/*
 * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
 *
 * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
 * the algorithm used
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
 */

/**
 * @file
 * huffyuv encoder
 */

#include "avcodec.h"
#include "huffyuv.h"
#include "huffman.h"
#include "internal.h"
#include "put_bits.h"
#include "libavutil/pixdesc.h"

static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
                              const uint8_t *src0, const uint8_t *src1, int w)
{
    if (s->bps <= 8) {
        s->dsp.diff_bytes(dst, src0, src1, w);
    } else {
        s->llviddsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
    }
}

static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
                                      const uint8_t *src, int w, int left)
{
    int i;
    if (s->bps <= 8) {
        if (w < 32) {
            for (i = 0; i < w; i++) {
                const int temp = src[i];
                dst[i] = temp - left;
                left   = temp;
            }
            return left;
        } else {
            for (i = 0; i < 16; i++) {
                const int temp = src[i];
                dst[i] = temp - left;
                left   = temp;
            }
            s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
            return src[w-1];
        }
    } else {
        const uint16_t *src16 = (const uint16_t *)src;
        uint16_t       *dst16 = (      uint16_t *)dst;
        if (w < 32) {
            for (i = 0; i < w; i++) {
                const int temp = src16[i];
                dst16[i] = temp - left;
                left   = temp;
            }
            return left;
        } else {
            for (i = 0; i < 16; i++) {
                const int temp = src16[i];
                dst16[i] = temp - left;
                left   = temp;
            }
            s->llviddsp.diff_int16(dst16 + 16, src16 + 16, src16 + 15, s->n - 1, w - 16);
            return src16[w-1];
        }
    }
}

static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
                                             const uint8_t *src, int w,
                                             int *red, int *green, int *blue,
                                             int *alpha)
{
    int i;
    int r, g, b, a;
    r = *red;
    g = *green;
    b = *blue;
    a = *alpha;

    for (i = 0; i < FFMIN(w, 4); i++) {
        const int rt = src[i * 4 + R];
        const int gt = src[i * 4 + G];
        const int bt = src[i * 4 + B];
        const int at = src[i * 4 + A];
        dst[i * 4 + R] = rt - r;
        dst[i * 4 + G] = gt - g;
        dst[i * 4 + B] = bt - b;
        dst[i * 4 + A] = at - a;
        r = rt;
        g = gt;
        b = bt;
        a = at;
    }

    s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);

    *red   = src[(w - 1) * 4 + R];
    *green = src[(w - 1) * 4 + G];
    *blue  = src[(w - 1) * 4 + B];
    *alpha = src[(w - 1) * 4 + A];
}

static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
                                             uint8_t *src, int w,
                                             int *red, int *green, int *blue)
{
    int i;
    int r, g, b;
    r = *red;
    g = *green;
    b = *blue;
    for (i = 0; i < FFMIN(w, 16); i++) {
        const int rt = src[i * 3 + 0];
        const int gt = src[i * 3 + 1];
        const int bt = src[i * 3 + 2];
        dst[i * 3 + 0] = rt - r;
        dst[i * 3 + 1] = gt - g;
        dst[i * 3 + 2] = bt - b;
        r = rt;
        g = gt;
        b = bt;
    }

    s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);

    *red   = src[(w - 1) * 3 + 0];
    *green = src[(w - 1) * 3 + 1];
    *blue  = src[(w - 1) * 3 + 2];
}

static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
{
    if (s->bps <= 8) {
        s->dsp.sub_hfyu_median_prediction(dst, src1, src2, w , left, left_top);
    } else {
        s->llviddsp.sub_hfyu_median_prediction_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
    }
}

static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
{
    int i;
    int index = 0;
    int n = s->vlc_n;

    for (i = 0; i < n;) {
        int val = len[i];
        int repeat = 0;

        for (; i < n && len[i] == val && repeat < 255; i++)
            repeat++;

        av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
        if (repeat > 7) {
            buf[index++] = val;
            buf[index++] = repeat;
        } else {
            buf[index++] = val | (repeat << 5);
        }
    }

    return index;
}

static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
{
    int i, ret;
    int size = 0;
    int count = 3;

    if (s->version > 2)
        count = 1 + s->alpha + 2*s->chroma;

    for (i = 0; i < count; i++) {
        if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n)) < 0)
            return ret;

        if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
            return -1;
        }

