/* * IFF ACBM/DEEP/ILBM/PBM bitmap decoder * Copyright (c) 2010 Peter Ross <pross@xvid.org> * Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * IFF ACBM/DEEP/ILBM/PBM bitmap decoder */ #include <stdint.h> #include "libavutil/imgutils.h" #include "bytestream.h" #include "avcodec.h" #include "get_bits.h" #include "internal.h" // TODO: masking bits typedef enum { MASK_NONE, MASK_HAS_MASK, MASK_HAS_TRANSPARENT_COLOR, MASK_LASSO } mask_type; typedef struct { AVFrame *frame; int planesize; uint8_t * planebuf; uint8_t * ham_buf; ///< temporary buffer for planar to chunky conversation uint32_t *ham_palbuf; ///< HAM decode table uint32_t *mask_buf; ///< temporary buffer for palette indices uint32_t *mask_palbuf; ///< masking palette table unsigned compression; ///< delta compression method used unsigned bpp; ///< bits per plane to decode (differs from bits_per_coded_sample if HAM) unsigned ham; ///< 0 if non-HAM or number of hold bits (6 for bpp > 6, 4 otherwise) unsigned flags; ///< 1 for EHB, 0 is no extra half darkening unsigned transparency; ///< TODO: transparency color index in palette unsigned masking; ///< TODO: masking method used int init; // 1 if buffer and palette data already initialized, 0 otherwise int16_t tvdc[16]; ///< TVDC lookup table } IffContext; #define LUT8_PART(plane, v) \ AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane #define LUT8(plane) { \ LUT8_PART(plane, 0x0000000), \ LUT8_PART(plane, 0x1000000), \ LUT8_PART(plane, 0x0010000), \ LUT8_PART(plane, 0x1010000), \ LUT8_PART(plane, 0x0000100), \ LUT8_PART(plane, 0x1000100), \ LUT8_PART(plane, 0x0010100), \ LUT8_PART(plane, 0x1010100), \ LUT8_PART(plane, 0x0000001), \ LUT8_PART(plane, 0x1000001), \ LUT8_PART(plane, 0x0010001), \ LUT8_PART(plane, 0x1010001), \ LUT8_PART(plane, 0x0000101), \ LUT8_PART(plane, 0x1000101), \ LUT8_PART(plane, 0x0010101), \ LUT8_PART(plane, 0x1010101), \ } // 8 planes * 8-bit mask static const uint64_t plane8_lut[8][256] = { LUT8(0), LUT8(1), LUT8(2), LUT8(3), LUT8(4), LUT8(5), LUT8(6), LUT8(7), }; #define LUT32(plane) { \ 0, 0, 0, 0, \ 0, 0, 0, 1 << plane, \ 0, 0, 1 << plane, 0, \ 0, 0, 1 << plane, 1 << plane, \ 0, 1 << plane, 0, 0, \ 0, 1 << plane, 0, 1 << plane, \ 0, 1 << plane, 1 << plane, 0, \ 0, 1 << plane, 1 << plane, 1 << plane, \ 1 << plane, 0, 0, 0, \ 1 << plane, 0, 0, 1 << plane, \ 1 << plane, 0, 1 << plane, 0, \ 1 << plane, 0, 1 << plane, 1 << plane, \ 1 << plane, 1 << plane, 0, 0, \ 1 << plane, 1 << plane, 0, 1 << plane, \ 1 << plane, 1 << plane, 1 << plane, 0, \ 1 << plane, 1 << plane, 1 << plane, 1 << plane, \ } // 32 planes * 4-bit mask * 4 lookup tables each static const uint32_t plane32_lut[32][16*4] = { LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3), LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7), LUT32( 8), LUT32( 9), LUT32(10), LUT32(11), LUT32(12), LUT32(13), LUT32(14), LUT32(15), LUT32(16), LUT32(17), LUT32(18), LUT32(19), LUT32(20), LUT32(21), LUT32(22), LUT32(23), LUT32(24), LUT32(25), LUT32(26), LUT32(27), LUT32(28), LUT32(29), LUT32(30), LUT32(31), }; // Gray to RGB, required for palette table of grayscale images with bpp < 8 static av_always_inline uint32_t gray2rgb(const uint32_t x) { return x << 16 | x << 8 | x; } /** * Convert CMAP buffer (stored in extradata) to lavc palette format */ static int cmap_read_palette(AVCodecContext *avctx, uint32_t *pal) { IffContext *s = avctx->priv_data; int count, i; const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata); int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata); if (avctx->bits_per_coded_sample > 8) { av_log(avctx, AV_LOG_ERROR, "bits_per_coded_sample > 8 not supported\n"); return AVERROR_INVALIDDATA; } count = 1 << avctx->bits_per_coded_sample; // If extradata is smaller than actually needed, fill the remaining with black. count = FFMIN(palette_size / 3, count); if (count) { for (i = 0; i < count; i++) pal[i] = 0xFF000000 | AV_RB24(palette + i*3); if (s->flags && count >= 32) { // EHB for (i = 0; i < 32; i++) pal[i + 32] = 0xFF000000 | (AV_RB24(palette + i*3) & 0xFEFEFE) >> 1; count = FFMAX(count, 64); } } else { // Create gray-scale color palette for bps < 8 count = 1 << avctx->bits_per_coded_sample; for (i = 0; i < count; i++) pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample); } if (s->masking == MASK_HAS_MASK) { memcpy(pal + (1 << avctx->bits_per_coded_sample), pal, count * 4); for (i = 0; i < count; i++) pal[i] &= 0xFFFFFF; } else if (s->masking == MASK_HAS_TRANSPARENT_COLOR && s->transparency < 1 << avctx->bits_per_coded_sample) pal[s->transparency] &= 0xFFFFFF; return 0; } /** * Extracts the IFF extra context and updates internal * decoder structures. * * @param avctx the AVCodecContext where to extract extra context to * @param avpkt the AVPacket to extract extra context from or NULL to use avctx * @return >= 0 in case of success, a negative error code otherwise */ static int extract_header(AVCodecContext *const avctx, const AVPacket *const avpkt) { const uint8_t *buf; unsigned buf_size; IffContext *s = avctx->priv_data; int i, palette_size; if (avctx->extradata_size < 2) { av_log(avctx, AV_LOG_ERROR, "not enough extradata\n"); return AVERROR_INVALIDDATA; } palette_size = avctx->extradata_size - AV_RB16(avctx->extradata); if (avpkt) { int image_size; if (avpkt->size < 2) return AVERROR_INVALIDDATA; image_size = avpkt->size - AV_RB16(avpkt->data); buf = avpkt->data; buf_size = bytestream_get_be16(&buf); if (buf_size <= 1 || image_size <= 1) { av_log(avctx, AV_LOG_ERROR, "Invalid image size received: %u -> image data offset: %d\n", buf_size, image_size); return AVERROR_INVALIDDATA; } } else { buf = avctx->extradata; buf_size = bytestream_get_be16(&buf); if (buf_size <= 1 || palette_size < 0) { av_log(avctx, AV_LOG_ERROR, "Invalid palette size received: %u -> palette data offset: %d\n", buf_size, palette_size); return AVERROR_INVALIDDATA; } } if (buf_size >= 41) { s->compression = bytestream_get_byte(&buf); s->bpp = bytestream_get_byte(&buf); s->ham = bytestream_get_byte(&buf); s->flags = bytestream_get_byte(&buf); s->transparency = bytestream_get_be16(&buf); s->masking = bytestream_get_byte(&buf); for (i = 0; i < 16; i++) s->tvdc[i] = bytestream_get_be16(&buf); if (s->masking == MASK_HAS_MASK) { if (s->bpp >= 8 && !s->ham) { avctx->pix_fmt = AV_PIX_FMT_RGB32; av_freep(&s->mask_buf); av_freep(&s->mask_palbuf); s->mask_buf = av_malloc((s->planesize * 32) + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->mask_buf) return AVERROR(ENOMEM); if (s->bpp > 16) { av_log(avctx, AV_LOG_ERROR, "bpp %d too large for palette\n", s->bpp); av_freep(&s->mask_buf); return AVERROR(ENOMEM); } s->mask_palbuf = av_malloc((2 << s->bpp) * sizeof(uint32_t) + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->mask_palbuf) { av_freep(&s->mask_buf); return AVERROR(ENOMEM); } } s->bpp++; } else if (s->masking != MASK_NONE && s->masking != MASK_HAS_TRANSPARENT_COLOR) { av_log(avctx, AV_LOG_ERROR, "Masking not supported\n"); return AVERROR_PATCHWELCOME; } if (!s->bpp || s->bpp > 32) { av_log(avctx, AV_LOG_ERROR, "Invalid number of bitplanes: %u\n", s->bpp); return AVERROR_INVALIDDATA; } else if (s->ham >= 8) { av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u\n", s->ham); return AVERROR_INVALIDDATA; } av_freep(&s->ham_buf); av_freep(&s->ham_palbuf); if (s->ham) { int i, count = FFMIN(palette_size / 3, 1 << s->ham); int ham_count; const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata); s->ham_buf = av_malloc((s->planesize * 8) + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->ham_buf) return AVERROR(ENOMEM); ham_count = 8 * (1 << s->ham); s->ham_palbuf = av_malloc((ham_count << !!