/* * Lagarith lossless decoder * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Lagarith lossless decoder * @author Nathan Caldwell */ #include <inttypes.h> #include "avcodec.h" #include "get_bits.h" #include "mathops.h" #include "huffyuvdsp.h" #include "lagarithrac.h" #include "thread.h" enum LagarithFrameType { FRAME_RAW = 1, /**< uncompressed */ FRAME_U_RGB24 = 2, /**< unaligned RGB24 */ FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */ FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */ FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */ FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */ FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */ FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */ FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */ FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */ FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */ }; typedef struct LagarithContext { AVCodecContext *avctx; HuffYUVDSPContext hdsp; int zeros; /**< number of consecutive zero bytes encountered */ int zeros_rem; /**< number of zero bytes remaining to output */ uint8_t *rgb_planes; int rgb_planes_allocated; int rgb_stride; } LagarithContext; /** * Compute the 52bit mantissa of 1/(double)denom. * This crazy format uses floats in an entropy coder and we have to match x86 * rounding exactly, thus ordinary floats aren't portable enough. * @param denom denominator * @return 52bit mantissa * @see softfloat_mul */ static uint64_t softfloat_reciprocal(uint32_t denom) { int shift = av_log2(denom - 1) + 1; uint64_t ret = (1ULL << 52) / denom; uint64_t err = (1ULL << 52) - ret * denom; ret <<= shift; err <<= shift; err += denom / 2; return ret + err / denom; } /** * (uint32_t)(x*f), where f has the given mantissa, and exponent 0 * Used in combination with softfloat_reciprocal computes x/(double)denom. * @param x 32bit integer factor * @param mantissa mantissa of f with exponent 0 * @return 32bit integer value (x*f) * @see softfloat_reciprocal */ static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa) { uint64_t l = x * (mantissa & 0xffffffff); uint64_t h = x * (mantissa >> 32); h += l >> 32; l &= 0xffffffff; l += 1 << av_log2(h >> 21); h += l >> 32; return h >> 20; } static uint8_t lag_calc_zero_run(int8_t x) { return (x << 1) ^ (x >> 7); } static int lag_decode_prob(GetBitContext *gb, uint32_t *value) { static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 }; int i; int bit = 0; int bits = 0; int prevbit = 0; unsigned val; for (i = 0; i < 7; i++) { if (prevbit && bit) break; prevbit = bit; bit = get_bits1(gb); if (bit && !prevbit) bits += series[i]; } bits--; if (bits < 0 || bits > 31) { *value = 0; return -1; } else if (bits == 0) { *value = 0; return 0; } val = get_bits_long(gb, bits); val |= 1U << bits; *value = val - 1; return 0; } static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb) { int i, j, scale_factor; unsigned prob, cumulative_target; unsigned cumul_prob = 0; unsigned scaled_cumul_prob = 0; rac->prob[0] = 0; rac->prob[257] = UINT_MAX; /* Read probabilities from bitstream */ for (i = 1; i < 257; i++) { if (lag_decode_prob(gb, &rac->prob[i]) < 0) { av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n"); return -1; } if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) { av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n"); return -1; } cumul_prob += rac->prob[i]; if (!rac->prob[i]) { if (lag_decode_prob(gb, &prob)) { av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n"); return -1; } if (prob > 256 - i) prob = 256 - i; for (j = 0; j < prob; j++) rac->prob[++i] = 0; } } if (!cumul_prob) { av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n"); return -1; } /* Scale probabilities so cumulative probability is an even power of 2. */ scale_factor = av_log2(cumul_prob); if (cumul_prob & (cumul_prob - 1)) { uint64_t mul = softfloat_reciprocal(cumul_prob); for (i = 1; i <= 128; i++) { rac->prob[i] = softfloat_mul(rac->prob[i], mul); scaled_cumul_prob += rac->prob[i]; } if (scaled_cumul_prob <= 0) { av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n"); return AVERROR_INVALIDDATA; } for (; i < 257; i++) { rac->prob[i] = softfloat_mul(rac->prob[i], mul); scaled_cumul_prob += rac->prob[i]; } scale_factor++; cumulative_target = 1 << scale_factor; if (scaled_cumul_prob > cumulative_target) { av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities are larger than target!