/* * IFF ACBM/ANIM/DEEP/ILBM/PBM/RGB8/RGBN bitmap decoder * Copyright (c) 2010 Peter Ross <pross@xvid.org> * Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com> * Copyright (c) 2016 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * IFF ACBM/ANIM/DEEP/ILBM/PBM/RGB8/RGBN bitmap decoder */ #include <stdint.h> #include "libavutil/imgutils.h" #include "bytestream.h" #include "avcodec.h" #include "internal.h" #include "mathops.h" // TODO: masking bits typedef enum { MASK_NONE, MASK_HAS_MASK, MASK_HAS_TRANSPARENT_COLOR, MASK_LASSO } mask_type; typedef struct IffContext { AVFrame *frame; int planesize; uint8_t * planebuf; uint8_t * ham_buf; ///< temporary buffer for planar to chunky conversation uint32_t *ham_palbuf; ///< HAM decode table uint32_t *mask_buf; ///< temporary buffer for palette indices uint32_t *mask_palbuf; ///< masking palette table unsigned compression; ///< delta compression method used unsigned is_short; ///< short compression method used unsigned is_interlaced;///< video is interlaced unsigned is_brush; ///< video is in ANBR format unsigned bpp; ///< bits per plane to decode (differs from bits_per_coded_sample if HAM) unsigned ham; ///< 0 if non-HAM or number of hold bits (6 for bpp > 6, 4 otherwise) unsigned flags; ///< 1 for EHB, 0 is no extra half darkening unsigned transparency; ///< TODO: transparency color index in palette unsigned masking; ///< TODO: masking method used int init; // 1 if buffer and palette data already initialized, 0 otherwise int16_t tvdc[16]; ///< TVDC lookup table GetByteContext gb; uint8_t *video[2]; unsigned video_size; uint32_t *pal; } IffContext; #define LUT8_PART(plane, v) \ AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane #define LUT8(plane) { \ LUT8_PART(plane, 0x0000000), \ LUT8_PART(plane, 0x1000000), \ LUT8_PART(plane, 0x0010000), \ LUT8_PART(plane, 0x1010000), \ LUT8_PART(plane, 0x0000100), \ LUT8_PART(plane, 0x1000100), \ LUT8_PART(plane, 0x0010100), \ LUT8_PART(plane, 0x1010100), \ LUT8_PART(plane, 0x0000001), \ LUT8_PART(plane, 0x1000001), \ LUT8_PART(plane, 0x0010001), \ LUT8_PART(plane, 0x1010001), \ LUT8_PART(plane, 0x0000101), \ LUT8_PART(plane, 0x1000101), \ LUT8_PART(plane, 0x0010101), \ LUT8_PART(plane, 0x1010101), \ } // 8 planes * 8-bit mask static const uint64_t plane8_lut[8][256] = { LUT8(0), LUT8(1), LUT8(2), LUT8(3), LUT8(4), LUT8(5), LUT8(6), LUT8(7), }; #define LUT32(plane) { \ 0, 0, 0, 0, \ 0, 0, 0, 1 << plane, \ 0, 0, 1 << plane, 0, \ 0, 0, 1 << plane, 1 << plane, \ 0, 1 << plane, 0, 0, \ 0, 1 << plane, 0, 1 << plane, \ 0, 1 << plane, 1 << plane, 0, \ 0, 1 << plane, 1 << plane, 1 << plane, \ 1 << plane, 0, 0, 0, \ 1 << plane, 0, 0, 1 << plane, \ 1 << plane, 0, 1 << plane, 0, \ 1 << plane, 0, 1 << plane, 1 << plane, \ 1 << plane, 1 << plane, 0, 0, \ 1 << plane, 1 << plane, 0, 1 << plane, \ 1 << plane, 1 << plane, 1 << plane, 0, \ 1 << plane, 1 << plane, 1 << plane, 1 << plane, \ } // 32 planes * 4-bit mask * 4 lookup tables each static const uint32_t plane32_lut[32][16*4] = { LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3), LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7), LUT32( 8), LUT32( 9), LUT32(10), LUT32(11), LUT32(12), LUT32(13), LUT32(14), LUT32(15), LUT32(16), LUT32(17), LUT32(18), LUT32(19), LUT32(20), LUT32(21), LUT32(22), LUT32(23), LUT32(24), LUT32(25), LUT32(26), LUT32(27), LUT32(28), LUT32(29), LUT32(30), LUT32(31), }; // Gray to RGB, required for palette table of grayscale images with bpp < 8 static av_always_inline uint32_t gray2rgb(const uint32_t x) { return x << 16 | x << 8 | x; } /** * Convert CMAP buffer (stored in extradata) to lavc palette format */ static int cmap_read_palette(AVCodecContext *avctx, uint32_t *pal) { IffContext *s = avctx->priv_data; int count, i; const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata); int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata); if (avctx->bits_per_coded_sample > 8) { av_log(avctx, AV_LOG_ERROR, "bits_per_coded_sample > 8 not supported\n"); return AVERROR_INVALIDDATA; } count = 1 << avctx->bits_per_coded_sample; // If extradata is smaller than actually needed, fill the remaining with black. count = FFMIN(palette_size / 3, count); if (count) { for (i = 0; i < count; i++) pal[i] = 0xFF000000 | AV_RB24(palette + i*3); if (s->flags && count >= 32) { // EHB for (i = 0; i < 32; i++) pal[i + 32] = 0xFF000000 | (AV_RB24(palette + i*3) & 0xFEFEFE) >> 1; count = FFMAX(count, 64); } } else { // Create gray-scale color palette for bps < 8 count = 1 << avctx->bits_per_coded_sample; for (i = 0; i < count; i++) pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample); } if (s->masking == MASK_HAS_MASK) { memcpy(pal + (1 << avctx->bits_per_coded_sample), pal, count * 4); for (i = 0; i < count; i++) pal[i] &= 0xFFFFFF; } else if (s->masking == MASK_HAS_TRANSPARENT_COLOR && s->transparency < 1 << avctx->bits_per_coded_sample) pal[s->transparency] &= 0xFFFFFF; return 0; } /** * Extracts the IFF extra context and updates internal * decoder structures. * * @param avctx the AVCodecContext where to extract extra context to * @param avpkt the AVPacket to extract extra context from or NULL to use avctx * @return >= 0 in case of success, a negative error code otherwise */ static int extract_header(AVCodecContext *const avctx, const AVPacket *const avpkt) { IffContext *s = avctx->priv_data; const uint8_t *buf; unsigned buf_size = 0; int i, palette_size; if (avctx->extradata_size < 2) { av_log(avctx, AV_LOG_ERROR, "not enough extradata\n"); return AVERROR_INVALIDDATA; } palette_size = avctx->extradata_size - AV_RB16(avctx->extradata); if (avpkt && avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) { uint32_t chunk_id; uint64_t data_size; GetByteContext *gb = &s->gb; bytestream2_skip(gb, 4); while (bytestream2_get_bytes_left(gb) >= 1) { chunk_id = bytestream2_get_le32(gb); data_size = bytestream2_get_be32(gb); if (chunk_id == MKTAG('B', 'M', 'H', 'D')) { bytestream2_skip(gb, data_size + (data_size & 1)); } else if (chunk_id == MKTAG('A', 'N', 'H', 'D')) { unsigned extra; if (data_size < 40) return AVERROR_INVALIDDATA; s->compression = (bytestream2_get_byte(gb) << 8) | (s->compression & 0xFF); bytestream2_skip(gb, 19); extra = bytestream2_get_be32(gb); s->is_short = !