/* * HEVC video Decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef AVCODEC_HEVC_H #define AVCODEC_HEVC_H #include "libavutil/buffer.h" #include "libavutil/md5.h" #include "avcodec.h" #include "cabac.h" #include "dsputil.h" #include "get_bits.h" #include "hevcpred.h" #include "hevcdsp.h" #include "internal.h" #include "thread.h" #include "videodsp.h" #define MAX_DPB_SIZE 16 // A.4.1 #define MAX_REFS 16 /** * 7.4.2.1 */ #define MAX_SUB_LAYERS 7 #define MAX_VPS_COUNT 16 #define MAX_SPS_COUNT 32 #define MAX_PPS_COUNT 256 #define MAX_SHORT_TERM_RPS_COUNT 64 #define MAX_CU_SIZE 128 //TODO: check if this is really the maximum #define MAX_TRANSFORM_DEPTH 5 #define MAX_TB_SIZE 32 #define MAX_PB_SIZE 64 #define MAX_LOG2_CTB_SIZE 6 #define MAX_QP 51 #define DEFAULT_INTRA_TC_OFFSET 2 #define HEVC_CONTEXTS 183 #define MRG_MAX_NUM_CANDS 5 #define L0 0 #define L1 1 #define EPEL_EXTRA_BEFORE 1 #define EPEL_EXTRA_AFTER 2 #define EPEL_EXTRA 3 /** * Value of the luma sample at position (x, y) in the 2D array tab. */ #define SAMPLE(tab, x, y) ((tab)[(y) * s->sps->width + (x)]) #define SAMPLE_CTB(tab, x, y) ((tab)[(y) * pic_width_in_ctb + (x)]) #define SAMPLE_CBF(tab, x, y) ((tab)[((y) & ((1<<log2_trafo_size)-1)) * MAX_CU_SIZE + ((x) & ((1<<log2_trafo_size)-1))]) #define IS_IDR(s) (s->nal_unit_type == NAL_IDR_W_RADL || s->nal_unit_type == NAL_IDR_N_LP) #define IS_BLA(s) (s->nal_unit_type == NAL_BLA_W_RADL || s->nal_unit_type == NAL_BLA_W_LP || \ s->nal_unit_type == NAL_BLA_N_LP) /** * Table 7-3: NAL unit type codes */ enum NALUnitType { NAL_TRAIL_N = 0, NAL_TRAIL_R = 1, NAL_TSA_N = 2, NAL_TSA_R = 3, NAL_STSA_N = 4, NAL_STSA_R = 5, NAL_RADL_N = 6, NAL_RADL_R = 7, NAL_RASL_N = 8, NAL_RASL_R = 9, NAL_BLA_W_LP = 16, NAL_BLA_W_RADL = 17, NAL_BLA_N_LP = 18, NAL_IDR_W_RADL = 19, NAL_IDR_N_LP = 20, NAL_CRA_NUT = 21, NAL_VPS = 32, NAL_SPS = 33, NAL_PPS = 34, NAL_AUD = 35, NAL_EOS_NUT = 36, NAL_EOB_NUT = 37, NAL_FD_NUT = 38, NAL_SEI_PREFIX = 39, NAL_SEI_SUFFIX = 40, }; enum RPSType { ST_CURR_BEF = 0, ST_CURR_AFT, ST_FOLL, LT_CURR, LT_FOLL, NB_RPS_TYPE, }; enum SliceType { B_SLICE = 0, P_SLICE = 1, I_SLICE = 2, }; enum SyntaxElement { SAO_MERGE_FLAG = 0, SAO_TYPE_IDX, SAO_EO_CLASS, SAO_BAND_POSITION, SAO_OFFSET_ABS, SAO_OFFSET_SIGN, END_OF_SLICE_FLAG, SPLIT_CODING_UNIT_FLAG, CU_TRANSQUANT_BYPASS_FLAG, SKIP_FLAG, CU_QP_DELTA, PRED_MODE_FLAG, PART_MODE, PCM_FLAG, PREV_INTRA_LUMA_PRED_FLAG, MPM_IDX, REM_INTRA_LUMA_PRED_MODE, INTRA_CHROMA_PRED_MODE, MERGE_FLAG, MERGE_IDX, INTER_PRED_IDC, REF_IDX_L0, REF_IDX_L1, ABS_MVD_GREATER0_FLAG, ABS_MVD_GREATER1_FLAG, ABS_MVD_MINUS2, MVD_SIGN_FLAG, MVP_LX_FLAG, NO_RESIDUAL_DATA_FLAG, SPLIT_TRANSFORM_FLAG, CBF_LUMA, CBF_CB_CR, TRANSFORM_SKIP_FLAG, LAST_SIGNIFICANT_COEFF_X_PREFIX, LAST_SIGNIFICANT_COEFF_Y_PREFIX, LAST_SIGNIFICANT_COEFF_X_SUFFIX, LAST_SIGNIFICANT_COEFF_Y_SUFFIX, SIGNIFICANT_COEFF_GROUP_FLAG, SIGNIFICANT_COEFF_FLAG, COEFF_ABS_LEVEL_GREATER1_FLAG, COEFF_ABS_LEVEL_GREATER2_FLAG, COEFF_ABS_LEVEL_REMAINING, COEFF_SIGN_FLAG, }; enum