph_lacing_16bit(&ptr, end); if (frame_bytes < 0) goto fail; pkt->frame_size[i] = frame_bytes; total_bytes += frame_bytes; } if (self_delimiting) { int len = xiph_lacing_16bit(&ptr, end); if (len < 0 || len + total_bytes + padding > end - ptr) goto fail; end = ptr + total_bytes + len + padding; buf_size = end - buf; } frame_bytes = end - ptr - padding; if (total_bytes > frame_bytes) goto fail; pkt->frame_offset[0] = ptr - buf; for (i = 1; i < pkt->frame_count; i++) pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1]; pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes; } else { /* for CBR, the remaining packet bytes are divided evenly between the frames */ if (self_delimiting) { frame_bytes = xiph_lacing_16bit(&ptr, end); if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr) goto fail; end = ptr + pkt->frame_count * frame_bytes + padding; buf_size = end - buf; } else { frame_bytes = end - ptr - padding; if (frame_bytes % pkt->frame_count || frame_bytes / pkt->frame_count > MAX_FRAME_SIZE) goto fail; frame_bytes /= pkt->frame_count; } pkt->frame_offset[0] = ptr - buf; pkt->frame_size[0] = frame_bytes; for (i = 1; i < pkt->frame_count; i++) { pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1]; pkt->frame_size[i] = frame_bytes; } } } pkt->packet_size = buf_size; pkt->data_size = pkt->packet_size - padding; /* total packet duration cannot be larger than 120ms */ pkt->frame_duration = opus_frame_duration[pkt->config]; if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR) goto fail; /* set mode and bandwidth */ if (pkt->config < 12) { pkt->mode = OPUS_MODE_SILK; pkt->bandwidth = pkt->config >> 2; } else if (pkt->config < 16) { pkt->mode = OPUS_MODE_HYBRID; pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14); } else { pkt->mode = OPUS_MODE_CELT; pkt->bandwidth = (pkt->config - 16) >> 2; /* skip medium band */ if (pkt->bandwidth) pkt->bandwidth++; } return 0; fail: memset(pkt, 0, sizeof(*pkt)); return AVERROR_INVALIDDATA; } static int channel_reorder_vorbis(int nb_channels, int channel_idx) { return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx]; } static int channel_reorder_unknown(int nb_channels, int channel_idx) { return channel_idx; } av_cold int ff_opus_parse_extradata(AVCodecContext *avctx, OpusContext *s) { static const uint8_t default_channel_map[2] = { 0, 1 }; int (*channel_reorder)(int, int) = channel_reorder_unknown; const uint8_t *extradata, *channel_map; int extradata_size; int version, channels, map_type, streams, stereo_streams, i, j; uint64_t layout; if (!avctx->extradata) { if (avctx->channels > 2) { av_log(avctx, AV_LOG_ERROR, "Multichannel configuration without extradata.\n"); return AVERROR(EINVAL); } extradata = opus_default_extradata; extradata_size = sizeof(opus_default_extradata); } else { extradata = avctx->extradata; extradata_size = avctx->extradata_size; } if (extradata_size < 19) { av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n", extradata_size); return AVERROR_INVALIDDATA; } version = extradata[8]; if (version > 15) { avpriv_request_sample(avctx, "Extradata version %d", version); return AVERROR_PATCHWELCOME; } avctx->delay = AV_RL16(extradata + 10); if (avctx->internal) avctx->internal->skip_samples = avctx->delay; channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2; if (!channels) { av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n"); return AVERROR_INVALIDDATA; } s->gain_i = AV_RL16(extradata + 16); if (s->gain_i) s->gain = ff_exp10(s->gain_i / (20.0 * 256)); map_type = extradata[18]; if (!map_type) { if (channels > 2) { av_log(avctx, AV_LOG_ERROR, "Channel mapping 0 is only specified for up to 2 channels\n"); return AVERROR_INVALIDDATA; } layout = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO; streams = 1; stereo_streams = channels - 1; channel_map = default_channel_map; } else if (map_type == 1 || map_type == 2 || map_type == 255) { if (extradata_size < 21 + channels) { av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n", extradata_size); return AVERROR_INVALIDDATA; } streams = extradata[19]; stereo_streams = extradata[20]; if (!streams || stereo_streams > streams || streams + stereo_streams > 255) { av_log(avctx, AV_LOG_ERROR, "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams); return AVERROR_INVALIDDATA; } if (map_type == 1) { if (channels > 8) { av_log(avctx, AV_LOG_ERROR, "Channel mapping 1 is only specified for up to 8 channels\n"); return AVERROR_INVALIDDATA; } layout = ff_vorbis_channel_layouts[channels - 1]; channel_reorder = channel_reorder_vorbis; } else if (map_type == 2) { int