(extra & 1); s->is_brush = extra == 2; s->is_interlaced = !!(extra & 0x40); data_size -= 24; bytestream2_skip(gb, data_size + (data_size & 1)); } else if (chunk_id == MKTAG('D', 'L', 'T', 'A') || chunk_id == MKTAG('B', 'O', 'D', 'Y')) { if (chunk_id == MKTAG('B','O','D','Y')) s->compression &= 0xFF; break; } else if (chunk_id == MKTAG('C', 'M', 'A', 'P')) { int count = data_size / 3; uint32_t *pal = s->pal; if (count > 256) return AVERROR_INVALIDDATA; if (s->ham) { for (i = 0; i < count; i++) pal[i] = 0xFF000000 | bytestream2_get_le24(gb); } else { for (i = 0; i < count; i++) pal[i] = 0xFF000000 | bytestream2_get_be24(gb); } bytestream2_skip(gb, data_size & 1); } else { bytestream2_skip(gb, data_size + (data_size&1)); } } } else if (!avpkt) { buf = avctx->extradata; buf_size = bytestream_get_be16(&buf); if (buf_size <= 1 || palette_size < 0) { av_log(avctx, AV_LOG_ERROR, "Invalid palette size received: %u -> palette data offset: %d\n", buf_size, palette_size); return AVERROR_INVALIDDATA; } } if (buf_size >= 41) { s->compression = bytestream_get_byte(&buf); s->bpp = bytestream_get_byte(&buf); s->ham = bytestream_get_byte(&buf); s->flags = bytestream_get_byte(&buf); s->transparency = bytestream_get_be16(&buf); s->masking = bytestream_get_byte(&buf); for (i = 0; i < 16; i++) s->tvdc[i] = bytestream_get_be16(&buf); if (s->masking == MASK_HAS_MASK) { if (s->bpp >= 8 && !s->ham) { avctx->pix_fmt = AV_PIX_FMT_RGB32; av_freep(&s->mask_buf); av_freep(&s->mask_palbuf); s->mask_buf = av_malloc((s->planesize * 32) + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->mask_buf) return AVERROR(ENOMEM); if (s->bpp > 16) { av_log(avctx, AV_LOG_ERROR, "bpp %d too large for palette\n", s->bpp); av_freep(&s->mask_buf); return AVERROR(ENOMEM); } s->mask_palbuf = av_malloc((2 << s->bpp) * sizeof(uint32_t) + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->mask_palbuf) { av_freep(&s->mask_buf); return AVERROR(ENOMEM); } } s->bpp++; } else if (s->masking != MASK_NONE && s->masking != MASK_HAS_TRANSPARENT_COLOR) { av_log(avctx, AV_LOG_ERROR, "Masking not supported\n"); return AVERROR_PATCHWELCOME; } if (!s->bpp || s->bpp > 32) { av_log(avctx, AV_LOG_ERROR, "Invalid number of bitplanes: %u\n", s->bpp); return AVERROR_INVALIDDATA; } else if (s->ham >= 8) { av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u\n", s->ham); return AVERROR_INVALIDDATA; } av_freep(&s->ham_buf); av_freep(&s->ham_palbuf); if (s->ham) { int i, count = FFMIN(palette_size / 3, 1 << s->ham); int ham_count; const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata); s->ham_buf = av_malloc((s->planesize * 8) + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->ham_buf) return AVERROR(ENOMEM); ham_count = 8 * (1 << s->ham); s->ham_palbuf = av_malloc((ham_count << !!(s->masking == MASK_HAS_MASK)) * sizeof (uint32_t) + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->ham_palbuf) { av_freep(&s->ham_buf); return AVERROR(ENOMEM); } if (count) { // HAM with color palette attached // prefill with black and palette and set HAM take direct value mask to zero memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof (uint32_t)); for (i=0; i < count; i++) { s->ham_palbuf[i*2+1] = 0xFF000000 | AV_RL24(palette + i*3); } count = 1 << s->ham; } else { // HAM with grayscale color palette count = 1 << s->ham; for (i=0; i < count; i++) { s->ham_palbuf[i*2] = 0xFF000000; // take direct color value from palette s->ham_palbuf[i*2+1] = 0xFF000000 | av_le2ne32(gray2rgb((i * 255) >> s->ham)); } } for (i=0; i < count; i++) { uint32_t tmp = i << (8 - s->ham); tmp |= tmp >> s->ham; s->ham_palbuf[(i+count)*2] = 0xFF00FFFF; // just modify blue color component s->ham_palbuf[(i+count*2)*2] = 0xFFFFFF00; // just modify red color component s->ham_palbuf[(i+count*3)*2] = 0xFFFF00FF; // just modify green color component s->ham_palbuf[(i+count)*2+1] = 0xFF000000 | tmp << 16; s->ham_palbuf[(i+count*2)*2+1] = 0xFF000000 | tmp; s->ham_palbuf[(i+count*3)*2+1] = 0xFF000000 | tmp << 8; } if (s->masking == MASK_HAS_MASK) { for (i = 0; i < ham_count; i++) s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000; } } } return 0; } static av_cold int decode_end(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; av_freep(&s->planebuf); av_freep(&s->ham_buf); av_freep(&s->ham_palbuf); av_freep(&s->video[0]); av_freep(&s->video[1]); av_freep(&s->pal); return 0; } static av_cold int decode_init(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; int err; if (avctx->bits_per_coded_sample <= 8) { int palette_size; if (avctx->extradata_size >= 2) palette_size = avctx->extradata_size - AV_RB16(avctx->extradata); else palette_size = 0; avctx->pix_fmt = (avctx->bits_per_coded_sample < 8) || (avctx->extradata_size >= 2 && palette_size) ? AV_PIX_FMT_PAL8 : AV_PIX_FMT_GRAY8; } else if (avctx->bits_per_coded_sample <= 32) { if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8')) { avctx->pix_fmt = AV_PIX_FMT_RGB32; } else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N')) { avctx->pix_fmt = AV_PIX_FMT_RGB444; } else if (avctx->codec_tag != MKTAG('D', 'E', 'E', 'P')) { if (avctx->bits_per_coded_sample == 24) { avctx->pix_fmt = AV_PIX_FMT_0BGR32; } else if (avctx->bits_per_coded_sample == 32) { avctx->pix_fmt = AV_PIX_FMT_BGR32; } else { avpriv_request_sample(avctx, "unknown bits_per_coded_sample"); return AVERROR_PATCHWELCOME; } } } else { return AVERROR_INVALIDDATA; } if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx))) return err; s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary s->planebuf = av_malloc(s->planesize + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->planebuf) return AVERROR(ENOMEM); s->bpp = avctx->bits_per_coded_sample; if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) { s->video_size = FFALIGN(avctx->width, 2) * avctx->height * s->bpp; s->video[0] = av_calloc(FFALIGN(avctx->width, 2) * avctx->height, s->bpp); s->video[1] = av_calloc(FFALIGN(avctx->width, 2) * avctx->height, s->bpp); s->pal = av_calloc(256, sizeof(*s->pal)); if (!s->video[0] || !s->video[1] || !s->pal) return AVERROR(ENOMEM); } if ((err = extract_header(avctx, NULL)) < 0) return err; return 0; } /** * Decode interleaved plane buffer up to 8bpp * @param dst Destination buffer * @param buf Source buffer * @param buf_size * @param plane plane number to decode as */ static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane) { const uint64_t *lut = plane8_lut[plane]; if (plane >= 8) { av_log(NULL, AV_LOG_WARNING, "Ignoring extra planes beyond 8\n"); return; } do { uint64_t v = AV_RN64A(dst) | lut[*buf++]; AV_WN64A(dst, v); dst += 8; } while (--buf_size); } /** * Decode interleaved plane buffer up to 24bpp * @param dst Destination buffer * @param buf Source buffer * @param buf_size * @param plane plane number to decode as */ static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane) { const uint32_t *lut = plane32_lut[plane]; do { unsigned mask = (*buf >> 2) & ~3; dst[0] |= lut[mask++]; dst[1] |= lut[mask++]; dst[2] |= lut[mask++]; dst[3] |= lut[mask]; mask = (*buf++ << 2) & 0x3F; dst[4] |= lut[mask++]; dst[5] |= lut[mask++]; dst[6] |= lut[mask++]; dst[7] |= lut[mask]; dst += 8; } while (--buf_size); } #define DECODE_HAM_PLANE32(x) \ first = buf[x] << 1; \ second = buf[(x)+1] << 1; \ delta &= pal[first++]; \ delta |= pal[first]; \ dst[x] = delta; \ delta &= pal[second++]; \ delta |= pal[second]; \ dst[(x)+1] = delta /** * Converts one line of HAM6/8-encoded chunky buffer to 24bpp. * * @param dst the destination 24bpp buffer * @param buf the source 8bpp chunky buffer * @param pal the HAM decode table * @param buf_size the plane size in bytes */ static void decode_ham_plane32(uint32_t *dst, const uint8_t *buf, const uint32_t *const pal, unsigned buf_size) { uint32_t delta = pal[1]; /* first palette entry */ do { uint32_t first, second; DECODE_HAM_PLANE32(0); DECODE_HAM_PLANE32(2); DECODE_HAM_PLANE32(4); DECODE_HAM_PLANE32(6); buf += 8; dst += 8; } while (--buf_size); } static void lookup_pal_indicies(uint32_t *dst, const uint32_t *buf, const uint32_t *const pal, unsigned width) { do { *dst++ = pal[*buf++]; } while (--width); } /** * Decode one complete byterun1 encoded line. * * @param dst the destination buffer where to store decompressed bitstream * @param dst_size the destination plane size in bytes * @param buf the source byterun1 compressed bitstream * @param buf_end the EOF of source byterun1 compressed bitstream * @return number of consumed bytes in byterun1 compressed bitstream */ static int decode_byterun(uint8_t *dst, int dst_size, GetByteContext *gb) { unsigned x; for (x = 0; x < dst_size && bytestream2_get_bytes_left(gb) > 0;) { unsigned length; const int8_t value = bytestream2_get_byte(gb); if (value >= 0) { length = FFMIN3(value + 1, dst_size - x, bytestream2_get_bytes_left(gb)); bytestream2_get_buffer(gb, dst + x, length); if (length < value + 1) bytestream2_skip(gb, value + 1 - length); } else if (value > -128) { length = FFMIN(-value + 1, dst_size - x); memset(dst + x, bytestream2_get_byte(gb), length); } else { // noop continue; } x += length; } if (x < dst_size) { av_log(NULL, AV_LOG_WARNING, "decode_byterun ended before plane size\n"); memset(dst+x, 0, dst_size - x); } return bytestream2_tell(gb); } #define DECODE_RGBX_COMMON(type) \ if (!length) { \ length = bytestream2_get_byte(gb); \ if (!length) { \ length = bytestream2_get_be16(gb); \ if (!length) \ return; \ } \ } \ for (i = 0; i < length; i++) { \ *(type *)(dst + y*linesize + x * sizeof(type)) = pixel; \ x += 1; \ if (x >= width) { \ y += 1; \ if (y >= height) \ return; \ x = 0; \ } \ } /** * Decode RGB8 buffer * @param[out] dst Destination buffer * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) */ static void decode_rgb8(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize) { int x = 0, y = 0, i, length; while (bytestream2_get_bytes_left(gb) >= 4) { uint32_t pixel = 0xFF000000 | bytestream2_get_be24(gb); length = bytestream2_get_byte(gb) & 0x7F; DECODE_RGBX_COMMON(uint32_t) } } /** * Decode RGBN buffer * @param[out] dst Destination buffer * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) */ static void decode_rgbn(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize) { int x = 0, y = 0, i, length; while (bytestream2_get_bytes_left(gb) >= 2) { uint32_t pixel = bytestream2_get_be16u(gb); length = pixel & 0x7; pixel >>= 4; DECODE_RGBX_COMMON(uint16_t) } } /** * Decode DEEP RLE 32-bit buffer * @param[out] dst Destination buffer * @param[in] src Source buffer * @param src_size Source buffer size (bytes) * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) */ static void decode_deep_rle32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize) { const uint8_t *src_end = src + src_size; int x = 0, y = 0, i; while (src + 5 <= src_end) { int opcode; opcode = *(int8_t *)src++; if (opcode >= 0) { int size = opcode + 1; for (i = 0; i < size; i++) { int length = FFMIN(size - i, width); memcpy(dst + y*linesize + x * 4, src, length * 4); src += length * 4; x += length; i += length; if (x >= width) { x = 0; y += 1; if (y >= height) return; } } } else { int size = -opcode + 1; uint32_t pixel = AV_RN32(src); for (i = 0; i < size; i++) { *(uint32_t *)(dst + y*linesize + x * 4) = pixel; x += 1; if (x >= width) { x = 0; y += 1; if (y >= height) return; } } src += 4; } } } /** * Decode DEEP TVDC 32-bit buffer * @param[out] dst Destination buffer * @param[in] src Source buffer * @param src_size Source buffer size (bytes) * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) * @param[int] tvdc TVDC lookup table */ static void decode_deep_tvdc32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize, const int16_t *tvdc) { int x = 0, y = 0, plane = 0; int8_t pixel = 0; int i, j; for (i = 0; i < src_size * 2;) { #define GETNIBBLE ((i & 1) ? (src[i>>1] & 0xF) : (src[i>>1] >> 4)) int d = tvdc[GETNIBBLE]; i++; if (d) { pixel += d; dst[y * linesize + x*4 + plane] = pixel; x++; } else { if (i >= src_size * 2) return; d = GETNIBBLE + 1; i++; d = FFMIN(d, width - x); for (j = 0; j < d; j++) { dst[y * linesize + x*4 + plane] = pixel; x++; } } if (x >= width) { plane++; if (plane >= 4) { y++; if (y >= height) return; plane = 0; } x = 0; pixel = 0; i = (i + 1) & ~1; } } } static void decode_short_horizontal_delta(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int bpp, int dst_size) { int planepitch = FFALIGN(w, 16) >> 3; int pitch = planepitch * bpp; GetByteContext ptrs, gb; PutByteContext pb; unsigned ofssrc, pos; int i, k; bytestream2_init(&ptrs, buf, buf_end - buf); bytestream2_init_writer(&pb, dst, dst_size); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); pos = 0; if (!ofssrc) continue; if (ofssrc >= buf_end - buf) continue; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); while (bytestream2_peek_be16(&gb) != 0xFFFF && bytestream2_get_bytes_left(&gb) > 3) { int16_t offset = bytestream2_get_be16(&gb); unsigned noffset; if (offset >= 0) { unsigned data = bytestream2_get_be16(&gb); pos += offset * 2; noffset = (pos / planepitch) * pitch + (pos % planepitch) + k * planepitch; bytestream2_seek_p(&pb, noffset, SEEK_SET); bytestream2_put_be16(&pb, data); } else { uint16_t count = bytestream2_get_be16(&gb); pos += 2 * -(offset + 2); for (i = 0; i < count; i++) { uint16_t data = bytestream2_get_be16(&gb); pos += 2; noffset = (pos / planepitch) * pitch + (pos % planepitch) + k * planepitch; bytestream2_seek_p(&pb, noffset, SEEK_SET); bytestream2_put_be16(&pb, data); } } } } } static void decode_byte_vertical_delta(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int xor, int bpp, int dst_size) { int ncolumns = ((w + 15) / 16) * 2; int dstpitch = ncolumns * bpp; unsigned ofsdst, ofssrc, opcode, x; GetByteContext ptrs, gb; PutByteContext pb; int i, j, k; bytestream2_init(&ptrs, buf, buf_end - buf); bytestream2_init_writer(&pb, dst, dst_size); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) continue; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); for (j = 0; j < ncolumns; j++) { ofsdst = j + k * ncolumns; i = bytestream2_get_byte(&gb); while (i > 0) { opcode = bytestream2_get_byte(&gb); if (opcode == 0) { opcode = bytestream2_get_byte(&gb); x = bytestream2_get_byte(&gb); while (opcode) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); if (xor && ofsdst < dst_size) { bytestream2_put_byte(&pb, dst[ofsdst] ^ x); } else { bytestream2_put_byte(&pb, x); } ofsdst += dstpitch; opcode--; } } else if (opcode < 0x80) { ofsdst += opcode * dstpitch; } else { opcode &= 0x7f; while (opcode) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); if (xor && ofsdst < dst_size) { bytestream2_put_byte(&pb, dst[ofsdst] ^ bytestream2_get_byte(&gb)); } else { bytestream2_put_byte(&pb, bytestream2_get_byte(&gb)); } ofsdst += dstpitch; opcode--; } } i--; } } } } static void decode_delta_j(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int h, int bpp, int dst_size) { int32_t pitch; uint8_t *ptr; uint32_t type, flag, cols, groups, rows, bytes; uint32_t offset; int planepitch_byte = (w + 7) / 8; int planepitch = ((w + 15) / 16) * 2; int kludge_j, b, g, r, d; GetByteContext gb; pitch = planepitch * bpp; kludge_j = w < 320 ? (320 - w) / 8 / 2 : 0; bytestream2_init(&gb, buf, buf_end - buf); while (bytestream2_get_bytes_left(&gb) >= 2) { type = bytestream2_get_be16(&gb); switch (type) { case 0: return; case 1: flag = bytestream2_get_be16(&gb); cols = bytestream2_get_be16(&gb); groups = bytestream2_get_be16(&gb); for (g = 0; g < groups; g++) { offset = bytestream2_get_be16(&gb); if (cols * bpp == 0 || bytestream2_get_bytes_left(&gb) < cols * bpp) { av_log(NULL, AV_LOG_ERROR, "cols*bpp is invalid (%d*%d)", cols, bpp); return; } if (kludge_j) offset = ((offset / (320 / 8)) * pitch) + (offset % (320 / 8)) - kludge_j; else offset = ((offset / planepitch_byte) * pitch) + (offset % planepitch_byte); for (b = 0; b < cols; b++) { for (d = 0; d < bpp; d++) { uint8_t value = bytestream2_get_byte(&gb); if (offset >= dst_size) return; ptr = dst + offset; if (flag) ptr[0] ^= value; else ptr[0] = value; offset += planepitch; } } if ((cols * bpp) & 1) bytestream2_skip(&gb, 1); } break; case 2: flag = bytestream2_get_be16(&gb); rows = bytestream2_get_be16(&gb); bytes = bytestream2_get_be16(&gb); groups = bytestream2_get_be16(&gb); for (g = 0; g < groups; g++) { offset = bytestream2_get_be16(&gb); if (kludge_j) offset = ((offset / (320 / 8)) * pitch) + (offset % (320/ 8)) - kludge_j; else offset = ((offset / planepitch_byte) * pitch) + (offset % planepitch_byte); for (r = 0; r < rows; r++) { for (d = 0; d < bpp; d++) { unsigned noffset = offset + (r * pitch) + d * planepitch; if (!bytes || bytestream2_get_bytes_left(&gb) < bytes) { av_log(NULL, AV_LOG_ERROR, "bytes %d is invalid", bytes); return; } for (b = 0; b < bytes; b++) { uint8_t value = bytestream2_get_byte(&gb); if (noffset >= dst_size) return; ptr = dst + noffset; if (flag) ptr[0] ^= value; else ptr[0] = value; noffset++; } } } if ((rows * bytes * bpp) & 1) bytestream2_skip(&gb, 1); } break; default: return; } } } static void decode_short_vertical_delta(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int bpp, int dst_size) { int ncolumns = (w + 15) >> 4; int dstpitch = ncolumns * bpp * 2; unsigned ofsdst, ofssrc, ofsdata, opcode, x; GetByteContext ptrs, gb, dptrs, dgb; PutByteContext pb; int i, j, k; if (buf_end - buf <= 64) return; bytestream2_init(&ptrs, buf, buf_end - buf); bytestream2_init(&dptrs, buf + 32, (buf_end - buf) - 32); bytestream2_init_writer(&pb, dst, dst_size); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); ofsdata = bytestream2_get_be32(&dptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) return; if (ofsdata >= buf_end - buf) return; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); bytestream2_init(&dgb, buf + ofsdata, buf_end - (buf + ofsdata)); for (j = 0; j < ncolumns; j++) { ofsdst = (j + k * ncolumns) * 2; i = bytestream2_get_byte(&gb); while (i > 0) { opcode = bytestream2_get_byte(&gb); if (opcode == 0) { opcode = bytestream2_get_byte(&gb); x = bytestream2_get_be16(&dgb); while (opcode) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); bytestream2_put_be16(&pb, x); ofsdst += dstpitch; opcode--; } } else if (opcode < 0x80) { ofsdst += opcode * dstpitch; } else { opcode &= 0x7f; while (opcode) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); bytestream2_put_be16(&pb, bytestream2_get_be16(&dgb)); ofsdst += dstpitch; opcode--; } } i--; } } } } static void decode_long_vertical_delta(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int bpp, int dst_size) { int ncolumns = (w + 31) >> 5; int dstpitch = ((w + 15) / 16 * 2) * bpp; unsigned ofsdst, ofssrc, ofsdata, opcode, x; GetByteContext ptrs, gb, dptrs, dgb; PutByteContext pb; int i, j, k, h; if (buf_end - buf <= 64) return; h = (((w + 15) / 16 * 2) != ((w + 31) / 32 * 4)) ? 1 : 0; bytestream2_init(&ptrs, buf, buf_end - buf); bytestream2_init(&dptrs, buf + 32, (buf_end - buf) - 32); bytestream2_init_writer(&pb, dst, dst_size); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); ofsdata = bytestream2_get_be32(&dptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) return; if (ofsdata >= buf_end - buf) return; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); bytestream2_init(&dgb, buf + ofsdata, buf_end - (buf + ofsdata)); for (j = 0; j < ncolumns; j++) { ofsdst = (j + k * ncolumns) * 4 - h * (2 * k); i = bytestream2_get_byte(&gb); while (i > 0) { opcode = bytestream2_get_byte(&gb); if (opcode == 0) { opcode = bytestream2_get_byte(&gb); if (h && (j == (ncolumns - 1))) { x = bytestream2_get_be16(&dgb); bytestream2_skip(&dgb, 2); } else { x = bytestream2_get_be32(&dgb); } while (opcode) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); if (h && (j == (ncolumns - 1))) { bytestream2_put_be16(&pb, x); } else { bytestream2_put_be32(&pb, x); } ofsdst += dstpitch; opcode--; } } else if (opcode < 0x80) { ofsdst += opcode * dstpitch; } else { opcode &= 0x7f; while (opcode) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); if (h && (j == (ncolumns - 1))) { bytestream2_put_be16(&pb, bytestream2_get_be16(&dgb)); bytestream2_skip(&dgb, 2); } else { bytestream2_put_be32(&pb, bytestream2_get_be32(&dgb)); } ofsdst += dstpitch; opcode--; } } i--; } } } } static void decode_short_vertical_delta2(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int bpp, int dst_size) { int ncolumns = (w + 15) >> 4; int dstpitch = ncolumns * bpp * 2; unsigned ofsdst, ofssrc, opcode, x; GetByteContext ptrs, gb; PutByteContext pb; int i, j, k; bytestream2_init(&ptrs, buf, buf_end - buf); bytestream2_init_writer(&pb, dst, dst_size); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) continue; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); for (j = 0; j < ncolumns; j++) { ofsdst = (j + k * ncolumns) * 2; i = bytestream2_get_be16(&gb); while (i > 0 && bytestream2_get_bytes_left(&gb) > 4) { opcode = bytestream2_get_be16(&gb); if (opcode == 0) { opcode = bytestream2_get_be16(&gb); x = bytestream2_get_be16(&gb); while (opcode && bytestream2_get_bytes_left_p(&pb) > 1) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); bytestream2_put_be16(&pb, x); ofsdst += dstpitch; opcode--; } } else if (opcode < 0x8000) { ofsdst += opcode * dstpitch; } else { opcode &= 0x7fff; while (opcode && bytestream2_get_bytes_left(&gb) > 1 && bytestream2_get_bytes_left_p(&pb) > 1) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); bytestream2_put_be16(&pb, bytestream2_get_be16(&gb)); ofsdst += dstpitch; opcode--; } } i--; } } } } static void decode_long_vertical_delta2(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int bpp, int dst_size) { int ncolumns = (w + 31) >> 5; int dstpitch = ((w + 15) / 16 * 2) * bpp; unsigned ofsdst, ofssrc, opcode, x; unsigned skip = 0x80000000, mask = skip - 1; GetByteContext ptrs, gb; PutByteContext pb; int i, j, k, h; h = (((w + 15) / 16 * 2) != ((w + 31) / 32 * 4)) ? 