(s->masking == MASK_HAS_MASK)) * sizeof (uint32_t) + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->ham_palbuf) { av_freep(&s->ham_buf); return AVERROR(ENOMEM); } if (count) { // HAM with color palette attached // prefill with black and palette and set HAM take direct value mask to zero memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof (uint32_t)); for (i=0; i < count; i++) { s->ham_palbuf[i*2+1] = 0xFF000000 | AV_RL24(palette + i*3); } count = 1 << s->ham; } else { // HAM with grayscale color palette count = 1 << s->ham; for (i=0; i < count; i++) { s->ham_palbuf[i*2] = 0xFF000000; // take direct color value from palette s->ham_palbuf[i*2+1] = 0xFF000000 | av_le2ne32(gray2rgb((i * 255) >> s->ham)); } } for (i=0; i < count; i++) { uint32_t tmp = i << (8 - s->ham); tmp |= tmp >> s->ham; s->ham_palbuf[(i+count)*2] = 0xFF00FFFF; // just modify blue color component s->ham_palbuf[(i+count*2)*2] = 0xFFFFFF00; // just modify red color component s->ham_palbuf[(i+count*3)*2] = 0xFFFF00FF; // just modify green color component s->ham_palbuf[(i+count)*2+1] = 0xFF000000 | tmp << 16; s->ham_palbuf[(i+count*2)*2+1] = 0xFF000000 | tmp; s->ham_palbuf[(i+count*3)*2+1] = 0xFF000000 | tmp << 8; } if (s->masking == MASK_HAS_MASK) { for (i = 0; i < ham_count; i++) s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000; } } } return 0; } static av_cold int decode_end(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; av_frame_free(&s->frame); av_freep(&s->planebuf); av_freep(&s->ham_buf); av_freep(&s->ham_palbuf); return 0; } static av_cold int decode_init(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; int err; if (avctx->bits_per_coded_sample <= 8) { int palette_size; if (avctx->extradata_size >= 2) palette_size = avctx->extradata_size - AV_RB16(avctx->extradata); else palette_size = 0; avctx->pix_fmt = (avctx->bits_per_coded_sample < 8) || (avctx->extradata_size >= 2 && palette_size) ? AV_PIX_FMT_PAL8 : AV_PIX_FMT_GRAY8; } else if (avctx->bits_per_coded_sample <= 32) { if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8')) { avctx->pix_fmt = AV_PIX_FMT_RGB32; } else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N')) { avctx->pix_fmt = AV_PIX_FMT_RGB444; } else if (avctx->codec_tag != MKTAG('D', 'E', 'E', 'P')) { if (avctx->bits_per_coded_sample == 24) { avctx->pix_fmt = AV_PIX_FMT_0BGR32; } else if (avctx->bits_per_coded_sample == 32) { avctx->pix_fmt = AV_PIX_FMT_BGR32; } else { avpriv_request_sample(avctx, "unknown bits_per_coded_sample"); return AVERROR_PATCHWELCOME; } } } else { return AVERROR_INVALIDDATA; } if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx))) return err; s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary s->planebuf = av_malloc(s->planesize + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->planebuf) return AVERROR(ENOMEM); s->bpp = avctx->bits_per_coded_sample; s->frame = av_frame_alloc(); if (!s->frame) { decode_end(avctx); return AVERROR(ENOMEM); } if ((err = extract_header(avctx, NULL)) < 0) return err; return 0; } /** * Decode interleaved plane buffer up to 8bpp * @param dst Destination buffer * @param buf Source buffer * @param buf_size * @param plane plane number to decode as */ static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane) { const uint64_t *lut = plane8_lut[plane]; if (plane >= 8) { av_log(NULL, AV_LOG_WARNING, "Ignoring extra planes beyond 8\n"); return; } do { uint64_t v = AV_RN64A(dst) | lut[*buf++]; AV_WN64A(dst, v); dst += 8; } while (--buf_size); } /** * Decode interleaved plane buffer up to 24bpp * @param dst Destination buffer * @param buf Source buffer * @param buf_size * @param plane plane number to decode as */ static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane) { const uint32_t *lut = plane32_lut[plane]; do { unsigned mask = (*buf >> 2) & ~3; dst[0] |= lut[mask++]; dst[1] |= lut[mask++]; dst[2] |= lut[mask++]; dst[3] |= lut[mask]; mask = (*buf++ << 2) & 0x3F; dst[4] |= lut[mask++]; dst[5] |= lut[mask++]; dst[6] |= lut[mask++]; dst[7] |= lut[mask]; dst += 8; } while (--buf_size); } #define DECODE_HAM_PLANE32(x) \ first = buf[x] << 1; \ second = buf[(x)+1] << 