        size += store_table(s, s->len[i], buf + size);
    }
    return size;
}

static av_cold int encode_init(AVCodecContext *avctx)
{
    HYuvContext *s = avctx->priv_data;
    int i, j;
    int ret;
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);

    ff_huffyuv_common_init(avctx);

    avctx->extradata = av_mallocz(3*MAX_N + 4);
    if (!avctx->extradata)
        return AVERROR(ENOMEM);
    if (s->flags&CODEC_FLAG_PASS1) {
#define STATS_OUT_SIZE 21*MAX_N*3 + 4
        avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
        if (!avctx->stats_out)
            return AVERROR(ENOMEM);
    }
    s->version = 2;

    avctx->coded_frame = av_frame_alloc();
    if (!avctx->coded_frame)
        return AVERROR(ENOMEM);

    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
    avctx->coded_frame->key_frame = 1;

    s->bps = desc->comp[0].depth_minus1 + 1;
    s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
    s->chroma = desc->nb_components > 2;
    s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
    av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt,
                                     &s->chroma_h_shift,
                                     &s->chroma_v_shift);

    switch (avctx->pix_fmt) {
    case AV_PIX_FMT_YUV420P:
    case AV_PIX_FMT_YUV422P:
        if (s->width & 1) {
            av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
            return AVERROR(EINVAL);
        }
        s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
        break;
    case AV_PIX_FMT_YUV444P:
    case AV_PIX_FMT_YUV410P:
    case AV_PIX_FMT_YUV411P:
    case AV_PIX_FMT_YUV440P:
    case AV_PIX_FMT_GBRP:
    case AV_PIX_FMT_GBRP9:
    case AV_PIX_FMT_GBRP10:
    case AV_PIX_FMT_GBRP12:
    case AV_PIX_FMT_GBRP14:
    case AV_PIX_FMT_GBRP16:
    case AV_PIX_FMT_GRAY8:
    case AV_PIX_FMT_GRAY16:
    case AV_PIX_FMT_YUVA444P:
    case AV_PIX_FMT_YUVA420P:
    case AV_PIX_FMT_YUVA422P:
    case AV_PIX_FMT_GBRAP:
    case AV_PIX_FMT_GRAY8A:
    case AV_PIX_FMT_YUV420P9:
    case AV_PIX_FMT_YUV420P10:
    case AV_PIX_FMT_YUV420P12:
    case AV_PIX_FMT_YUV420P14:
    case AV_PIX_FMT_YUV420P16:
    case AV_PIX_FMT_YUV422P9:
    case AV_PIX_FMT_YUV422P10:
    case AV_PIX_FMT_YUV422P12:
    case AV_PIX_FMT_YUV422P14:
    case AV_PIX_FMT_YUV422P16:
    case AV_PIX_FMT_YUV444P9:
    case AV_PIX_FMT_YUV444P10:
    case AV_PIX_FMT_YUV444P12:
    case AV_PIX_FMT_YUV444P14:
    case AV_PIX_FMT_YUV444P16:
    case AV_PIX_FMT_YUVA420P9:
    case AV_PIX_FMT_YUVA420P10:
    case AV_PIX_FMT_YUVA420P16:
    case AV_PIX_FMT_YUVA422P9:
    case AV_PIX_FMT_YUVA422P10:
    case AV_PIX_FMT_YUVA422P16:
    case AV_PIX_FMT_YUVA444P9:
    case AV_PIX_FMT_YUVA444P10:
    case AV_PIX_FMT_YUVA444P16:
        s->version = 3;
        break;
    case AV_PIX_FMT_RGB32:
        s->bitstream_bpp = 32;
        break;
    case AV_PIX_FMT_RGB24:
        s->bitstream_bpp = 24;
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "format not supported\n");
        return AVERROR(EINVAL);
    }
    s->n = 1<<s->bps;
    s->vlc_n = FFMIN(s->n, MAX_VLC_N);

    avctx->bits_per_coded_sample = s->bitstream_bpp;
    s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
    s->predictor = avctx->prediction_method;
    s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
    if (avctx->context_model == 1) {
        s->context = avctx->context_model;
        if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
            av_log(avctx, AV_LOG_ERROR,
                   "context=1 is not compatible with "
                   "2 pass huffyuv encoding\n");
            return AVERROR(EINVAL);
        }
    }else s->context= 0;