1 : 0; bytestream2_init(&ptrs, buf, buf_end - buf); bytestream2_init_writer(&pb, dst, dst_size); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) continue; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); for (j = 0; j < ncolumns; j++) { ofsdst = (j + k * ncolumns) * 4 - h * (2 * k); if (h && (j == (ncolumns - 1))) { skip = 0x8000; mask = skip - 1; } i = bytestream2_get_be32(&gb); while (i > 0 && bytestream2_get_bytes_left(&gb) > 4) { opcode = bytestream2_get_be32(&gb); if (opcode == 0) { if (h && (j == ncolumns - 1)) { opcode = bytestream2_get_be16(&gb); x = bytestream2_get_be16(&gb); } else { opcode = bytestream2_get_be32(&gb); x = bytestream2_get_be32(&gb); } while (opcode && bytestream2_get_bytes_left_p(&pb) > 1) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); if (h && (j == ncolumns - 1)) bytestream2_put_be16(&pb, x); else bytestream2_put_be32(&pb, x); ofsdst += dstpitch; opcode--; } } else if (opcode < skip) { ofsdst += opcode * dstpitch; } else { opcode &= mask; while (opcode && bytestream2_get_bytes_left(&gb) > 1 && bytestream2_get_bytes_left_p(&pb) > 1) { bytestream2_seek_p(&pb, ofsdst, SEEK_SET); if (h && (j == ncolumns - 1)) { bytestream2_put_be16(&pb, bytestream2_get_be16(&gb)); } else { bytestream2_put_be32(&pb, bytestream2_get_be32(&gb)); } ofsdst += dstpitch; opcode--; } } i--; } } } } static void decode_delta_d(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int flag, int bpp, int dst_size) { int planepitch = FFALIGN(w, 16) >> 3; int pitch = planepitch * bpp; int planepitch_byte = (w + 7) / 8; unsigned entries, ofssrc; GetByteContext gb, ptrs; PutByteContext pb; int k; if (buf_end - buf <= 4 * bpp) return; bytestream2_init_writer(&pb, dst, dst_size); bytestream2_init(&ptrs, buf, bpp * 4); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) continue; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); entries = bytestream2_get_be32(&gb); while (entries && bytestream2_get_bytes_left(&gb) >= 8) { int32_t opcode = bytestream2_get_be32(&gb); unsigned offset = bytestream2_get_be32(&gb); bytestream2_seek_p(&pb, (offset / planepitch_byte) * pitch + (offset % planepitch_byte) + k * planepitch, SEEK_SET); if (opcode >= 0) { uint32_t x = bytestream2_get_be32(&gb); while (opcode && bytestream2_get_bytes_left_p(&pb) > 0) { bytestream2_put_be32(&pb, x); bytestream2_skip_p(&pb, pitch - 4); opcode--; } } else { opcode = -opcode; while (opcode && bytestream2_get_bytes_left(&gb) > 0) { bytestream2_put_be32(&pb, bytestream2_get_be32(&gb)); bytestream2_skip_p(&pb, pitch - 4); opcode--; } } entries--; } } } static void decode_delta_e(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int flag, int bpp, int dst_size) { int planepitch = FFALIGN(w, 16) >> 3; int pitch = planepitch * bpp; int planepitch_byte = (w + 7) / 8; unsigned entries, ofssrc; GetByteContext gb, ptrs; PutByteContext pb; int k; if (buf_end - buf <= 4 * bpp) return; bytestream2_init_writer(&pb, dst, dst_size); bytestream2_init(&ptrs, buf, bpp * 4); for (k = 0; k < bpp; k++) { ofssrc = bytestream2_get_be32(&ptrs); if (!ofssrc) continue; if (ofssrc >= buf_end - buf) continue; bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc)); entries = bytestream2_get_be16(&gb); while (entries && bytestream2_get_bytes_left(&gb) >= 6) { int16_t opcode = bytestream2_get_be16(&gb); unsigned offset = bytestream2_get_be32(&gb); bytestream2_seek_p(&pb, (offset / planepitch_byte) * pitch + (offset % planepitch_byte) + k * planepitch, SEEK_SET); if (opcode >= 0) { uint16_t x = bytestream2_get_be16(&gb); while (opcode && bytestream2_get_bytes_left_p(&pb) > 0) { bytestream2_put_be16(&pb, x); bytestream2_skip_p(&pb, pitch - 2); opcode--; } } else { opcode = -opcode; while (opcode && bytestream2_get_bytes_left(&gb) > 0) { bytestream2_put_be16(&pb, bytestream2_get_be16(&gb)); bytestream2_skip_p(&pb, pitch - 2); opcode--; } } entries--; } } } static void decode_delta_l(uint8_t *dst, const uint8_t *buf, const uint8_t *buf_end, int w, int flag, int bpp, int dst_size) { GetByteContext off0, off1, dgb, ogb; PutByteContext pb; unsigned poff0, poff1; int i, k, dstpitch; int planepitch_byte = (w + 7) / 8; int planepitch = ((w + 15) / 16) * 2; int pitch = planepitch * bpp; if (buf_end - buf <= 64) return; bytestream2_init(&off0, buf, buf_end - buf); bytestream2_init(&off1, buf + 32, buf_end - (buf + 32)); bytestream2_init_writer(&pb, dst, dst_size); dstpitch = flag ? (((w + 7) / 8) * bpp): 2; for (k = 0; k < bpp; k++) { poff0 = bytestream2_get_be32(&off0); poff1 = bytestream2_get_be32(&off1); if (!poff0) continue; if (2LL * poff0 >= buf_end - buf) return; if (2LL * poff1 >= buf_end - buf) return; bytestream2_init(&dgb, buf + 2 * poff0, buf_end - (buf + 2 * poff0)); bytestream2_init(&ogb, buf + 2 * poff1, buf_end - (buf + 2 * poff1)); while (bytestream2_peek_be16(&ogb) != 