PartMode { PART_2Nx2N = 0, PART_2NxN = 1, PART_Nx2N = 2, PART_NxN = 3, PART_2NxnU = 4, PART_2NxnD = 5, PART_nLx2N = 6, PART_nRx2N = 7, }; enum PredMode { MODE_INTER = 0, MODE_INTRA, MODE_SKIP, }; enum InterPredIdc { PRED_L0 = 0, PRED_L1, PRED_BI, }; enum IntraPredMode { INTRA_PLANAR = 0, INTRA_DC, INTRA_ANGULAR_2, INTRA_ANGULAR_3, INTRA_ANGULAR_4, INTRA_ANGULAR_5, INTRA_ANGULAR_6, INTRA_ANGULAR_7, INTRA_ANGULAR_8, INTRA_ANGULAR_9, INTRA_ANGULAR_10, INTRA_ANGULAR_11, INTRA_ANGULAR_12, INTRA_ANGULAR_13, INTRA_ANGULAR_14, INTRA_ANGULAR_15, INTRA_ANGULAR_16, INTRA_ANGULAR_17, INTRA_ANGULAR_18, INTRA_ANGULAR_19, INTRA_ANGULAR_20, INTRA_ANGULAR_21, INTRA_ANGULAR_22, INTRA_ANGULAR_23, INTRA_ANGULAR_24, INTRA_ANGULAR_25, INTRA_ANGULAR_26, INTRA_ANGULAR_27, INTRA_ANGULAR_28, INTRA_ANGULAR_29, INTRA_ANGULAR_30, INTRA_ANGULAR_31, INTRA_ANGULAR_32, INTRA_ANGULAR_33, INTRA_ANGULAR_34, }; enum SAOType { SAO_NOT_APPLIED = 0, SAO_BAND, SAO_EDGE, }; enum SAOEOClass { SAO_EO_HORIZ = 0, SAO_EO_VERT, SAO_EO_135D, SAO_EO_45D, }; enum ScanType { SCAN_DIAG = 0, SCAN_HORIZ, SCAN_VERT, }; typedef struct ShortTermRPS { int num_negative_pics; int num_delta_pocs; int32_t delta_poc[32]; uint8_t used[32]; } ShortTermRPS; typedef struct LongTermRPS { int poc[32]; uint8_t used[32]; uint8_t nb_refs; } LongTermRPS; typedef struct RefPicList { struct HEVCFrame *ref[MAX_REFS]; int list[MAX_REFS]; int isLongTerm[MAX_REFS]; int nb_refs; } RefPicList; typedef struct RefPicListTab { RefPicList refPicList[2]; } RefPicListTab; typedef struct HEVCWindow { int left_offset; int right_offset; int top_offset; int bottom_offset; } HEVCWindow; typedef struct VUI { AVRational sar; int overscan_info_present_flag; int overscan_appropriate_flag; int video_signal_type_present_flag; int video_format; int video_full_range_flag; int colour_description_present_flag; uint8_t colour_primaries; uint8_t transfer_characteristic; uint8_t matrix_coeffs; int chroma_loc_info_present_flag; int chroma_sample_loc_type_top_field; int chroma_sample_loc_type_bottom_field; int neutra_chroma_indication_flag; int field_seq_flag; int frame_field_info_present_flag; int default_display_window_flag; HEVCWindow def_disp_win; int vui_timing_info_present_flag; uint32_t vui_num_units_in_tick; uint32_t vui_time_scale; int vui_poc_proportional_to_timing_flag; int vui_num_ticks_poc_diff_one_minus1; int vui_hrd_parameters_present_flag; int bitstream_restriction_flag; int tiles_fixed_structure_flag; int motion_vectors_over_pic_boundaries_flag; int restricted_ref_pic_lists_flag; int min_spatial_segmentation_idc; int max_bytes_per_pic_denom; int max_bits_per_min_cu_denom; int log2_max_mv_length_horizontal; int log2_max_mv_length_vertical; } VUI; typedef