/* * Copyright (c) 2001, 2002 Fabrice Bellard * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <stdint.h> #include "libavutil/mem.h" #include "dct32.h" #include "mathops.h" #include "mpegaudiodsp.h" #include "mpegaudio.h" #include "mpegaudiodata.h" #if CONFIG_FLOAT #define RENAME(n) n##_float static inline float round_sample(float *sum) { float sum1=*sum; *sum = 0; return sum1; } #define MACS(rt, ra, rb) rt+=(ra)*(rb) #define MULS(ra, rb) ((ra)*(rb)) #define MULH3(x, y, s) ((s)*(y)*(x)) #define MLSS(rt, ra, rb) rt-=(ra)*(rb) #define MULLx(x, y, s) ((y)*(x)) #define FIXHR(x) ((float)(x)) #define FIXR(x) ((float)(x)) #define SHR(a,b) ((a)*(1.0f/(1<<(b)))) #else #define RENAME(n) n##_fixed #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15) static inline int round_sample(int64_t *sum) { int sum1; sum1 = (int)((*sum) >> OUT_SHIFT); *sum &= (1<<OUT_SHIFT)-1; return av_clip_int16(sum1); } # define MULS(ra, rb) MUL64(ra, rb) # define MACS(rt, ra, rb) MAC64(rt, ra, rb) # define MLSS(rt, ra, rb) MLS64(rt, ra, rb) # define MULH3(x, y, s) MULH((s)*(x), y) # define MULLx(x, y, s) MULL(x,y,s) # define SHR(a,b) ((a)>>(b)) # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) #endif /** Window for MDCT. Actually only the elements in [0,17] and [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest is just to preserve alignment for SIMD implementations. */ DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE]; DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; #define SUM8(op, sum, w, p) \ { \ op(sum, (w)[0 * 64], (p)[0 * 64]); \ op(sum, (w)[1 * 64], (p)[1 * 64]); \ op(sum, (w)[2 * 64], (p)[2 * 64]); \ op(sum, (w)[3 * 64], (p)[3 * 64]); \ op(sum, (w)[4 * 64], (p)[4 * 64]); \ op(sum, (w)[5 * 64], (p)[5 * 64]); \ op(sum, (w)[6 * 64], (p)[6 * 64]); \ op(sum, (w)[7 * 64], (p)[7 * 64]); \ } #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ { \ INTFLOAT tmp;\ tmp = p[0 * 64];\ op1(sum1, (w1)[0 * 64], tmp);\ op2(sum2, (w2)[0 * 64], tmp);\ tmp = p[1 * 64];\ op1(sum1, (w1)[1 * 64], tmp);\ op2(sum2, (w2)[1 * 64], tmp);\ tmp = p[2 * 64];\ op1(sum1, (w1)[2 * 64], tmp);\ op2(sum2, (w2)[2 * 64], tmp);\ tmp = p[3 * 64];\ op1(sum1, (w1)[3 * 64], tmp);\ op2(sum2, (w2)[3 * 64], tmp);\ tmp = p[4 * 64];\ op1(sum1, (w1)[4 * 64], tmp);\ op2(sum2, (w2)[4 * 64], tmp);\ tmp = p[5 * 64];\ op1(sum1, (w1)[5 * 64], tmp);\ op2(sum2, (w2)[5 * 64], tmp);\ tmp = p[6 * 64];\ op1(sum1, (w1)[6 * 64], tmp);\ op2(sum2, (w2)[6 * 64], tmp);\ tmp = p[7 * 64];\ op1(sum1, (w1)[7 * 64], tmp);\ op2(sum2, (w2)[7 * 64], tmp);\ } void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window, int *dither_state, OUT_INT *samples, int incr) { register const MPA_INT *w, *w2, *p; int j; OUT_INT *samples2; #if CONFIG_FLOAT float sum, sum2; #else int64_t sum, sum2; #endif /* copy to avoid wrap */ memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); samples2 = samples + 31 * incr; w = window; w2 = window + 31; sum = *dither_state; p = synth_buf + 16; SUM8(MACS, sum, w, p); p = synth_buf + 48; SUM8(MLSS, sum, w + 32, p); *samples = round_sample(&sum); samples += incr; w++; /* we calculate two samples at the same time to avoid one memory access per two sample */ for(j=1;j<16;j++) { sum2 = 0; p = synth_buf + 16 + j; SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); p = synth_buf + 48 - j; SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); *samples = round_sample(&sum); samples += incr; sum += sum2; *samples2 = round_sample(&sum); samples2 -= incr; w++; w2--; } p = synth_buf + 32; SUM8(MLSS, sum, w + 32, p); *samples = round_sample(&sum); *dither_state= sum; } /* 32 sub band synthesis filter. Input: 32 sub band samples, Output: 32 samples. */ void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr, int *synth_buf_offset, MPA_INT *window, int *dither_state, OUT_INT *samples, int incr, MPA_INT *sb_samples) { MPA_INT *synth_buf; int offset; offset = *synth_buf_offset; synth_buf = synth_buf_ptr + offset; s->RENAME(dct32)(synth_buf, sb_samples); s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr); offset = (offset - 32) & 511; *synth_buf_offset = offset; } av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window) { int i, j; /* max = 18760, max sum over all 16 coefs : 44736 */ for(i=0;i<257;i++) { INTFLOAT v; v = ff_mpa_enwindow[i]; #if CONFIG_FLOAT v *= 1.0 / (1LL<<(16 + FRAC_BITS)); #endif window[i] = v; if ((i & 63) != 0) v = -v; if (i != 0) window[512 - i] = v; } // Needed for avoiding shuffles in ASM implementations for(i=0; i < 8; i++) for(j=0; j < 16; j++) window[512+16*i+j] = window[64*i+32-j]; for(i=0; i < 8; i++) for(j=0; j < 16; j++) window[512+128+16*i+j] = window[64*i+48-j]; } void RENAME(ff_init_mpadsp_tabs)(void) { int i, j; /* compute mdct windows */ for (i = 0; i < 36; i++) { for (j = 0; j < 4; j++) { double d; if (j == 2 && i % 3 != 1) continue; d = sin(M_PI * (i + 0.5) / 36.0); if (j == 1) { if (i >= 30) d = 0; else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0); else if (i >= 18) d = 1; } else if (j == 3) { if (i < 6) d = 0; else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0); else if (i < 18) d = 1; } //merge last stage of imdct into the window coefficients d *= 0.5 / cos(M_PI * (2 * i + 19) / 72); if (j == 2) RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5))); else { int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18); RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5))); } } } /* NOTE: we do frequency inversion adter the MDCT by changing the sign of the right window coefs */ for (j = 0; j < 4; j++) { for (i = 0; i < MDCT_BUF_SIZE; i += 2) { RENAME(ff_mdct_win)[j + 4][i ] = RENAME(ff_mdct_win)[j][i ]; RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1]; } } } /* cos(pi*i/18) */ #define C1 FIXHR(0.98480775301220805936/2) #define C2 FIXHR(0.93969262078590838405/2) #define C3 FIXHR(0.86602540378443864676/2) #define C4 FIXHR(0.76604444311897803520/2) #define C5 FIXHR(0.64278760968653932632/2) #define C6 FIXHR(0.5/2) #define C7 FIXHR(0.34202014332566873304/2) #define C8 FIXHR(0.17364817766693034885/2) /* 0.5 / cos(pi*(2*i+1)/36) */ static const INTFLOAT icos36[9] = { FIXR(0.50190991877167369479), FIXR(0.51763809020504152469), //0 FIXR(0.55168895948124587824), FIXR(0.61038729438072803416), FIXR(0.70710678118654752439), //1 FIXR(0.87172339781054900991), FIXR(1.18310079157624925896), FIXR(1.93185165257813657349), //2 FIXR(5.73685662283492756461), }; /* 0.5 / cos(pi*(2*i+1)/36) */ static const INTFLOAT icos36h[9] = { FIXHR(0.50190991877167369479/2), FIXHR(0.51763809020504152469/2), //0 FIXHR(0.55168895948124587824/2), FIXHR(0.61038729438072803416/2), FIXHR(0.70710678118654752439/2), //1 FIXHR(0.87172339781054900991/2), FIXHR(1.18310079157624925896/4), FIXHR(1.93185165257813657349/4), //2 // FIXHR(5.73685662283492756461), }; /* using Lee like decomposition followed by hand coded 9 points DCT */ static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) { int i, j; INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; INTFLOAT tmp[18], *tmp1, *in1; for (i = 17; i >= 1; i--) in[i] += in[i-1]; for (i = 17; i >= 3; i -= 2) in[i] += in[i-2]; for (j = 0; j < 2; j++) { tmp1 = tmp + j; in1 = in + j; t2 = in1[2*4] + in1[2*8] - in1[2*2]; t3 = in1[2*0] + SHR(in1[2*6],1); t1 = in1[2*0] - in1[2*6]; tmp1[ 6] = t1 - SHR(t2,1); tmp1[16] = t1 + t2; t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); tmp1[10] = t3 - t0 - t2; tmp1[ 2] = t3 + t0 + t1; tmp1[14] = t3 + t2 - t1; tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); t0 = MULH3(in1[2*3], C3, 2); t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); tmp1[ 0] = t2 + t3 + t0; tmp1[12] = t2 + t1 - t0; tmp1[ 8] = t3 - t1 - t0; } i = 0; for (j = 0; j < 4; j++) { t0 = tmp[i]; t1 = tmp[i + 2]; s0 = t1 + t0; s2 = t1 - t0; t2 = tmp[i + 1]; t3 = tmp[i + 3]; s1 = MULH3(t3 + t2, icos36h[ j], 2); s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS); t0 = s0 + s1; t1 = s0 - s1; out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)]; out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)]; buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1); buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1); t0 = s2 + s3; t1 = s2 - s3; out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)]; out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)]; buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1); buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1); i += 4; } s0 = tmp[16]; s1 = MULH3(tmp[17], icos36h[4], 2); t0 = s0 + s1; t1 = s0 - s1; out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)]; out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)]; buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1); buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1); } void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, int count, int switch_point, int block_type) { int j; for (j=0 ; j < count; j++) { /* apply window & overlap with previous buffer */ /* select window */ int win_idx = (switch_point && j < 2) ? 0 : block_type; INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))]; imdct36(out, buf, in, win); in += 18; buf += ((j&3) != 3 ? 1 : (72-3)); out++; } }