    if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
        if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: YV12 is not supported by huffyuv; use "
                   "vcodec=ffvhuff or format=422p\n");
            return AVERROR(EINVAL);
        }
        if (avctx->context_model) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: per-frame huffman tables are not supported "
                   "by huffyuv; use vcodec=ffvhuff\n");
            return AVERROR(EINVAL);
        }
        if (s->version > 2) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: ver>2 is not supported "
                   "by huffyuv; use vcodec=ffvhuff\n");
            return AVERROR(EINVAL);
        }
        if (s->interlaced != ( s->height > 288 ))
            av_log(avctx, AV_LOG_INFO,
                   "using huffyuv 2.2.0 or newer interlacing flag\n");
    }

    if (s->version > 3 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
        av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
               "Use vstrict=-2 / -strict -2 to use it anyway.\n");
        return AVERROR(EINVAL);
    }

    if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
        av_log(avctx, AV_LOG_ERROR,
               "Error: RGB is incompatible with median predictor\n");
        return AVERROR(EINVAL);
    }

    ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
    ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
    if (s->context)
        ((uint8_t*)avctx->extradata)[2] |= 0x40;
    if (s->version < 3) {
        ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
        ((uint8_t*)avctx->extradata)[3] = 0;
    } else {
        ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
        if (s->chroma)
            ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
        if (s->alpha)
            ((uint8_t*)avctx->extradata)[2] |= 4;
        ((uint8_t*)avctx->extradata)[3] = 1;
    }
    s->avctx->extradata_size = 4;

    if (avctx->stats_in) {
        char *p = avctx->stats_in;

        for (i = 0; i < 4; i++)
            for (j = 0; j < s->vlc_n; j++)
                s->stats[i][j] = 1;

        for (;;) {
            for (i = 0; i < 4; i++) {
                char *next;

                for (j = 0; j < s->vlc_n; j++) {
                    s->stats[i][j] += strtol(p, &next, 0);
                    if (next == p) return -1;
                    p = next;
                }
            }
            if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
        }
    } else {
        for (i = 0; i < 4; i++)
            for (j = 0; j < s->vlc_n; j++) {
                int d = FFMIN(j, s->vlc_n - j);

                s->stats[i][j] = 100000000 / (d + 1);
            }
    }

    ret = store_huffman_tables(s, s->avctx->extradata + s->avctx->extradata_size);
    if (ret < 0)
        return ret;
    s->avctx->extradata_size += ret;

    if (s->context) {
        for (i = 0; i < 4; i++) {
            int pels = s->width * s->height / (i ? 40 : 10);
            for (j = 0; j < s->vlc_n; j++) {
                int d = FFMIN(j, s->vlc_n - j);
                s->stats[i][j] = pels/(d + 1);
            }
        }
    } else {
        for (i = 0; i < 4; i++)
            for (j = 0; j < s->vlc_n; j++)
                s->stats[i][j]= 0;
    }

    if (ff_huffyuv_alloc_temp(s)) {
        ff_huffyuv_common_end(s);
        return AVERROR(ENOMEM);
    }

    s->picture_number=0;

    return 0;
}
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
{
    int i;
    const uint8_t *y = s->temp[0] + offset;
    const uint8_t *u = s->temp[1] + offset / 2;
    const uint8_t *v = s->temp[2] + offset / 2;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD4\
            int y0 = y[2 * i];\
            int y1 = y[2 * i + 1];\
            int u0 = u[i];\
            int v0 = v[i];

    count /= 2;

    if (s->flags & CODEC_FLAG_PASS1) {
        for(i = 0; i < count; i++) {
            LOAD4;
            s->stats[0][y0]++;
            s->stats[1][u0]++;
            s->stats[0][y1]++;
            s->stats[2][v0]++;
        }
    }
    if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
        return 0;
    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD4;
            s->stats[0][y0]++;
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
            s->stats[1][u0]++;
            put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
            s->stats[0][y1]++;
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
            s->stats[2][v0]++;
            put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
        }
    } else {
        for(i = 0; i < count; i++) {
            LOAD4;
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
            put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
            put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
        }
    }
    return 0;
}

static int encode_plane_bitstream(HYuvContext *s, int count, int plane)
{
    int i;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD2\
            int y0 = s->temp[0][2 * i];\
            int y1 = s->temp[0][2 * i + 1];
#define LOAD2_14\
            int y0 = s->temp16[0][2 * i] & mask;\
            int y1 = s->temp16[0][2 * i + 1] & mask;
#define LOAD2_16\
            int y0 = s->temp16[0][2 * i];\
            int y1 = s->temp16[0][2 * i + 1];
#define STAT2\
            s->stats[plane][y0]++;\
            s->stats[plane][y1]++;
#define STAT2_16\
            s->stats[plane][y0>>2]++;\
            s->stats[plane][y1>>2]++;
#define WRITE2\
            put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
            put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
#define WRITE2_16\
            put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
            put_bits(&s->pb, 2, y0&3);\
            put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
            put_bits(&s->pb, 2, y1&3);

    count /= 2;

    if (s->bps <= 8) {
    if (s->flags & CODEC_FLAG_PASS1) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
        }
    }
    if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
        return 0;