struct PTL { int general_profile_space; uint8_t general_tier_flag; int general_profile_idc; int general_profile_compatibility_flag[32]; int general_level_idc; uint8_t sub_layer_profile_present_flag[MAX_SUB_LAYERS]; uint8_t sub_layer_level_present_flag[MAX_SUB_LAYERS]; int sub_layer_profile_space[MAX_SUB_LAYERS]; uint8_t sub_layer_tier_flag[MAX_SUB_LAYERS]; int sub_layer_profile_idc[MAX_SUB_LAYERS]; uint8_t sub_layer_profile_compatibility_flags[MAX_SUB_LAYERS][32]; int sub_layer_level_idc[MAX_SUB_LAYERS]; } PTL; typedef struct VPS { uint8_t vps_temporal_id_nesting_flag; int vps_max_layers; int vps_max_sub_layers; ///< vps_max_temporal_layers_minus1 + 1 PTL ptl; int vps_sub_layer_ordering_info_present_flag; unsigned int vps_max_dec_pic_buffering[MAX_SUB_LAYERS]; unsigned int vps_num_reorder_pics[MAX_SUB_LAYERS]; unsigned int vps_max_latency_increase[MAX_SUB_LAYERS]; int vps_max_layer_id; int vps_num_layer_sets; ///< vps_num_layer_sets_minus1 + 1 uint8_t vps_timing_info_present_flag; uint32_t vps_num_units_in_tick; uint32_t vps_time_scale; uint8_t vps_poc_proportional_to_timing_flag; int vps_num_ticks_poc_diff_one; ///< vps_num_ticks_poc_diff_one_minus1 + 1 int vps_num_hrd_parameters; } VPS; typedef struct ScalingList { // This is a little wasteful, since sizeID 0 only needs 8 coeffs, and size ID 3 only has 2 arrays, not 6. uint8_t sl[4][6][64]; uint8_t sl_dc[2][6]; } ScalingList; typedef struct HEVCSPS { int vps_id; int chroma_format_idc; uint8_t separate_colour_plane_flag; ///< output (i.e. cropped) values int output_width, output_height; HEVCWindow output_window; HEVCWindow pic_conf_win; int bit_depth; int pixel_shift; enum AVPixelFormat pix_fmt; unsigned int log2_max_poc_lsb; int pcm_enabled_flag; int max_sub_layers; struct { int max_dec_pic_buffering; int num_reorder_pics; int max_latency_increase; } temporal_layer[MAX_SUB_LAYERS]; VUI vui; PTL ptl; uint8_t scaling_list_enable_flag; ScalingList scaling_list; unsigned int nb_st_rps; ShortTermRPS st_rps[MAX_SHORT_TERM_RPS_COUNT]; uint8_t amp_enabled_flag; uint8_t sao_enabled; uint8_t long_term_ref_pics_present_flag; uint16_t lt_ref_pic_poc_lsb_sps[32]; uint8_t used_by_curr_pic_lt_sps_flag[32]; uint8_t num_long_term_ref_pics_sps; struct { uint8_t bit_depth; uint8_t bit_depth_chroma; unsigned int log2_min_pcm_cb_size; unsigned int log2_max_pcm_cb_size; uint8_t loop_filter_disable_flag; } pcm; uint8_t sps_temporal_mvp_enabled_flag; uint8_t sps_strong_intra_smoothing_enable_flag; unsigned int log2_min_coding_block_size; unsigned int log2_diff_max_min_coding_block_size; unsigned int log2_min_transform_block_size; unsigned int log2_max_trafo_size; unsigned int log2_ctb_size; unsigned int log2_min_pu_size; int max_transform_hierarchy_depth_inter; int max_transform_hierarchy_depth_intra; ///< coded frame dimension in various units int