\n"); return -1; } scaled_cumul_prob = cumulative_target - scaled_cumul_prob; for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) { if (rac->prob[i]) { rac->prob[i]++; scaled_cumul_prob--; } /* Comment from reference source: * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way * // since the compression change is negligible and fixing it * // breaks backwards compatibility * b =- (signed int)b; * b &= 0xFF; * } else { * b++; * b &= 0x7f; * } */ } } rac->scale = scale_factor; /* Fill probability array with cumulative probability for each symbol. */ for (i = 1; i < 257; i++) rac->prob[i] += rac->prob[i - 1]; return 0; } static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top) { /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h. * However the &0xFF on the gradient predictor yealds incorrect output * for lagarith. */ int i; uint8_t l, lt; l = *left; lt = *left_top; for (i = 0; i < w; i++) { l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i]; lt = src1[i]; dst[i] = l; } *left = l; *left_top = lt; } static void lag_pred_line(LagarithContext *l, uint8_t *buf, int width, int stride, int line) { int L, TL; if (!line) { /* Left prediction only for first line */ L = l->hdsp.add_hfyu_left_pred(buf, buf, width, 0); } else { /* Left pixel is actually prev_row[width] */ L = buf[width - stride - 1]; if (line == 1) { /* Second line, left predict first pixel, the rest of the line is median predicted * NOTE: In the case of RGB this pixel is top predicted */ TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L; } else { /* Top left is 2 rows back, last pixel */ TL = buf[width - (2 * stride) - 1]; } add_lag_median_prediction(buf, buf - stride, buf, width, &L, &TL); } } static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf, int width, int stride, int line, int is_luma) { int L, TL; if (!line) { L= buf[0]; if (is_luma) buf[0] = 0; l->hdsp.add_hfyu_left_pred(buf, buf, width, 0); if (is_luma) buf[0] = L; return; } if (line == 1) { const int HEAD = is_luma ? 4 : 2; int i; L = buf[width - stride - 1]; TL = buf[HEAD - stride - 1]; for (i = 0; i < HEAD; i++) { L += buf[i]; buf[i] = L; } for (; i < width; i++) { L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i]; TL = buf[i - stride]; buf[i] = L; } } else { TL = buf[width - (2 * stride) - 1]; L = buf[width - stride - 1]; l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL); } } static int lag_decode_line(LagarithContext *l, lag_rac *rac, uint8_t *dst, int width, int stride, int esc_count) { int i = 0; int ret = 0; if (!esc_count) esc_count = -1; /* Output any zeros remaining from the previous run */ handle_zeros: if (l->zeros_rem) { int count = FFMIN(l->zeros_rem, width - i); memset(dst + i, 0, count); i += count; l->zeros_rem -= count; } while (i < width) { dst[i] = lag_get_rac(rac); ret++; if (dst[i]) l->zeros = 0; else l->zeros++; i++; if (l->zeros == esc_count) { int index = lag_get_rac(rac); ret++; l->zeros = 0; l->zeros_rem = lag_calc_zero_run(index); goto handle_zeros; } } return ret; } static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, const uint8_t *src, const uint8_t *src_end, int width, int esc_count) { int i = 0; int count; uint8_t zero_run = 0; const uint8_t *src_start = src; uint8_t mask1 = -(esc_count < 2); uint8_t mask2 = -(esc_count < 3); uint8_t *end = dst + (width - 2); avpriv_request_sample(l->avctx, "zero_run_line"); memset(dst, 0, width); output_zeros: if (l->zeros_rem) { count = FFMIN(l->zeros_rem, width - i); if (end - dst < count) { av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n"); return AVERROR_INVALIDDATA; } memset(dst, 0, count); l->zeros_rem -= count; dst += count; } while (dst < end) { i = 0; while (!zero_run && dst + i < end) { i++; if (i+2 >= src_end - src) return AVERROR_INVALIDDATA; zero_run = !