    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
            WRITE2;
        }
    } else {
        for (i = 0; i < count; i++) {
            LOAD2;
            WRITE2;
        }
    }
    } else if (s->bps <= 14) {
        int mask = s->n - 1;
        if (s->flags & CODEC_FLAG_PASS1) {
            for (i = 0; i < count; i++) {
                LOAD2_14;
                STAT2;
            }
        }
        if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
            return 0;

        if (s->context) {
            for (i = 0; i < count; i++) {
                LOAD2_14;
                STAT2;
                WRITE2;
            }
        } else {
            for (i = 0; i < count; i++) {
                LOAD2_14;
                WRITE2;
            }
        }
    } else {
        if (s->flags & CODEC_FLAG_PASS1) {
            for (i = 0; i < count; i++) {
                LOAD2_16;
                STAT2_16;
            }
        }
        if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
            return 0;

        if (s->context) {
            for (i = 0; i < count; i++) {
                LOAD2_16;
                STAT2_16;
                WRITE2_16;
            }
        } else {
            for (i = 0; i < count; i++) {
                LOAD2_16;
                WRITE2_16;
            }
        }
    }
#undef LOAD2
#undef STAT2
#undef WRITE2
    return 0;
}

static int encode_gray_bitstream(HYuvContext *s, int count)
{
    int i;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD2\
            int y0 = s->temp[0][2 * i];\
            int y1 = s->temp[0][2 * i + 1];
#define STAT2\
            s->stats[0][y0]++;\
            s->stats[0][y1]++;
#define WRITE2\
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);

    count /= 2;

    if (s->flags & CODEC_FLAG_PASS1) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
        }
    }
    if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
        return 0;

    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
            WRITE2;
        }
    } else {
        for (i = 0; i < count; i++) {
            LOAD2;
            WRITE2;
        }
    }
    return 0;
}

static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
{
    int i;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
        4 * planes * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD_GBRA                                                       \
    int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G];            \
    int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
    int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
    int a = s->temp[0][planes * i + A];

#define STAT_BGRA                                                       \
    s->stats[0][b]++;                                                   \
    s->stats[1][g]++;                                                   \
    s->stats[2][r]++;                                                   \
    if (planes == 4)                                                    \
        s->stats[2][a]++;

#define WRITE_GBRA                                                      \
    put_bits(&s->pb, s->len[1][g], s->bits[1][g]);                      \
    put_bits(&s->pb, s->len[0][b], s->bits[0][b]);                      \
    put_bits(&s->pb, s->len[2][r], s->bits[2][r]);                      \
    if (planes == 4)                                                    \
        put_bits(&s->pb, s->len[2][a], s->bits[2][a]);

    if ((s->flags & CODEC_FLAG_PASS1) &&
        (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
        for (i = 0; i < count; i++) {
            LOAD_GBRA;
            STAT_BGRA;
        }
    } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
        for (i = 0; i < count; i++) {
            LOAD_GBRA;
            STAT_BGRA;
            WRITE_GBRA;
        }
    } else {
        for (i = 0; i < count; i++) {
            LOAD_GBRA;
            WRITE_GBRA;
        }
    }
    return 0;
}

static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                        const AVFrame *pict, int *got_packet)
{
    HYuvContext *s = avctx->priv_data;
    const int width = s->width;
    const int width2 = s->width>>1;
    const int height = s->height;
    const int fake_ystride = s->interlaced ? pict->linesize[0]*2  : pict->linesize[0];
    const int fake_ustride = s->interlaced ? pict->linesize[1]*2  : pict->linesize[1];
    const int fake_vstride = s->interlaced ? pict->linesize[2]*2  : pict->linesize[2];
    const AVFrame * const p = pict;
    int i, j, size = 0, ret;

    if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
        return ret;