width; int height; int ctb_width; int ctb_height; int ctb_size; int min_cb_width; int min_cb_height; int min_tb_width; int min_tb_height; int hshift[3]; int vshift[3]; int qp_bd_offset; } HEVCSPS; typedef struct HEVCPPS { int sps_id; ///< seq_parameter_set_id uint8_t sign_data_hiding_flag; uint8_t cabac_init_present_flag; int num_ref_idx_l0_default_active; ///< num_ref_idx_l0_default_active_minus1 + 1 int num_ref_idx_l1_default_active; ///< num_ref_idx_l1_default_active_minus1 + 1 int pic_init_qp_minus26; uint8_t constrained_intra_pred_flag; uint8_t transform_skip_enabled_flag; uint8_t cu_qp_delta_enabled_flag; int diff_cu_qp_delta_depth; int cb_qp_offset; int cr_qp_offset; uint8_t pic_slice_level_chroma_qp_offsets_present_flag; uint8_t weighted_pred_flag; uint8_t weighted_bipred_flag; uint8_t output_flag_present_flag; uint8_t transquant_bypass_enable_flag; uint8_t dependent_slice_segments_enabled_flag; uint8_t tiles_enabled_flag; uint8_t entropy_coding_sync_enabled_flag; int num_tile_columns; ///< num_tile_columns_minus1 + 1 int num_tile_rows; ///< num_tile_rows_minus1 + 1 uint8_t uniform_spacing_flag; uint8_t loop_filter_across_tiles_enabled_flag; uint8_t seq_loop_filter_across_slices_enabled_flag; uint8_t deblocking_filter_control_present_flag; uint8_t deblocking_filter_override_enabled_flag; uint8_t pps_disable_deblocking_filter_flag; int beta_offset; ///< beta_offset_div2 * 2 int tc_offset; ///< tc_offset_div2 * 2 int pps_scaling_list_data_present_flag; ScalingList scaling_list; uint8_t lists_modification_present_flag; int log2_parallel_merge_level; ///< log2_parallel_merge_level_minus2 + 2 int num_extra_slice_header_bits; uint8_t slice_header_extension_present_flag; uint8_t pps_extension_flag; uint8_t pps_extension_data_flag; // Inferred parameters int *column_width; ///< ColumnWidth int *row_height; ///< RowHeight int *col_bd; ///< ColBd int *row_bd; ///< RowBd int *col_idxX; int *ctb_addr_rs_to_ts; ///< CtbAddrRSToTS int *ctb_addr_ts_to_rs; ///< CtbAddrTSToRS int *tile_id; ///< TileId int *tile_pos_rs; ///< TilePosRS int *min_cb_addr_zs; ///< MinCbAddrZS int *min_tb_addr_zs; ///< MinTbAddrZS } HEVCPPS; typedef struct SliceHeader { int pps_id; ///< address (in raster order) of the first block in the current slice segment unsigned int slice_segment_addr; ///< address (in raster order) of the first block in the current slice unsigned int slice_addr; enum SliceType slice_type; int pic_order_cnt_lsb; uint8_t first_slice_in_pic_flag; uint8_t dependent_slice_segment_flag; uint8_t pic_output_flag; uint8_t colour_plane_id; ///< RPS coded in the slice header itself is stored here ShortTermRPS slice_rps; const ShortTermRPS *short_term_rps; LongTermRPS long_term_rps; uint8_t rpl_modification_flag[2]; unsigned int list_entry_lx[2][32]; uint8_t no_output_of_prior_pics_flag; uint8_t slice_sample_adaptive_offset_flag[3]; uint8_t