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2)); } if (zero_run) { zero_run = 0; i += esc_count; memcpy(dst, src, i); dst += i; l->zeros_rem = lag_calc_zero_run(src[i]); src += i + 1; goto output_zeros; } else { memcpy(dst, src, i); src += i; dst += i; } } return src - src_start; } static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, int width, int height, int stride, const uint8_t *src, int src_size) { int i = 0; int read = 0; uint32_t length; uint32_t offset = 1; int esc_count; GetBitContext gb; lag_rac rac; const uint8_t *src_end = src + src_size; int ret; rac.avctx = l->avctx; l->zeros = 0; if(src_size < 2) return AVERROR_INVALIDDATA; esc_count = src[0]; if (esc_count < 4) { length = width * height; if(src_size < 5) return AVERROR_INVALIDDATA; if (esc_count && AV_RL32(src + 1) < length) { length = AV_RL32(src + 1); offset += 4; } if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0) return ret; if (lag_read_prob_header(&rac, &gb) < 0) return -1; ff_lag_rac_init(&rac, &gb, length - stride); for (i = 0; i < height; i++) read += lag_decode_line(l, &rac, dst + (i * stride), width, stride, esc_count); if (read > length) av_log(l->avctx, AV_LOG_WARNING, "Output more bytes than length (%d of %"PRIu32")\n", read, length); } else if (esc_count < 8) { esc_count -= 4; src ++; src_size --; if (esc_count > 0) { /* Zero run coding only, no range coding. */ for (i = 0; i < height; i++) { int res = lag_decode_zero_run_line(l, dst + (i * stride), src, src_end, width, esc_count); if (res < 0) return res; src += res; } } else { if (src_size < width * height) return AVERROR_INVALIDDATA; // buffer not big enough /* Plane is stored uncompressed */ for (i = 0; i < height; i++) { memcpy(dst + (i * stride), src, width); src += width; } } } else if (esc_count == 0xff) { /* Plane is a solid run of given value */ for (i = 0; i < height; i++) memset(dst + i * stride, src[1], width); /* Do not apply prediction. Note: memset to 0 above, setting first value to src[1] and applying prediction gives the same result. */ return 0; } else { av_log(l->avctx, AV_LOG_ERROR, "Invalid zero run escape code! (%#x)\n", esc_count); return -1; } if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) { for (i = 0; i < height; i++) { lag_pred_line(l, dst, width, stride, i); dst += stride; } } else { for (i = 0; i < height; i++) { lag_pred_line_yuy2(l, dst, width, stride, i, width == l->avctx->width); dst += stride; } } return 0; } /** * Decode a frame. * @param avctx codec context * @param data output AVFrame * @param data_size size of output data or 0 if no picture is returned * @param avpkt input packet * @return number of consumed bytes on success or negative if decode fails */ static int lag_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; unsigned int buf_size = avpkt->size; LagarithContext *l = avctx->priv_data; ThreadFrame frame = { .f = data }; AVFrame *const p = data; uint8_t frametype = 0; uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9; uint32_t offs[4]; uint8_t *srcs[4], *dst; int i, j, planes = 3; int ret; p->key_frame = 1; frametype = buf[0]; offset_gu = AV_RL32(buf + 1); offset_bv = AV_RL32(buf + 5); switch (frametype) { case FRAME_SOLID_RGBA: avctx->pix_fmt = AV_PIX_FMT_RGB32; case FRAME_SOLID_GRAY: if (frametype == FRAME_SOLID_GRAY) if (avctx->bits_per_coded_sample == 24) { avctx->pix_fmt = AV_PIX_FMT_RGB24; } else { avctx->pix_fmt = AV_PIX_FMT_0RGB32; planes = 4; } if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; dst = p->data[0]; if (frametype == FRAME_SOLID_RGBA) { for (j = 0; j < avctx->height; j++) { for (i = 0; i < avctx->width; i++) AV_WN32(dst + i * 4, offset_gu); dst += p->linesize[0]; } } else { for (j = 0; j < avctx->height; j++) { memset(dst, buf[1], avctx->width * planes); dst += p->linesize[0]; } } break; case FRAME_SOLID_COLOR: if (avctx->bits_per_coded_sample == 24) { avctx->pix_fmt = AV_PIX_FMT_RGB24; } else { avctx->pix_fmt = AV_PIX_FMT_RGB32; offset_gu |= 0xFFU << 24; } if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0) return ret; dst = p->data[0]; for (j = 0; j < avctx->height; j++) { for (i = 0; i < avctx->width; i++) if (avctx->bits_per_coded_sample == 24) { AV_WB24(dst + i * 3, offset_gu); } else { AV_WN32(dst + i * 4, offset_gu); } dst += p->linesize[0]; } break; case FRAME_ARITH_RGBA: avctx->pix_fmt = AV_PIX_FMT_RGB32; planes = 4; offset_ry += 4; offs[3] = AV_RL32(buf + 9); case FRAME_ARITH_RGB24: case FRAME_U_RGB24: if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24) avctx->pix_fmt = AV_PIX_FMT_RGB24; if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; offs[0] = offset_bv; offs[1] = offset_gu; offs[2] = offset_ry; l->rgb_stride = FFALIGN(avctx->width, 16); av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated, l->rgb_stride * avctx->height * planes + 1); if (!l->rgb_planes) { av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n"); return AVERROR(ENOMEM); } for (i = 0; i < planes; i++) srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride; for (i = 0; i < planes; i++) if (buf_size <= offs[i]) { av_log(avctx, AV_LOG_ERROR, "Invalid frame offsets\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < planes; i++) lag_decode_arith_plane(l, srcs[i], avctx->width, avctx->height, -l->rgb_stride, buf + offs[i], buf_size - offs[i]); dst = p->data[0]; for (i = 0; i < planes; i++) srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height; for (j = 0; j < avctx->height; j++) { for (i = 0; i < avctx->width; i++) { uint8_t r, g, b, a; r = srcs[0][i]; g = srcs[1][i]; b = srcs[2][i]; r += g; b += g; if (frametype == FRAME_ARITH_RGBA) { a = srcs[3][i]; AV_WN32(dst + i * 4, MKBETAG(a, r, g, b)); } else { dst[i * 3 + 0] = r; dst[i * 3 + 1] = g; dst[i * 3 + 2] = b; } } dst += p->linesize[0]; for (i = 0; i < planes; i++) srcs[i] += l->rgb_stride; } break; case FRAME_ARITH_YUY2: avctx->pix_fmt = AV_PIX_FMT_YUV422P; if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (offset_ry >= buf_size || offset_gu >= buf_size || offset_bv >= buf_size) { av_log(avctx, AV_LOG_ERROR, "Invalid frame offsets\n"); return AVERROR_INVALIDDATA; } lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, p->linesize[0], buf + offset_ry, buf_size - offset_ry); lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2, avctx->height, p->linesize[1], buf + offset_gu, buf_size - offset_gu); lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2, avctx->height, p->linesize[2], buf + offset_bv, buf_size - offset_bv); break; case FRAME_ARITH_YV12: avctx->pix_fmt = AV_PIX_FMT_YUV420P; if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) { return AVERROR_INVALIDDATA; } if (offset_ry >= buf_size || offset_gu >= buf_size || offset_bv >= buf_size) { av_log(avctx, AV_LOG_ERROR, "Invalid frame offsets\n"); return AVERROR_INVALIDDATA; } lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, p->linesize[0], buf + offset_ry, buf_size - offset_ry); lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2, (avctx->height + 1) / 2, p->linesize[2], buf + offset_gu, buf_size - offset_gu); lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2, (avctx->height + 1) / 2, p->linesize[1], buf + offset_bv, buf_size - offset_bv); break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype); return AVERROR_PATCHWELCOME; } *got_frame = 1; return buf_size; } static av_cold int lag_decode_init(AVCodecContext *avctx) { LagarithContext *l = avctx->priv_data; l->avctx = avctx; ff_huffyuvdsp_init(&l->hdsp); return 0; } static av_cold int lag_decode_end(AVCodecContext *avctx) { LagarithContext *l = avctx->priv_data; av_freep(&l->rgb_planes); return 0; } AVCodec ff_lagarith_decoder = { .name = "lagarith", .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_LAGARITH, .priv_data_size = sizeof(LagarithContext), .init = lag_decode_init, .close = lag_decode_end, .decode = lag_decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS, };