/* * IFF PBM/ILBM bitmap decoder * Copyright (c) 2010 Peter Ross <pross@xvid.org> * Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com> * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * IFF PBM/ILBM bitmap decoder */ #include "libavutil/imgutils.h" #include "bytestream.h" #include "avcodec.h" #include "get_bits.h" typedef struct { AVFrame frame; int planesize; uint8_t * planebuf; int init; // 1 if buffer and palette data already initialized, 0 otherwise } IffContext; #define LUT8_PART(plane, v) \ AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \ AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane #define LUT8(plane) { \ LUT8_PART(plane, 0x0000000), \ LUT8_PART(plane, 0x1000000), \ LUT8_PART(plane, 0x0010000), \ LUT8_PART(plane, 0x1010000), \ LUT8_PART(plane, 0x0000100), \ LUT8_PART(plane, 0x1000100), \ LUT8_PART(plane, 0x0010100), \ LUT8_PART(plane, 0x1010100), \ LUT8_PART(plane, 0x0000001), \ LUT8_PART(plane, 0x1000001), \ LUT8_PART(plane, 0x0010001), \ LUT8_PART(plane, 0x1010001), \ LUT8_PART(plane, 0x0000101), \ LUT8_PART(plane, 0x1000101), \ LUT8_PART(plane, 0x0010101), \ LUT8_PART(plane, 0x1010101), \ } // 8 planes * 8-bit mask static const uint64_t plane8_lut[8][256] = { LUT8(0), LUT8(1), LUT8(2), LUT8(3), LUT8(4), LUT8(5), LUT8(6), LUT8(7), }; #define LUT32(plane) { \ 0, 0, 0, 0, \ 0, 0, 0, 1 << plane, \ 0, 0, 1 << plane, 0, \ 0, 0, 1 << plane, 1 << plane, \ 0, 1 << plane, 0, 0, \ 0, 1 << plane, 0, 1 << plane, \ 0, 1 << plane, 1 << plane, 0, \ 0, 1 << plane, 1 << plane, 1 << plane, \ 1 << plane, 0, 0, 0, \ 1 << plane, 0, 0, 1 << plane, \ 1 << plane, 0, 1 << plane, 0, \ 1 << plane, 0, 1 << plane, 1 << plane, \ 1 << plane, 1 << plane, 0, 0, \ 1 << plane, 1 << plane, 0, 1 << plane, \ 1 << plane, 1 << plane, 1 << plane, 0, \ 1 << plane, 1 << plane, 1 << plane, 1 << plane, \ } // 32 planes * 4-bit mask * 4 lookup tables each static const uint32_t plane32_lut[32][16*4] = { LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3), LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7), LUT32( 8), LUT32( 9), LUT32(10), LUT32(11), LUT32(12), LUT32(13), LUT32(14), LUT32(15), LUT32(16), LUT32(17), LUT32(18), LUT32(19), LUT32(20), LUT32(21), LUT32(22), LUT32(23), LUT32(24), LUT32(25), LUT32(26), LUT32(27), LUT32(28), LUT32(29), LUT32(30), LUT32(31), }; // Gray to RGB, required for palette table of grayscale images with bpp < 8 static av_always_inline uint32_t gray2rgb(const uint32_t x) { return x << 16 | x << 8 | x; } /** * Convert CMAP buffer (stored in extradata) to lavc palette format */ static int ff_cmap_read_palette(AVCodecContext *avctx, uint32_t *pal) { int count, i; if (avctx->bits_per_coded_sample > 8) { av_log(avctx, AV_LOG_ERROR, "bit_per_coded_sample > 8 not supported\n"); return AVERROR_INVALIDDATA; } count = 1 << avctx->bits_per_coded_sample; // If extradata is smaller than actually needed, fill the remaining with black. count = FFMIN(avctx->extradata_size / 3, count); if (count) { for (i=0; i < count; i++) { pal[i] = 0xFF000000 | AV_RB24( avctx->extradata + i*3 ); } } else { // Create gray-scale color palette for bps < 8 count = 1 << avctx->bits_per_coded_sample; for (i=0; i < count; i++) { pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample); } } return 0; } static av_cold int decode_init(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; int err; if (avctx->bits_per_coded_sample <= 8) { avctx->pix_fmt = (avctx->bits_per_coded_sample < 8 || avctx->extradata_size) ? PIX_FMT_PAL8 : PIX_FMT_GRAY8; } else if (avctx->bits_per_coded_sample <= 32) { avctx->pix_fmt = PIX_FMT_BGR32; } else { return AVERROR_INVALIDDATA; } if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx))) return err; s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary s->planebuf = av_malloc(s->planesize + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->planebuf) return AVERROR(ENOMEM); s->frame.reference = 1; return 0; } /** * Decode interleaved plane buffer up to 8bpp * @param dst Destination buffer * @param buf Source buffer * @param buf_size * @param plane plane number to decode as */ static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane) { const uint64_t *lut = plane8_lut[plane]; do { uint64_t v = AV_RN64A(dst) | lut[*buf++]; AV_WN64A(dst, v); dst += 8; } while (--buf_size); } /** * Decode interleaved plane buffer up to 24bpp * @param dst Destination buffer * @param buf Source buffer * @param buf_size * @param plane plane number to decode as */ static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane) { const uint32_t *lut = plane32_lut[plane]; do { unsigned mask = (*buf >> 2) & ~3; dst[0] |= lut[mask++]; dst[1] |= lut[mask++]; dst[2] |= lut[mask++]; dst[3] |= lut[mask]; mask = (*buf++ << 2) & 0x3F; dst[4] |= lut[mask++]; dst[5] |= lut[mask++]; dst[6] |= lut[mask++]; dst[7] |= lut[mask]; dst += 8; } while (--buf_size); } /** * Decode one complete byterun1 encoded line. * * @param dst the destination buffer where to store decompressed bitstream * @param dst_size the destination plane size in bytes * @param buf the source byterun1 compressed bitstream * @param buf_end the EOF of source byterun1 compressed bitstream * @return number of consumed bytes in byterun1 compressed bitstream */ static int decode_byterun(uint8_t *dst, int dst_size, const uint8_t *buf, const uint8_t *const buf_end) { const uint8_t *const buf_start = buf; unsigned x; for (x = 0; x < dst_size && buf < buf_end;) { unsigned length; const int8_t value = *buf++; if (value >= 0) { length = value + 1; memcpy(dst + x, buf, FFMIN3(length, dst_size - x, buf_end - buf)); buf += length; } else if (value > -128) { length = -value + 1; memset(dst + x, *buf++, FFMIN(length, dst_size - x)); } else { // noop continue; } x += length; } return buf - buf_start; } static int decode_frame_ilbm(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { IffContext *s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; const uint8_t *buf_end = buf+buf_size; int y, plane, res; if (s->init) { if ((res = avctx->reget_buffer(avctx, &s->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return res; } } else if ((res = avctx->get_buffer(avctx, &s->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return res; } else if (avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt != PIX_FMT_GRAY8) { if ((res = ff_cmap_read_palette(avctx, (uint32_t*)s->frame.data[1])) < 0) return res; } s->init = 1; if (avctx->codec_tag == MKTAG('I','L','B','M')) { // interleaved if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) { for(y = 0; y < avctx->height; y++ ) { uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ]; memset(row, 0, avctx->width); for (plane = 0; plane < avctx->bits_per_coded_sample && buf < buf_end; plane++) { decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } else { // PIX_FMT_BGR32 for(y = 0; y < avctx->height; y++ ) { uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]]; memset(row, 0, avctx->width << 2); for (plane = 0; plane < avctx->bits_per_coded_sample && buf < buf_end; plane++) { decodeplane32((uint32_t *) row, buf, FFMIN(s->planesize, buf_end - buf), plane); buf += s->planesize; } } } } else if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) { // IFF-PBM for(y = 0; y < avctx->height; y++ ) { uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]]; memcpy(row, buf, FFMIN(avctx->width, buf_end - buf)); buf += avctx->width + (avctx->width % 2); // padding if odd } } *data_size = sizeof(AVFrame); *(AVFrame*)data = s->frame; return buf_size; } static int decode_frame_byterun1(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { IffContext *s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; const uint8_t *buf_end = buf+buf_size; int y, plane, res; if (s->init) { if ((res = avctx->reget_buffer(avctx, &s->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return res; } } else if ((res = avctx->get_buffer(avctx, &s->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return res; } else if (avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt != PIX_FMT_GRAY8) { if ((res = ff_cmap_read_palette(avctx, (uint32_t*)s->frame.data[1])) < 0) return res; } s->init = 1; if (avctx->codec_tag == MKTAG('I','L','B','M')) { //interleaved if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) { for(y = 0; y < avctx->height ; y++ ) { uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ]; memset(row, 0, avctx->width); for (plane = 0; plane < avctx->bits_per_coded_sample; plane++) { buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end); decodeplane8(row, s->planebuf, s->planesize, plane); } } } else { //PIX_FMT_BGR32 for(y = 0; y < avctx->height ; y++ ) { uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]]; memset(row, 0, avctx->width << 2); for (plane = 0; plane < avctx->bits_per_coded_sample; plane++) { buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end); decodeplane32((uint32_t *) row, s->planebuf, s->planesize, plane); } } } } else { for(y = 0; y < avctx->height ; y++ ) { uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]]; buf += decode_byterun(row, avctx->width, buf, buf_end); } } *data_size = sizeof(AVFrame); *(AVFrame*)data = s->frame; return buf_size; } static av_cold int decode_end(AVCodecContext *avctx) { IffContext *s = avctx->priv_data; if (s->frame.data[0]) avctx->release_buffer(avctx, &s->frame); av_freep(&s->planebuf); return 0; } AVCodec ff_iff_ilbm_decoder = { .name = "iff_ilbm", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_IFF_ILBM, .priv_data_size = sizeof(IffContext), .init = decode_init, .close = decode_end, .decode = decode_frame_ilbm, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("IFF ILBM"), }; AVCodec ff_iff_byterun1_decoder = { .name = "iff_byterun1", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_IFF_BYTERUN1, .priv_data_size = sizeof(IffContext), .init = decode_init, .close = decode_end, .decode = decode_frame_byterun1, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("IFF ByteRun1"), };