1; \ delta &= pal[first++]; \ delta |= pal[first]; \ dst[x] = delta; \ delta &= pal[second++]; \ delta |= pal[second]; \ dst[(x)+1] = delta /** * Converts one line of HAM6/8-encoded chunky buffer to 24bpp. * * @param dst the destination 24bpp buffer * @param buf the source 8bpp chunky buffer * @param pal the HAM decode table * @param buf_size the plane size in bytes */ static void decode_ham_plane32(uint32_t *dst, const uint8_t *buf, const uint32_t *const pal, unsigned buf_size) { uint32_t delta = pal[1]; /* first palette entry */ do { uint32_t first, second; DECODE_HAM_PLANE32(0); DECODE_HAM_PLANE32(2); DECODE_HAM_PLANE32(4); DECODE_HAM_PLANE32(6); buf += 8; dst += 8; } while (--buf_size); } static void lookup_pal_indicies(uint32_t *dst, const uint32_t *buf, const uint32_t *const pal, unsigned width) { do { *dst++ = pal[*buf++]; } while (--width); } /** * Decode one complete byterun1 encoded line. * * @param dst the destination buffer where to store decompressed bitstream * @param dst_size the destination plane size in bytes * @param buf the source byterun1 compressed bitstream * @param buf_end the EOF of source byterun1 compressed bitstream * @return number of consumed bytes in byterun1 compressed bitstream */ static int decode_byterun(uint8_t *dst, int dst_size, const uint8_t *buf, const uint8_t *const buf_end) { const uint8_t *const buf_start = buf; unsigned x; for (x = 0; x < dst_size && buf < buf_end;) { unsigned length; const int8_t value = *buf++; if (value >= 0) { length = FFMIN3(value + 1, dst_size - x, buf_end - buf); memcpy(dst + x, buf, length); buf += length; } else if (value > -128) { length = FFMIN(-value + 1, dst_size - x); memset(dst + x, *buf++, length); } else { // noop continue; } x += length; } if (x < dst_size) { av_log(NULL, AV_LOG_WARNING, "decode_byterun ended before plane size\n"); memset(dst+x, 0, dst_size - x); } return buf - buf_start; } #define DECODE_RGBX_COMMON(type) \ if (!length) { \ length = bytestream2_get_byte(gb); \ if (!length) { \ length = bytestream2_get_be16(gb); \ if (!length) \ return; \ } \ } \ for (i = 0; i < length; i++) { \ *(type *)(dst + y*linesize + x * sizeof(type)) = pixel; \ x += 1; \ if (x >= width) { \ y += 1; \ if (y >= height) \ return; \ x = 0; \ } \ } /** * Decode RGB8 buffer * @param[out] dst Destination buffer * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) */ static void decode_rgb8(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize) { int x = 0, y = 0, i, length; while (bytestream2_get_bytes_left(gb) >= 4) { uint32_t pixel = 0xFF000000 | bytestream2_get_be24(gb); length = bytestream2_get_byte(gb) & 0x7F; DECODE_RGBX_COMMON(uint32_t) } } /** * Decode RGBN buffer * @param[out] dst Destination buffer * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) */ static void decode_rgbn(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize) { int x = 0, y = 0, i, length; while (bytestream2_get_bytes_left(gb) >= 2) { uint32_t pixel = bytestream2_get_be16u(gb); length = pixel & 0x7; pixel >>= 4; DECODE_RGBX_COMMON(uint16_t) } } /** * Decode DEEP RLE 32-bit buffer * @param[out] dst Destination buffer * @param[in] src Source buffer * @param src_size Source buffer size (bytes) * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) */ static void decode_deep_rle32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize) { const uint8_t *src_end = src + src_size; int x = 0, y = 0, i; while (src + 5 <= src_end) { int opcode; opcode = *(int8_t *)src++; if (opcode >= 0) { int size = opcode + 1; for (i = 0; i < size; i++) { int length = FFMIN(size - i, width); memcpy(dst + y*linesize + x * 4, src, length * 4); src += length * 4; x += length; i += length; if (x >= width) { x = 0; y += 1; if (y >= height) return; } } } else { int size = -opcode + 1; uint32_t pixel = AV_RN32(src); for (i = 0; i < size; i++) { *(uint32_t *)(dst + y*linesize + x * 4) = pixel; x += 1; if (x >= width) { x = 0; y += 