slice_temporal_mvp_enabled_flag; unsigned int nb_refs[2]; uint8_t mvd_l1_zero_flag; uint8_t cabac_init_flag; uint8_t collocated_list; unsigned int collocated_ref_idx; int slice_qp_delta; int slice_cb_qp_offset; int slice_cr_qp_offset; uint8_t disable_deblocking_filter_flag; ///< slice_header_disable_deblocking_filter_flag int beta_offset; ///< beta_offset_div2 * 2 int tc_offset; ///< tc_offset_div2 * 2 int max_num_merge_cand; ///< 5 - 5_minus_max_num_merge_cand uint8_t slice_loop_filter_across_slices_enabled_flag; int num_entry_point_offsets; uint8_t luma_log2_weight_denom; int16_t chroma_log2_weight_denom; int16_t luma_weight_l0[16]; int16_t chroma_weight_l0[16][2]; int16_t chroma_weight_l1[16][2]; int16_t luma_weight_l1[16]; int16_t luma_offset_l0[16]; int16_t chroma_offset_l0[16][2]; int16_t luma_offset_l1[16]; int16_t chroma_offset_l1[16][2]; // Inferred parameters int8_t slice_qp; int slice_ctb_addr_rs; } SliceHeader; typedef struct CodingTree { int depth; ///< ctDepth } CodingTree; typedef struct CodingUnit { uint8_t cu_transquant_bypass_flag; enum PredMode pred_mode; ///< PredMode enum PartMode part_mode; ///< PartMode uint8_t rqt_root_cbf; uint8_t pcm_flag; // Inferred parameters uint8_t intra_split_flag; ///< IntraSplitFlag uint8_t max_trafo_depth; ///< MaxTrafoDepth int x; int y; } CodingUnit; typedef struct Mv { int16_t x; ///< horizontal component of motion vector int16_t y; ///< vertical component of motion vector } Mv; typedef struct MvField { Mv mv[2]; int8_t ref_idx[2]; int8_t pred_flag[2]; uint8_t is_intra; } MvField; typedef struct NeighbourAvailable { int cand_bottom_left; int cand_left; int cand_up; int cand_up_left; int cand_up_right; int cand_up_right_sap; } NeighbourAvailable; typedef struct PredictionUnit { uint8_t merge_flag; int mpm_idx; int rem_intra_luma_pred_mode; uint8_t intra_pred_mode[4]; uint8_t intra_pred_mode_c; Mv mvd; } PredictionUnit; typedef struct TransformTree { uint8_t cbf_cb[MAX_TRANSFORM_DEPTH][MAX_CU_SIZE * MAX_CU_SIZE]; uint8_t cbf_cr[MAX_TRANSFORM_DEPTH][MAX_CU_SIZE * MAX_CU_SIZE]; uint8_t cbf_luma; // Inferred parameters uint8_t inter_split_flag; } TransformTree; typedef struct TransformUnit { int cu_qp_delta; // Inferred parameters; uint8_t is_cu_qp_delta_coded; int cur_intra_pred_mode; } TransformUnit; typedef struct SAOParams { uint8_t type_idx[3]; ///< sao_type_idx int offset_abs[3][4]; ///< sao_offset_abs int offset_sign[3][4]; ///< sao_offset_sign int band_position[3]; ///< sao_band_position int eo_class[3]; ///< sao_eo_class // Inferred parameters int offset_val[3][5]; ///<SaoOffsetVal } SAOParams; typedef struct DBParams { uint8_t disable; int beta_offset; int tc_offset; } DBParams; #define HEVC_FRAME_FLAG_OUTPUT (1 << 0) #define HEVC_FRAME_FLAG_SHORT_REF (1 << 1) #define HEVC_FRAME_FLAG_LONG_REF (1 << 2) typedef struct