0xFFFF && bytestream2_get_bytes_left(&ogb) >= 4) { uint32_t offset = bytestream2_get_be16(&ogb); int16_t cnt = bytestream2_get_be16(&ogb); uint16_t data; offset = ((2 * offset) / planepitch_byte) * pitch + ((2 * offset) % planepitch_byte) + k * planepitch; if (cnt < 0) { if (bytestream2_get_bytes_left(&dgb) < 2) break; bytestream2_seek_p(&pb, offset, SEEK_SET); cnt = -cnt; data = bytestream2_get_be16(&dgb); for (i = 0; i < cnt; i++) { bytestream2_put_be16(&pb, data); bytestream2_skip_p(&pb, dstpitch - 2); } } else { if (bytestream2_get_bytes_left(&dgb) < 2*cnt) break; bytestream2_seek_p(&pb, offset, SEEK_SET); for (i = 0; i < cnt; i++) { data = bytestream2_get_be16(&dgb); bytestream2_put_be16(&pb, data); bytestream2_skip_p(&pb, dstpitch - 2); } } } } } static int unsupported(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; avpriv_request_sample(avctx, "bitmap (compression 0x%0x, bpp %i, ham %i, interlaced %i)", s->compression, s->bpp, s->ham, s->is_interlaced); return AVERROR_INVALIDDATA; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { IffContext *s = avctx->priv_data; AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; const uint8_t *buf_end = buf + buf_size; int y, plane, res; GetByteContext *gb = &s->gb; const AVPixFmtDescriptor *desc; bytestream2_init(gb, avpkt->data, avpkt->size); if ((res = extract_header(avctx, avpkt)) < 0) return res; if ((res = ff_get_buffer(avctx, frame, 0)) < 0) return res; s->frame = frame; buf += bytestream2_tell(gb); buf_size -= bytestream2_tell(gb); desc = av_pix_fmt_desc_get(avctx->pix_fmt); if (!s->init && avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt == AV_PIX_FMT_PAL8) { if ((res = cmap_read_palette(avctx, (uint32_t *)frame->data[1])) < 0) return res; } else if (!s->init && avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt == AV_PIX_FMT_RGB32) { if ((res = cmap_read_palette(avctx, s->mask_palbuf)) < 0) return res; } s->init = 1; if (s->compression <= 0xff && (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M'))) { if (avctx->pix_fmt == AV_PIX_FMT_PAL8) memcpy(s->pal, s->frame->data[1], 256 * 4); } switch (s->compression) { case 0x0: if (avctx->codec_tag == MKTAG('A', 'C', 'B', 'M')) { if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { memset(frame->data[0], 0, avctx->height * frame->linesize[0]); for (plane = 0; plane < s->bpp; plane++) { for (y = 0; y < avctx->height && buf < buf_end; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32 memset(frame->data[0], 0, avctx->height * frame->linesize[0]); for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp; plane++) { const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize; if (start >= buf_end) break; decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane); } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else return unsupported(avctx); } else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { int raw_width = avctx->width * (av_get_bits_per_pixel(desc) >> 3); int x; for (y = 0; y < avctx->height && buf < buf_end; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memcpy(row, buf, FFMIN(raw_width, buf_end - buf)); buf += raw_width; if (avctx->pix_fmt == AV_PIX_FMT_BGR32) { for (x = 0; x < avctx->width; x++) row[4 * x + 3] = row[4 * x + 3] & 0xF0 | (row[4 * x + 3] >> 4); } } } else if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M') || // interleaved avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) { if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) memcpy(s->video[0], buf, FFMIN(buf_end - buf, s->video_size)); if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(row, 0, avctx->width); for (plane = 0; plane < s->bpp && buf < buf_end; plane++) { decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp && buf < buf_end; plane++) { decodeplane8(s->ham_buf, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else { // AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(row, 0, avctx->width << 2); for (plane = 0; plane < s->bpp && buf < buf_end; plane++) { decodeplane32((uint32_t *)row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } } else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height && buf_end > buf; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memcpy(row, buf, FFMIN(avctx->width, buf_end - buf)); buf += avctx->width + (avctx->width % 2); // padding if odd } } else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height && buf_end > buf; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memcpy(s->ham_buf, buf, FFMIN(avctx->width, buf_end - buf)); buf += avctx->width + (avctx->width & 1); // padding if odd decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else return unsupported(avctx); } break; case 0x1: if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M') || // interleaved avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) { if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { uint8_t *video = s->video[0]; for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(row, 0, avctx->width); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, gb); if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) { memcpy(video, s->planebuf, s->planesize); video += s->planesize; } decodeplane8(row, s->planebuf, s->planesize, plane); } } } else if (avctx->bits_per_coded_sample <= 8) { //8-bit (+ mask) to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(s->mask_buf, 0, avctx->width * sizeof(uint32_t)); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, gb); decodeplane32(s->mask_buf, s->planebuf, s->planesize, plane); } lookup_pal_indicies((uint32_t *)row, s->mask_buf, s->mask_palbuf, avctx->width); } } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32 uint8_t *video = s->video[0]; for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, gb); if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) { memcpy(video, s->planebuf, s->planesize); video += s->planesize; } decodeplane8(s->ham_buf, s->planebuf, s->planesize, plane); } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else { // AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(row, 0, avctx->width << 2); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, gb); decodeplane32((uint32_t *)row, s->planebuf, s->planesize, plane); } } } } else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; buf += decode_byterun(row, avctx->width, gb); } } else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; buf += decode_byterun(s->ham_buf, avctx->width, gb); decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else return unsupported(avctx); } else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { // IFF-DEEP if (av_get_bits_per_pixel(desc) == 32) decode_deep_rle32(frame->data[0], buf, buf_size, avctx->width, avctx->height, frame->linesize[0]); else return unsupported(avctx); } break; case 0x4: if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8') && avctx->pix_fmt == AV_PIX_FMT_RGB32) decode_rgb8(gb, frame->data[0], avctx->width, avctx->height, frame->linesize[0]); else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N') && avctx->pix_fmt == AV_PIX_FMT_RGB444) decode_rgbn(gb, frame->data[0], avctx->width, avctx->height, frame->linesize[0]); else return unsupported(avctx); break; case 0x5: if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { if (av_get_bits_per_pixel(desc) == 32) decode_deep_tvdc32(frame->data[0], buf, buf_size, avctx->width, avctx->height, frame->linesize[0], s->tvdc); else return unsupported(avctx); } else return unsupported(avctx); break; case 0x300: case 0x301: decode_short_horizontal_delta(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size); break; case 0x500: case 0x501: decode_byte_vertical_delta(s->video[0], buf, buf_end, avctx->width, s->is_brush, s->bpp, s->video_size); break; case 0x700: case 0x701: if (s->is_short) decode_short_vertical_delta(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size); else decode_long_vertical_delta(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size); break; case 0x800: case 0x801: if (s->is_short) decode_short_vertical_delta2(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size); else decode_long_vertical_delta2(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size); break; case 0x4a00: case 0x4a01: decode_delta_j(s->video[0], buf, buf_end, avctx->width, avctx->height, s->bpp, s->video_size); break; case 0x6400: case 0x6401: if (s->is_interlaced) return unsupported(avctx); decode_delta_d(s->video[0], buf, buf_end, avctx->width, s->is_interlaced, s->bpp, s->video_size); break; case 0x6500: case 0x6501: if (s->is_interlaced) return unsupported(avctx); decode_delta_e(s->video[0], buf, buf_end, avctx->width, s->is_interlaced, s->bpp, s->video_size); break; case 0x6c00: case 0x6c01: decode_delta_l(s->video[0], buf, buf_end, avctx->width, s->is_short, s->bpp, s->video_size); break; default: return unsupported(avctx); } if (s->compression <= 0xff && (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M'))) { memcpy(s->video[1], s->video[0], s->video_size); } if (s->compression > 0xff) { if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { buf = s->video[0]; for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(row, 0, avctx->width); for (plane = 0; plane < s->bpp; plane++) { decodeplane8(row, buf, s->planesize, plane); buf += s->planesize; } } memcpy(frame->data[1], s->pal, 256 * 4); } else if (s->ham) { int i, count = 1 << s->ham; buf = s->video[0]; memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof(uint32_t)); for (i = 0; i < count; i++) { s->ham_palbuf[i*2+1] = s->pal[i]; } for (i = 0; i < count; i++) { uint32_t tmp = i << (8 - s->ham); tmp |= tmp >> s->ham; s->ham_palbuf[(i+count)*2] = 0xFF00FFFF; s->ham_palbuf[(i+count*2)*2] = 0xFFFFFF00; s->ham_palbuf[(i+count*3)*2] = 0xFFFF00FF; s->ham_palbuf[(i+count)*2+1] = 0xFF000000 | tmp << 16; s->ham_palbuf[(i+count*2)*2+1] = 0xFF000000 | tmp; s->ham_palbuf[(i+count*3)*2+1] = 0xFF000000 | tmp << 8; } if (s->masking == MASK_HAS_MASK) { for (i = 0; i < 8 * (1 << s->ham); i++) s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000; } for (y = 0; y < avctx->height; y++) { uint8_t *row = &frame->data[0][y * frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp; plane++) { decodeplane8(s->ham_buf, buf, s->planesize, plane); buf += s->planesize; } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else { return unsupported(avctx); } if (!s->is_brush) { FFSWAP(uint8_t *, s->video[0], s->video[1]); } } if (avpkt->flags & AV_PKT_FLAG_KEY) { frame->key_frame = 1; frame->pict_type = AV_PICTURE_TYPE_I; } else { frame->key_frame = 0; frame->pict_type = AV_PICTURE_TYPE_P; } *got_frame = 1; return buf_size; } #if CONFIG_IFF_ILBM_DECODER AVCodec ff_iff_ilbm_decoder = { .name = "iff", .long_name = NULL_IF_CONFIG_SMALL("IFF ACBM/ANIM/DEEP/ILBM/PBM/RGB8/RGBN"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_IFF_ILBM, .priv_data_size = sizeof(IffContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = AV_CODEC_CAP_DR1, }; #endif