1; if (y >= height) return; } } src += 4; } } } /** * Decode DEEP TVDC 32-bit buffer * @param[out] dst Destination buffer * @param[in] src Source buffer * @param src_size Source buffer size (bytes) * @param width Width of destination buffer (pixels) * @param height Height of destination buffer (pixels) * @param linesize Line size of destination buffer (bytes) * @param[int] tvdc TVDC lookup table */ static void decode_deep_tvdc32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize, const int16_t *tvdc) { int x = 0, y = 0, plane = 0; int8_t pixel = 0; int i, j; for (i = 0; i < src_size * 2;) { #define GETNIBBLE ((i & 1) ? (src[i>>1] & 0xF) : (src[i>>1] >> 4)) int d = tvdc[GETNIBBLE]; i++; if (d) { pixel += d; dst[y * linesize + x*4 + plane] = pixel; x++; } else { if (i >= src_size * 2) return; d = GETNIBBLE + 1; i++; d = FFMIN(d, width - x); for (j = 0; j < d; j++) { dst[y * linesize + x*4 + plane] = pixel; x++; } } if (x >= width) { plane++; if (plane >= 4) { y++; if (y >= height) return; plane = 0; } x = 0; pixel = 0; i = (i + 1) & ~1; } } } static int unsupported(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; avpriv_request_sample(avctx, "bitmap (compression %i, bpp %i, ham %i)", s->compression, s->bpp, s->ham); return AVERROR_INVALIDDATA; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { IffContext *s = avctx->priv_data; const uint8_t *buf = avpkt->size >= 2 ? avpkt->data + AV_RB16(avpkt->data) : NULL; const int buf_size = avpkt->size >= 2 ? avpkt->size - AV_RB16(avpkt->data) : 0; const uint8_t *buf_end = buf + buf_size; int y, plane, res; GetByteContext gb; if ((res = extract_header(avctx, avpkt)) < 0) return res; if ((res = ff_reget_buffer(avctx, s->frame)) < 0) return res; if (!s->init && avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt == AV_PIX_FMT_PAL8) { if ((res = cmap_read_palette(avctx, (uint32_t *)s->frame->data[1])) < 0) return res; } else if (!s->init && avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt == AV_PIX_FMT_RGB32) { if ((res = cmap_read_palette(avctx, s->mask_palbuf)) < 0) return res; } s->init = 1; switch (s->compression) { case 0: if (avctx->codec_tag == MKTAG('A', 'C', 'B', 'M')) { if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { memset(s->frame->data[0], 0, avctx->height * s->frame->linesize[0]); for (plane = 0; plane < s->bpp; plane++) { for (y = 0; y < avctx->height && buf < buf_end; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32 memset(s->frame->data[0], 0, avctx->height * s->frame->linesize[0]); for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp; plane++) { const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize; if (start >= buf_end) break; decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane); } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else return unsupported(avctx); } else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); int raw_width = avctx->width * (av_get_bits_per_pixel(desc) >> 3); int x; for (y = 0; y < avctx->height && buf < buf_end; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memcpy(row, buf, FFMIN(raw_width, buf_end - buf)); buf += raw_width; if (avctx->pix_fmt == AV_PIX_FMT_BGR32) { for (x = 0; x < avctx->width; x++) row[4 * x + 3] = row[4 * x + 3] & 0xF0 | (row[4 * x + 3] >> 4); } } } else if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M')) { // interleaved if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(row, 0, avctx->width); for (plane = 0; plane < s->bpp && buf < buf_end; plane++) { decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp && buf < buf_end; plane++) { decodeplane8(s->ham_buf, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else { // AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(row, 0, avctx->width << 2); for (plane = 0; plane < s->bpp && buf < buf_end; plane++) { decodeplane32((uint32_t *)row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } } else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height && buf_end > buf; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memcpy(row, buf, FFMIN(avctx->width, buf_end - buf)); buf += avctx->width + (avctx->width % 2); // padding if odd } } else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height && buf_end > buf; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memcpy(s->ham_buf, buf, FFMIN(avctx->width, buf_end - buf)); buf += avctx->width + (avctx->width & 1); // padding if odd decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else return unsupported(avctx); } break; case 1: if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M')) { // interleaved if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(row, 0, avctx->width); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end); decodeplane8(row, s->planebuf, s->planesize, plane); } } } else if (avctx->bits_per_coded_sample <= 8) { //8-bit (+ mask) to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(s->mask_buf, 0, avctx->width * sizeof(uint32_t)); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end); decodeplane32(s->mask_buf, s->planebuf, s->planesize, plane); } lookup_pal_indicies((uint32_t *)row, s->mask_buf, s->mask_palbuf, avctx->width); } } else if (s->ham) { // HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(s->ham_buf, 0, s->planesize * 8); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end); decodeplane8(s->ham_buf, s->planebuf, s->planesize, plane); } decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else { // AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; memset(row, 0, avctx->width << 2); for (plane = 0; plane < s->bpp; plane++) { buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end); decodeplane32((uint32_t *)row, s->planebuf, s->planesize, plane); } } } } else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; buf += decode_byterun(row, avctx->width, buf, buf_end); } } else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32 for (y = 0; y < avctx->height; y++) { uint8_t *row = &s->frame->data[0][y * s->frame->linesize[0]]; buf += decode_byterun(s->ham_buf, avctx->width, buf, buf_end); decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize); } } else return unsupported(avctx); } else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { // IFF-DEEP const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); if (av_get_bits_per_pixel(desc) == 32) decode_deep_rle32(s->frame->data[0], buf, buf_size, avctx->width, avctx->height, s->frame->linesize[0]); else return unsupported(avctx); } break; case 4: bytestream2_init(&gb, buf, buf_size); if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8')) decode_rgb8(&gb, s->frame->data[0], avctx->width, avctx->height, s->frame->linesize[0]); else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N')) decode_rgbn(&gb, s->frame->data[0], avctx->width, avctx->height, s->frame->linesize[0]); else return unsupported(avctx); break; case 5: if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); if (av_get_bits_per_pixel(desc) == 32) decode_deep_tvdc32(s->frame->data[0], buf, buf_size, avctx->width, avctx->height, s->frame->linesize[0], s->tvdc); else return unsupported(avctx); } else return unsupported(avctx); break; default: return unsupported(avctx); } if ((res = av_frame_ref(data, s->frame)) < 0) return res; *got_frame = 1; return buf_size; } #if CONFIG_IFF_ILBM_DECODER AVCodec ff_iff_ilbm_decoder = { .name = "iff", .long_name = NULL_IF_CONFIG_SMALL("IFF"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_IFF_ILBM, .priv_data_size = sizeof(IffContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1, }; #endif #if CONFIG_IFF_BYTERUN1_DECODER AVCodec ff_iff_byterun1_decoder = { .name = "iff", .long_name = NULL_IF_CONFIG_SMALL("IFF"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_IFF_BYTERUN1, .priv_data_size = sizeof(IffContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1, }; #endif