HEVCFrame { AVFrame *frame; ThreadFrame tf; int poc; MvField *tab_mvf; RefPicList *refPicList; RefPicListTab **rpl_tab; int ctb_count; struct HEVCFrame *collocated_ref; /** * A combination of HEVC_FRAME_FLAG_* */ uint8_t flags; /** * A sequence counter, so that old frames are output first * after a POC reset */ uint16_t sequence; HEVCWindow window; AVBufferRef *tab_mvf_buf; AVBufferRef *rpl_tab_buf; AVBufferRef *rpl_buf; } HEVCFrame; typedef struct FilterData { int x; int y; int size; int slice_or_tiles_left_boundary; int slice_or_tiles_up_boundary; } FilterData; typedef struct HEVCNAL { uint8_t *rbsp_buffer; int rbsp_buffer_size; const uint8_t *data; int size; } HEVCNAL; typedef struct HEVCLocalContext { uint8_t cabac_state[HEVC_CONTEXTS]; GetBitContext gb; CABACContext cc; TransformTree tt; TransformUnit tu; uint8_t first_qp_group; int8_t qp_y; int8_t curr_qp_y; uint8_t slice_or_tiles_left_boundary; uint8_t slice_or_tiles_up_boundary; uint8_t ctb_left_flag; uint8_t ctb_up_flag; uint8_t ctb_up_right_flag; uint8_t ctb_up_left_flag; int start_of_tiles_x; int end_of_tiles_x; int end_of_tiles_y; uint8_t *edge_emu_buffer; int edge_emu_buffer_size; CodingTree ct; CodingUnit cu; PredictionUnit pu; NeighbourAvailable na; DECLARE_ALIGNED(16, int16_t, mc_buffer[(MAX_PB_SIZE + 7) * MAX_PB_SIZE]); FilterData *save_boundary_strengths; int nb_saved; } HEVCLocalContext; typedef struct HEVCContext { const AVClass *c; // needed by private avoptions AVCodecContext *avctx; HEVCLocalContext HEVClc; int disable_au; int width; int height; uint8_t cabac_state[HEVC_CONTEXTS]; AVFrame *frame; AVFrame *sao_frame; AVFrame *tmp_frame; AVFrame *output_frame; VPS *vps; const HEVCSPS *sps; HEVCPPS *pps; VPS *vps_list[MAX_VPS_COUNT]; AVBufferRef *sps_list[MAX_SPS_COUNT]; AVBufferRef *pps_list[MAX_PPS_COUNT]; ///< candidate references for the current frame RefPicList rps[5]; SliceHeader sh; SAOParams *sao; DBParams *deblock; enum NALUnitType nal_unit_type; int temporal_id; ///< temporal_id_plus1 - 1 HEVCFrame *ref; HEVCFrame DPB[32]; int poc; int pocTid0; int slice_idx; ///< number of the slice being currently decoded int eos; ///< current packet contains an EOS/EOB NAL int max_ra; int bs_width; int bs_height; int is_decoded; HEVCPredContext hpc; HEVCDSPContext hevcdsp; VideoDSPContext vdsp; DSPContext dsp; int8_t *qp_y_tab; uint8_t *split_cu_flag; uint8_t *horizontal_bs; uint8_t *vertical_bs; int32_t *tab_slice_address; // CU uint8_t *skip_flag; uint8_t *tab_ct_depth; // PU uint8_t *tab_ipm; uint8_t *cbf_luma; // cbf_luma of colocated TU uint8_t *is_pcm; // CTB-level flags affecting loop filter operation uint8_t *filter_slice_edges; /** used on BE to byteswap the lines for checksumming */ uint8_t *checksum_buf; int checksum_buf_size; /** * Sequence counters for decoded and output frames, so that old * frames are output first after