    if (s->context) {
        size = store_huffman_tables(s, pkt->data);
        if (size < 0)
            return size;

        for (i = 0; i < 4; i++)
            for (j = 0; j < s->vlc_n; j++)
                s->stats[i][j] >>= 1;
    }

    init_put_bits(&s->pb, pkt->data + size, pkt->size - size);

    if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
        avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
        int lefty, leftu, leftv, y, cy;

        put_bits(&s->pb, 8, leftv = p->data[2][0]);
        put_bits(&s->pb, 8, lefty = p->data[0][1]);
        put_bits(&s->pb, 8, leftu = p->data[1][0]);
        put_bits(&s->pb, 8,         p->data[0][0]);

        lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
        leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
        leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);

        encode_422_bitstream(s, 2, width-2);

        if (s->predictor==MEDIAN) {
            int lefttopy, lefttopu, lefttopv;
            cy = y = 1;
            if (s->interlaced) {
                lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
                leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
                leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);

                encode_422_bitstream(s, 0, width);
                y++; cy++;
            }

            lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
            leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
            leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);

            encode_422_bitstream(s, 0, 4);

            lefttopy = p->data[0][3];
            lefttopu = p->data[1][1];
            lefttopv = p->data[2][1];
            s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
            s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
            s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
            encode_422_bitstream(s, 0, width - 4);
            y++; cy++;

            for (; y < height; y++,cy++) {
                uint8_t *ydst, *udst, *vdst;

                if (s->bitstream_bpp == 12) {
                    while (2 * cy > y) {
                        ydst = p->data[0] + p->linesize[0] * y;
                        s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
                        encode_gray_bitstream(s, width);
                        y++;
                    }
                    if (y >= height) break;
                }
                ydst = p->data[0] + p->linesize[0] * y;
                udst = p->data[1] + p->linesize[1] * cy;
                vdst = p->data[2] + p->linesize[2] * cy;

                s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
                s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
                s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);

                encode_422_bitstream(s, 0, width);
            }
        } else {
            for (cy = y = 1; y < height; y++, cy++) {
                uint8_t *ydst, *udst, *vdst;

                /* encode a luma only line & y++ */
                if (s->bitstream_bpp == 12) {
                    ydst = p->data[0] + p->linesize[0] * y;

                    if (s->predictor == PLANE && s->interlaced < y) {
                        s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);

                        lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                    } else {
                        lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                    }
                    encode_gray_bitstream(s, width);
                    y++;
                    if (y >= height) break;
                }

                ydst = p->data[0] + p->linesize[0] * y;
                udst = p->data[1] + p->linesize[1] * cy;
                vdst = p->data[2] + p->linesize[2] * cy;

                if (s->predictor == PLANE && s->interlaced < cy) {
                    s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
                    s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
                    s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);

                    lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                    leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
                    leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
                } else {
                    lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                    leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
                    leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
                }

                encode_422_bitstream(s, 0, width);
            }
        }
    } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
        uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
        const int stride = -p->linesize[0];
        const int fake_stride = -fake_ystride;
        int y;
        int leftr, leftg, leftb, lefta;

        put_bits(&s->pb, 8, lefta = data[A]);
        put_bits(&s->pb, 8, leftr = data[R]);
        put_bits(&s->pb, 8, leftg = data[G]);
        put_bits(&s->pb, 8, leftb = data[B]);

        sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
                                  &leftr, &leftg, &leftb, &lefta);
        encode_bgra_bitstream(s, width - 1, 4);

        for (y = 1; y < s->height; y++) {
            uint8_t *dst = data + y*stride;
            if (s->predictor == PLANE && s->interlaced < y) {
                s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
                sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
                                          &leftr, &leftg, &leftb, &lefta);
            } else {
                sub_left_prediction_bgr32(s, s->temp[0], dst, width,
                                          &leftr, &leftg, &leftb, &lefta);
            }
            encode_bgra_bitstream(s, width, 4);
        }
    } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
        uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
        const int stride = -p->linesize[0];
        const int fake_stride = -fake_ystride;
        int y;
        int leftr, leftg, leftb;

        put_bits(&s->pb, 8, leftr = data[0]);
        put_bits(&s->pb, 8, leftg = data[1]);
        put_bits(&s->pb, 8, leftb = data[2]);
        put_bits(&s->pb, 8, 0);

        sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
                                  &leftr, &leftg, &leftb);
        encode_bgra_bitstream(s, width-1, 3);