ambisonic_order = ff_sqrt(channels) - 1; if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) && channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) { av_log(avctx, AV_LOG_ERROR, "Channel mapping 2 is only specified for channel counts" " which can be written as (n + 1)^2 or (n + 1)^2 + 2" " for nonnegative integer n\n"); return AVERROR_INVALIDDATA; } if (channels > 227) { av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); return AVERROR_INVALIDDATA; } layout = 0; } else layout = 0; channel_map = extradata + 21; } else { avpriv_request_sample(avctx, "Mapping type %d", map_type); return AVERROR_PATCHWELCOME; } s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps)); if (!s->channel_maps) return AVERROR(ENOMEM); for (i = 0; i < channels; i++) { ChannelMap *map = &s->channel_maps[i]; uint8_t idx = channel_map[channel_reorder(channels, i)]; if (idx == 255) { map->silence = 1; continue; } else if (idx >= streams + stereo_streams) { av_log(avctx, AV_LOG_ERROR, "Invalid channel map for output channel %d: %d\n", i, idx); av_freep(&s->channel_maps); return AVERROR_INVALIDDATA; } /* check that we did not see this index yet */ map->copy = 0; for (j = 0; j < i; j++) if (channel_map[channel_reorder(channels, j)] == idx) { map->copy = 1; map->copy_idx = j; break; } if (idx < 2 * stereo_streams) { map->stream_idx = idx / 2; map->channel_idx = idx & 1; } else { map->stream_idx = idx - stereo_streams; map->channel_idx = 0; } } avctx->channels = channels; avctx->channel_layout = layout; s->nb_streams = streams; s->nb_stereo_streams = stereo_streams; return 0; } void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc) { float lowband_scratch[8 * 22]; float norm1[2 * 8 * 100]; float *norm2 = norm1 + 8 * 100; int totalbits = (f->framebits << 3) - f->anticollapse_needed; int update_lowband = 1; int lowband_offset = 0; int i, j; for (i = f->start_band; i < f->end_band; i++) { uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; int band_offset = ff_celt_freq_bands[i] << f->size; int band_size = ff_celt_freq_range[i] << f->size; float *X = f->block[0].coeffs + band_offset; float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; float *norm_loc1, *norm_loc2; int consumed = opus_rc_tell_frac(rc); int effective_lowband = -1; int b = 0; /* Compute how many bits we want to allocate to this band */ if (i != f->start_band) f->remaining -= consumed; f->remaining2 = totalbits - consumed - 1; if (i <= f->coded_bands - 1) { int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); } if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] || i == f->start_band + 1) && (update_lowband || lowband_offset == 0)) lowband_offset = i; if (i == f->start_band + 1) { /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into the second to ensure the second band never has to use the LCG. */ int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size; memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float)); if (f->channels == 2) memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float)); } /* Get a conservative estimate of the collapse_mask's for the bands we're going to be folding from. */ if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || f->blocks > 1 || f->tf_change[i] < 0)) { int foldstart, foldend; /* This ensures we never repeat spectral content within one band */ effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); foldstart = lowband_offset; while (ff_celt_freq_bands[--foldstart] > effective_lowband); foldend = lowband_offset - 1; while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]); cm[0] = cm[1] = 0; for (j = foldstart; j < foldend; j++) { cm[0] |= f->block[0].collapse_masks[j]; cm[1] |= f->block[f->channels - 1].collapse_masks[j]; } } if (f->dual_stereo && i == f->intensity_stereo) { /* Switch off dual stereo to do intensity */ f->dual_stereo = 0; for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) norm1[j] = (norm1[j] + norm2[j]) / 2; } norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL; norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL; if (f->dual_stereo) { cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1, f->blocks, norm_loc1, f->size, norm1 + band_offset, 0, 1.0f, lowband_scratch, cm[0]); cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1, f->blocks, norm_loc2, f->size, norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); } else { cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, Y, band_size, b >> 0, f->blocks, norm_loc1, f->size, norm1 + band_offset, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); cm[1] = cm[0]; } f->block[0].collapse_masks[i] = (uint8_t)cm[0]; f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; f->remaining += f->pulses[i] + consumed; /* Update the folding position only as long as we have 1 bit/sample depth */ update_lowband = (b > band_size << 3); } } #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2) void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode) { int i, j, low, high, total, done, bandbits, remaining, tbits_8ths; int skip_startband = f->start_band; int skip_bit = 0; int intensitystereo_bit = 0; int dualstereo_bit = 0; int dynalloc = 6; int extrabits = 0; int boost[CELT_MAX_BANDS] = { 0 }; int trim_offset[CELT_MAX_BANDS]; int threshold[CELT_MAX_BANDS]; int bits1[CELT_MAX_BANDS]; int bits2[CELT_MAX_BANDS]; /* Spread */ if (opus_rc_tell(rc) + 4 <= f->framebits) { if (encode) ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread); else f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); } else { f->spread = CELT_SPREAD_NORMAL; } /* Initialize static allocation caps */ for (i = 0; i < CELT_MAX_BANDS; i++) f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]); /* Band boosts */ tbits_8ths = f->framebits << 3; for (i = f->start_band; i < f->end_band; i++) { int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; int b_dynalloc = dynalloc; int boost_amount = f->alloc_boost[i]; quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) { int is_boost; if (encode) { is_boost = boost_amount--; ff_opus_rc_enc_log(rc, is_boost, b_dynalloc); } else { is_boost = ff_opus_rc_dec_log(rc, b_dynalloc); } if (!is_boost) break; boost[i] += quanta; tbits_8ths -= quanta; b_dynalloc = 1; } if (boost[i]) dynalloc = FFMAX(dynalloc - 1, 2); } /* Allocation trim */ if (!encode) f->alloc_trim = 5; if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths) if (encode) ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim); else f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); /* Anti-collapse bit reservation */ tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; f->anticollapse_needed = 0; if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3)) f->anticollapse_needed = 1 << 3; tbits_8ths -= f->anticollapse_needed; /* Band skip bit reservation */ if (tbits_8ths >= 1 << 3) skip_bit = 1 << 3; tbits_8ths -= skip_bit; /* Intensity/dual stereo bit reservation */ if (f->channels == 2) { intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; if (intensitystereo_bit <= tbits_8ths) { tbits_8ths -= intensitystereo_bit; if (tbits_8ths >= 1 << 3) { dualstereo_bit = 1 << 3; tbits_8ths -= 1 << 3; } } else { intensitystereo_bit = 0; } } /* Trim offsets */ for (i = f->start_band; i < f->end_band; i++) { int trim = f->alloc_trim - 5 - f->size; int band = ff_celt_freq_range[i] * (f->end_band - i - 1); int duration = f->size + 3; int scale = duration + f->channels - 1; /* PVQ minimum allocation threshold, below this value the band is * skipped */ threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, f->channels << 3); trim_offset[i] = trim * (band << scale) >> 6; if (ff_celt_freq_range[i] << f->size == 1) trim_offset[i] -= f->channels << 3; } /* Bisection */ low = 1; high = CELT_VECTORS - 1; while (low <= high) { int center = (low + high) >> 1; done = total = 0; for (i = f->end_band - 1; i >= f->start_band; i--) { bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]); if (bandbits) bandbits = FFMAX(bandbits + trim_offset[i], 0); bandbits += boost[i]; if (bandbits >= threshold[i] || done) { done = 1; total += FFMIN(bandbits, f->caps[i]); } else if (bandbits >= f->channels << 3) { total += f->channels << 3; } } if (total > tbits_8ths) high = center - 1; else low = center + 1; } high = low--; /* Bisection */ for (i = f->start_band; i < f->end_band; i++) { bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]); bits2[i] = high >= CELT_VECTORS ? f->caps[i] : NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]); if (bits1[i]) bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0); if (bits2[i]) bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0); if (low) bits1[i] += boost[i]; bits2[i] += boost[i]; if (boost[i]) skip_startband = i; bits2[i] = FFMAX(bits2[i] - bits1[i], 0); } /* Bisection */ low = 0; high = 1 << CELT_ALLOC_STEPS; for (i = 0; i < CELT_ALLOC_STEPS; i++) { int center = (low + high) >> 1; done = total = 0; for (j = f->end_band - 1; j >= f->start_band; j--) { bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); if (bandbits >= threshold[j] || done) { done = 1; total += FFMIN(bandbits, f->caps[j]); } else if (bandbits >= f->channels << 