a POC reset */ uint16_t seq_decode; uint16_t seq_output; HEVCNAL *nals; int nb_nals; int nals_allocated; int nuh_layer_id; // for checking the frame checksums struct AVMD5 *md5_ctx; uint8_t md5[3][16]; uint8_t is_md5; /** 1 if the independent slice segment header was successfully parsed */ uint8_t slice_initialized; int strict_def_disp_win; int context_initialized; int is_nalff; ///< this flag is != 0 if bitstream is encapsulated ///< as a format defined in 14496-15 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) AVBufferPool *tab_mvf_pool; AVBufferPool *rpl_tab_pool; } HEVCContext; int ff_hevc_decode_short_term_rps(HEVCContext *s, ShortTermRPS *rps, const HEVCSPS *sps, int is_slice_header); int ff_hevc_decode_nal_vps(HEVCContext *s); int ff_hevc_decode_nal_sps(HEVCContext *s); int ff_hevc_decode_nal_pps(HEVCContext *s); int ff_hevc_decode_nal_sei(HEVCContext *s); /** * Mark all frames in DPB as unused for reference. */ void ff_hevc_clear_refs(HEVCContext *s); /** * Drop all frames currently in DPB. */ void ff_hevc_flush_dpb(HEVCContext *s); /** * Compute POC of the current frame and return it. */ int ff_hevc_compute_poc(HEVCContext *s, int poc_lsb); RefPicList* ff_hevc_get_ref_list(HEVCContext *s, HEVCFrame *frame, int x0, int y0); /** * Construct the reference picture sets for the current frame. */ int ff_hevc_frame_rps(HEVCContext *s); /** * Construct the reference picture list(s) for the current slice. */ int ff_hevc_slice_rpl(HEVCContext *s); void ff_hevc_save_states(HEVCContext *s, int ctb_addr_ts); void ff_hevc_cabac_init(HEVCContext *s, int ctb_addr_ts); int ff_hevc_sao_merge_flag_decode(HEVCContext *s); int ff_hevc_sao_type_idx_decode(HEVCContext *s); int ff_hevc_sao_band_position_decode(HEVCContext *s); int ff_hevc_sao_offset_abs_decode(HEVCContext *s); int ff_hevc_sao_offset_sign_decode(HEVCContext *s); int ff_hevc_sao_eo_class_decode(HEVCContext *s); int ff_hevc_end_of_slice_flag_decode(HEVCContext *s); int ff_hevc_cu_transquant_bypass_flag_decode(HEVCContext *s); int ff_hevc_skip_flag_decode(HEVCContext *s, int x0, int y0, int x_cb, int y_cb); int ff_hevc_pred_mode_decode(HEVCContext *s); int ff_hevc_split_coding_unit_flag_decode(HEVCContext *s, int ct_depth, int x0, int y0); int ff_hevc_part_mode_decode(HEVCContext *s, int log2_cb_size); int ff_hevc_pcm_flag_decode(HEVCContext *s); int ff_hevc_prev_intra_luma_pred_flag_decode(HEVCContext *s); int ff_hevc_mpm_idx_decode(HEVCContext *s); int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCContext *s); int ff_hevc_intra_chroma_pred_mode_decode(HEVCContext *s); int ff_hevc_merge_idx_decode(HEVCContext *s); int ff_hevc_merge_flag_decode(HEVCContext *s); int ff_hevc_inter_pred_idc_decode(HEVCContext *s, int nPbW, int nPbH); int ff_hevc_ref_idx_lx_decode(HEVCContext *s, int num_ref_idx_lx); int ff_hevc_mvp_lx_flag_decode(HEVCContext *s); int ff_hevc_no_residual_syntax_flag_decode(HEVCContext *s); int ff_hevc_abs_mvd_greater0_flag_decode(HEVCContext *s); int ff_hevc_abs_mvd_greater1_flag_decode(HEVCContext *s); int ff_hevc_mvd_decode(HEVCContext *s); int ff_hevc_mvd_sign_flag_decode(HEVCContext *s); int ff_hevc_split_transform_flag_decode(HEVCContext *s, int log2_trafo_size); int ff_hevc_cbf_cb_cr_decode(HEVCContext *s, int trafo_depth); int ff_hevc_cbf_luma_decode(HEVCContext *s, int trafo_depth); int ff_hevc_transform_skip_flag_decode(HEVCContext *s, int c_idx); int ff_hevc_last_significant_coeff_x_prefix_decode(HEVCContext *s, int c_idx, int log2_size); int ff_hevc_last_significant_coeff_y_prefix_decode(HEVCContext *s, int c_idx, int log2_size); int ff_hevc_last_significant_coeff_suffix_decode(HEVCContext *s, int last_significant_coeff_prefix); int ff_hevc_significant_coeff_group_flag_decode(HEVCContext *s, int c_idx, int ctx_cg); int ff_hevc_significant_coeff_flag_decode(HEVCContext *s, int c_idx, int x_c, int y_c, int log2_trafo_size, int scan_idx, int prev_sig); int ff_hevc_coeff_abs_level_greater1_flag_decode(HEVCContext *s, int c_idx, int ctx_set); int ff_hevc_coeff_abs_level_greater2_flag_decode(HEVCContext *s, int c_idx, int inc); int ff_hevc_coeff_abs_level_remaining(HEVCContext *s, int base_level, int rc_rice_param); int ff_hevc_coeff_sign_flag(HEVCContext *s, uint8_t nb); /** * Get the number of candidate references for the current frame. */ int ff_hevc_frame_nb_refs(HEVCContext *s); int ff_hevc_set_new_ref(HEVCContext *s, AVFrame **frame, int poc); /** * Find next frame in output order and put a reference to it in frame. * @return 1 if a frame was output, 0 otherwise */ int ff_hevc_output_frame(HEVCContext *s, AVFrame *frame, int flush); void ff_hevc_unref_frame(HEVCContext *s, HEVCFrame *frame, int flags); void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH); void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv); void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv , int mvp_lx_flag, int LX); void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size); void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size, int slice_or_tiles_up_boundary, int slice_or_tiles_left_boundary); int ff_hevc_cu_qp_delta_sign_flag(HEVCContext *s); int ff_hevc_cu_qp_delta_abs(HEVCContext *s); void ff_hevc_hls_filter(HEVCContext *s, int x, int y); void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size); void ff_hevc_pps_free(HEVCPPS **ppps); extern const uint8_t ff_hevc_qpel_extra_before[4]; extern const uint8_t ff_hevc_qpel_extra_after[4]; extern const uint8_t ff_hevc_qpel_extra[4]; extern const uint8_t ff_hevc_diag_scan4x4_x[16]; extern const uint8_t ff_hevc_diag_scan4x4_y[16]; extern const uint8_t ff_hevc_diag_scan8x8_x[64]; extern const uint8_t ff_hevc_diag_scan8x8_y[64]; #endif // AVCODEC_HEVC_H