        for (y = 1; y < s->height; y++) {
            uint8_t *dst = data + y * stride;
            if (s->predictor == PLANE && s->interlaced < y) {
                s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
                                  width * 3);
                sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
                                          &leftr, &leftg, &leftb);
            } else {
                sub_left_prediction_rgb24(s, s->temp[0], dst, width,
                                          &leftr, &leftg, &leftb);
            }
            encode_bgra_bitstream(s, width, 3);
        }
    } else if (s->version > 2) {
        int plane;
        for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
            int left, y;
            int w = width;
            int h = height;
            int fake_stride = fake_ystride;

            if (s->chroma && (plane == 1 || plane == 2)) {
                w >>= s->chroma_h_shift;
                h >>= s->chroma_v_shift;
                fake_stride = plane == 1 ? fake_ustride : fake_vstride;
            }

            left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);

            encode_plane_bitstream(s, w, plane);

            if (s->predictor==MEDIAN) {
                int lefttop;
                y = 1;
                if (s->interlaced) {
                    left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);

                    encode_plane_bitstream(s, w, plane);
                    y++;
                }

                lefttop = p->data[plane][0];

                for (; y < h; y++) {
                    uint8_t *dst = p->data[plane] + p->linesize[plane] * y;

                    sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);

                    encode_plane_bitstream(s, w, plane);
                }
            } else {
                for (y = 1; y < h; y++) {
                    uint8_t *dst = p->data[plane] + p->linesize[plane] * y;

                    if (s->predictor == PLANE && s->interlaced < y) {
                        diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);

                        left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
                    } else {
                        left = sub_left_prediction(s, s->temp[0], dst, w , left);
                    }

                    encode_plane_bitstream(s, w, plane);
                }
            }
        }
    } else {
        av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
    }
    emms_c();

    size += (put_bits_count(&s->pb) + 31) / 8;
    put_bits(&s->pb, 16, 0);
    put_bits(&s->pb, 15, 0);
    size /= 4;

    if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
        int j;
        char *p = avctx->stats_out;
        char *end = p + STATS_OUT_SIZE;
        for (i = 0; i < 4; i++) {
            for (j = 0; j < s->vlc_n; j++) {
                snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
                p += strlen(p);
                s->stats[i][j]= 0;
            }
            snprintf(p, end-p, "\n");
            p++;
            if (end <= p)
                return AVERROR(ENOMEM);
        }
    } else if (avctx->stats_out)
        avctx->stats_out[0] = '\0';
    if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
        flush_put_bits(&s->pb);
        s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
    }

    s->picture_number++;

    pkt->size   = size * 4;
    pkt->flags |= AV_PKT_FLAG_KEY;
    *got_packet = 1;

    return 0;
}

static av_cold int encode_end(AVCodecContext *avctx)
{
    HYuvContext *s = avctx->priv_data;

    ff_huffyuv_common_end(s);

    av_freep(&avctx->extradata);
    av_freep(&avctx->stats_out);

    av_frame_free(&avctx->coded_frame);

    return 0;
}

AVCodec ff_huffyuv_encoder = {
    .name           = "huffyuv",
    .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_HUFFYUV,
    .priv_data_size = sizeof(HYuvContext),
    .init           = encode_init,
    .encode2        = encode_frame,
    .close          = encode_end,
    .capabilities   = CODEC_CAP_FRAME_THREADS | CODEC_CAP_INTRA_ONLY,
    .pix_fmts       = (const enum AVPixelFormat[]){
        AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
        AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
    },
};

#if CONFIG_FFVHUFF_ENCODER
AVCodec ff_ffvhuff_encoder = {
    .name           = "ffvhuff",
    .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_FFVHUFF,
    .priv_data_size = sizeof(HYuvContext),
    .init           = encode_init,
    .encode2        = encode_frame,
    .close          = encode_end,
    .capabilities   = CODEC_CAP_FRAME_THREADS | CODEC_CAP_INTRA_ONLY,
    .pix_fmts       = (const enum AVPixelFormat[]){
        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P,
        AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
        AV_PIX_FMT_GBRP,
        AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14,
        AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
        AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
        AV_PIX_FMT_GBRAP,
        AV_PIX_FMT_GRAY8A,
        AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
        AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
        AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
        AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
        AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P16,
        AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16,
        AV_PIX_FMT_RGB24,
        AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
    },
};
#endif