3) total += f->channels << 3; } if (total > tbits_8ths) high = center; else low = center; } /* Bisection */ done = total = 0; for (i = f->end_band - 1; i >= f->start_band; i--) { bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); if (bandbits >= threshold[i] || done) done = 1; else bandbits = (bandbits >= f->channels << 3) ? f->channels << 3 : 0; bandbits = FFMIN(bandbits, f->caps[i]); f->pulses[i] = bandbits; total += bandbits; } /* Band skipping */ for (f->coded_bands = f->end_band; ; f->coded_bands--) { int allocation; j = f->coded_bands - 1; if (j == skip_startband) { /* all remaining bands are not skipped */ tbits_8ths += skip_bit; break; } /* determine the number of bits available for coding "do not skip" markers */ remaining = tbits_8ths - total; bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]; allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0); /* a "do not skip" marker is only coded if the allocation is * above the chosen threshold */ if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) { int do_not_skip; if (encode) { do_not_skip = f->coded_bands <= f->skip_band_floor; ff_opus_rc_enc_log(rc, do_not_skip, 1); } else { do_not_skip = ff_opus_rc_dec_log(rc, 1); } if (do_not_skip) break; total += 1 << 3; allocation -= 1 << 3; } /* the band is skipped, so reclaim its bits */ total -= f->pulses[j]; if (intensitystereo_bit) { total -= intensitystereo_bit; intensitystereo_bit = ff_celt_log2_frac[j - f->start_band]; total += intensitystereo_bit; } total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; } /* IS start band */ if (encode) { if (intensitystereo_bit) { f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands); ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band); } } else { f->intensity_stereo = f->dual_stereo = 0; if (intensitystereo_bit) f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); } /* DS flag */ if (f->intensity_stereo <= f->start_band) tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */ else if (dualstereo_bit) if (encode) ff_opus_rc_enc_log(rc, f->dual_stereo, 1); else f->dual_stereo = ff_opus_rc_dec_log(rc, 1); /* Supply the remaining bits in this frame to lower bands */ remaining = tbits_8ths - total; bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); for (i = f->start_band; i < f->coded_bands; i++) { const int bits = FFMIN(remaining, ff_celt_freq_range[i]); f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; remaining -= bits; } /* Finally determine the allocation */ for (i = f->start_band; i < f->coded_bands; i++) { int N = ff_celt_freq_range[i] << f->size; int prev_extra = extrabits; f->pulses[i] += extrabits; if (N > 1) { int dof; /* degrees of freedom */ int temp; /* dof * channels * log(dof) */ int fine_bits; int max_bits; int offset; /* fine energy quantization offset, i.e. * extra bits assigned over the standard * totalbits/dof */ extrabits = FFMAX(f->pulses[i] - f->caps[i], 0); f->pulses[i] -= extrabits; /* intensity stereo makes use of an extra degree of freedom */ dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3)); offset = (temp >> 1) - dof * CELT_FINE_OFFSET; if (N == 2) /* dof=2 is the only case that doesn't fit the model */ offset += dof << 1; /* grant an additional bias for the first and second pulses */ if (f->pulses[i] + offset < 2 * (dof << 3)) offset += temp >> 2; else if (f->pulses[i] + offset < 3 * (dof << 3)) offset += temp >> 3; fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS); max_bits = FFMAX(max_bits, 0); f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); /* If fine_bits was rounded down or capped, * give priority for the final fine energy pass */ f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset); /* the remaining bits are assigned to PVQ */ f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; } else { /* all bits go to fine energy except for the sign bit */ extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0); f->pulses[i] -= extrabits; f->fine_bits[i] = 0; f->fine_priority[i] = 1; } /* hand back a limited number of extra fine energy bits to this band */ if (extrabits > 0) { int fineextra = FFMIN(extrabits >> (f->channels + 2), CELT_MAX_FINE_BITS - f->fine_bits[i]); f->fine_bits[i] += fineextra; fineextra <<= f->channels + 2; f->fine_priority[i] = (fineextra >= extrabits - prev_extra); extrabits -= fineextra; } } f->remaining = extrabits; /* skipped bands dedicate all of their bits for fine energy */ for (; i < f->end_band; i++) { f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3; f->pulses[i] = 0; f->fine_priority[i] = f->fine_bits[i] < 1; } }